UC Santa Barbara Computer Science Department

Object-aware Identification of Microservices

Mohammad Javad Amiri

Microservices Architecture

- Forms a software system as a group of fine-grained, cohesive, and loosely coupled services
- Each service implements a small business capability
- Three principles of the architecture:
 - Bounded Context: related functionalities are combined into a single business capability
 - Size: each service provides <u>only a single</u> business capability (preserving granularity)
 - Independence: each service is operationally independent of others (loosely coupled and highly cohesive)

Microservices Identification

- Partitioning the system into microservices is usually performed intuitively
- If the functionalities of a system are highly interconnected, it is a challenging task
- We need to consider the underlying business functionalities of the system

Idea: identify microservices from business processes

Business Process

- A *business process* consists of <u>a set of activities</u> performed <u>in coordination</u> in <u>an organizational environment</u> to accomplish <u>a business goal</u>.
- A business process is defined as a tuple $P = (N, s, f, F, O, \rho, \omega)$.
- A Plan Approval process in a part supplier company

Microservice Identification Problem

- Decompose business processes into fine-grained, cohesive, and loosely coupled components which are called microservices.
- Each activity in a business process plays the role of an operation in a microservice.
- Given a process schema *P*, identify a set of services $\{S_1, S_2, ..., S_n\}$ where each service S_i has a set of distinct operations $\{s_{i1}, s_{i2}, ..., s_{ik}\}$ such that s_{ij} is an activity node in *P* and if $s_1 = t$ and $s_2 = t$ then $s_1 = s_2$.

Structural Dependency of Activities $(T_{\beta}(a_i, a_i))$

Given a schema $P = (N, s, f, F, O, \rho, \omega)$, for each pair of Activities $a_i, a_i \in N$, if $(a_i, a_i) \in F$ or there is a path $(a_i, n_1, ..., n_p, a_i)$ in P such that $\forall k \in$ [1...p]: n_k is a gateway, then $T_P(a_i, a_i) = 1$, else $T_P(a_i, a_i) = 0.$

	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈
t ₁	0	1	0	0	0	0	0	0
t ₂	0	0	1	0	0	0	0	0
t ₃	0	0	0	1	0	0	0	0
t ₄	0	0	0	0	1	1	0	0
t ₅	0	0	1	0	0	0	0	0
t ₆	0	0	0	0	0	0	1	0
t ₇	0	0	0	0	0	1	0	1
t ₈	0	0	0	0	0	0	0	0

Object Dependency of Activities $(T_D(a_i, a_j))$

Given a schema $P = (N, s, f, F, O, \rho, \omega)$, for each pair of Activities $a_i, a_i \in N$, $T_D(a_i, a_i) = |\omega(a_i) \cap \omega(a_i)| +$ $0.5 * |(\rho(a_i) \cap \omega(a_i)) \cup (\omega(a_i) \cap \rho(a_i))| +$ $0.25 * \left| \rho(a_i) \cap \rho(a_i) \right|$

	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈
t ₁	0	0.25	0.25	0.25	0.25	0	0	0.5
t ₂	0.25	0	0.75	0.75	1.25	0.5	0.5	1.5
t ₃	0.25	0.75	0	1.5	1.25	0.25	0.25	1
t ₄	0.25	0.75	1.5	0	1.25	0.25	0.25	1
t ₅	0.25	1.25	1.25	1.25	0	0.5	0.5	1.5
t ₆	0	0.5	0.25	0.25	0.5	0	1.25	1.5
t ₇	0	0.5	0.25	0.25	0.5	1.25	0	1.5
t ₈	0.5	1.5	1	1	1.5	1.5	1.5	0

Total Dependency of Activities $(T(a_i, a_i))$

Given a schema $P = (N, s, f, F, O, \rho, \omega)$, for each pair of Activities a_i , $a_i \in N$,

 $T(a_{i},a_{i}) = T_{P}(a_{i},a_{i}) + T_{D}(a_{i},a_{i})$

	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈
t ₁	0	1.25	0.25	0.25	0.25	0	0	0.5
t ₂	0.25	0	1.75	0.75	1.25	0.5	0.5	1.5
t ₃	0.25	0.75	0	2.5	1.25	0.25	0.25	1
t ₄	0.25	0.75	1.5	0	2.25	1.25	0.25	1
t ₅	0.25	1.25	2.25	1.25	0	0.5	0.5	1.5
t ₆	0	0.5	0.25	0.25	0.5	0	2.25	1.5
t ₇	0	0.5	0.25	0.25	0.5	2.25	0	2.5
t ₈	0.5	1.5	1	1	1.5	1.5	1.5	0

Microservice Identification

The final relation is clustered using a genetic algorithm and turbo-MQ fitness function.

Microservices Identification from multiple processes

Experiments

- Parameters: number of activities (#A), gateways (#G), objects (#O), and processes (#P).
- We measure Accuracy: the number of operations (activities) that are clustered in the correct microservice to the total number of operations.
- Correct microservices: we asked a group of domain experts to identify microservices
- Approaches:
 - 1) User-driven method: 3 developers are asked to identify microservices
 - 2) Process-driven: only the structural dependency of activities (relation T_p)
 - 3) Object-driven: only the data object dependency of activities (relation T_d)
 - 4) The proposed method: the combination of methods (2) and (3)

Experiments

Different number of activities, $1 \le \#A \le 30$, but same number of gateways (#G = 4) and objects (#O = 3). Different number of gateways, $0 \le \#G \le 20$, but same number of activities (#A = 20) and objects (#O = 3). Different number of objects, $0 \le \#O \le 10$, but same number of activities (#A = 20) and gateways (#G = 4). Different number of processes $1 \le \#P \le 10$ where on average for each process #A = 20, #G = 4, and #O = 3.

Conclusions

- Provide a method to identify an independent collection of highly interrelated activities as microservices.
- Measure dependencies between activities regarding their structural and data object interconnections
- The experiments show that the proposed method can identify cohesive, loosely coupled, and fine-grained microservices from a single business process, or a set of processes.
- The method can be easily generalized to other aspects such as requirements, resources, or ownerships.

