
SharPer:
Sharding Permissioned Blockchains Over

Network Clusters

Mohammad Javad Amiri1, Divyakant Agrawal2, Amr El Abbadi2

1University of Pennsylvania, 2University of California Santa Barbara

Anyone can participate without a
specific (physical) identity

Participants are known and Identified

Permissionless Blockchain Permissioned Blockchain

SharPer-SIGMOD'21 2

A Permissioned Blockchain system consists of a set of known,

identified entities that might not fully trust each other.

SharPer-SIGMOD'21 3

Blockchain Scalability

• The ability of a blockchain system to process an increasing number of
transactions by adding resources to the system

• Two classes of solutions for scalability:
1) Off-chain (layer two): built on top of the main chain, move a portion of the
transactions off the chain, e.g. lightning networks
2) On-chain (layer one): increase the throughput of the main chain

• Vertical techniques: more power is added to each node to perform more tasks
• Horizontal techniques: increase the number of nodes in the network

Sharding (as a horizontal technique): Partitioning the data into
multiple shards that are maintained by different subsets of nodes

SharPer-SIGMOD'21 4

Sharding-based Approaches

• Proven technique to improve scalability of distributed databases
• e.g., Amazon Dynamo, Spanner, Facebook's Tao, E-store, Calvin, H-store

1. Nodes are assumed to be crash-only
• nodes may fail by stopping, and may restart, no malicious behavior

2. Cross-shard transactions are processed using a coordinator-based approach
• Coordinator-based approach has been used in Permissioned blockchain AHL

• A committee (consisting of Byzantine nodes) plays the coordinator role [SIGMOD’19]

• Support Byzantine Nodes
• Process cross-shard transactions without any coordinator

• Requires a smaller number of nodes
• Process cross-shard transactions in parallel

SharPer

SharPer-SIGMOD'21 5

Network, Data, and Blockchain Ledger

n10n9
d3 d3

Cluster p3

n12n11
d3 d3

n14n13
d4 d4

Cluster p4

n16n15
d4 d4

n2n1
d1 d1

Cluster p1

n4n3
d1 d1

n6n5
d2 d2

Cluster p2

n8n7
d2 d2

• Network is partitioned into clusters (either 2f+1 crash-only or 3f+1 Byzantine nodes)

Network

• Shard the application data and assign shards to clusters
• Each data shard is replicated on the nodes of a cluster

Data

• The entire blockchain ledger is not maintained by any node
• Each cluster only maintains its own view of the blockchain ledger

Blockchain Ledger

SharPer-SIGMOD'21 6

SharPer Blockchain Ledger

t10

t11

t20

t13

t30

t21

t23 t33

t24,34,44

t35t25t14

𝜆

t15,26,36,46

t31

t12,22

t40

t43

t45

t47

t41

t32,42

• Intra-shard transactions of different clusters are processed in parallel
• Cross-shard transactions with non-overlapping clusters are processed in parallel
• Each cluster maintains its own view of the ledger

𝜆 𝜆 𝜆

t10

t11

t13

t20

t21

t23

t25

t30

t33

t35

t31

t12,22 t12,22

t24,34,44 t24,34,44

t15,26,36,46 t15,26,36,46 t15,26,36,46

𝜆

t40

t43

t45

t47

t41

t15,26,36,46

t14

t32,42 t32,42

t24,34,44

P1 P2 P3 P4

Sequence number
has multiple parts

SharPer-SIGMOD'21 7

Consensus in SharPer

Cross-Shard Consensus

• Needs the participation of all involved clusters
• Either f+1 crash-only or 2f+1 Byzantine nodes

of every involved cluster must participate

Intra-Shard Consensus
• Pluggable
• Depends on the failure model of nodes

• Crash-Only: (Multi-)Paxos
• Byzantine: PBFT

SharPer-SIGMOD'21 8

(Multi-)Paxos [Lamport 1998]

quorum A quorum B

Network: 2f+1
Quorum: f+1
Intersection: 1

At Most f
Crash Failures

Phases: Two
Messages: O(n)
Quorum: f+1

f+1

f+1node 0

node 1

node 2

Request Accept Accepted Commit & Replyclient

SharPer-SIGMOD'21 9

Practical Byzantine Fault Tolerance [Castro and Liskov 1999]

quorum Aquorum B

Network: 3f+1
Quorum: 2f+1
Intersection: f+1

At Most f
Malicious Failures

Phases: Three
Messages: O(n2)
Quorum: 2f+1

2f+1

2f+1
node 0

node 1

node 3

node 2

Request Pre-prepare Prepare Commit Replyclient

SharPer-SIGMOD'21 10

Cross-Shard Consensus with Crash-Only Nodes

p2 p3p1

Propose

Accept

Commit

Request
p4c2c1

Wait for f+1 matching accept
from every involved cluster

Non-overlapping cross-shard transactions can be processed in parallel

<PROPOSE, hi, d, m>

<ACCEPT, hi, hj, d, r>

<COMMIT, hi, hj, d> σπ(p1)

hi: sequence number assigned by the initiator cluster (p1 or p3)
hj: sequence number assigned by an involved cluster (p2 or p4)

SharPer-SIGMOD'21 11

Cross-Shard Consensus with Byzantine Nodes

p2p1

Propose

Accept

Commit

Request
c1

Wait for 2f+1 matching accept
from every involved cluster
Wait for 2f+1 matching commit
from every involved cluster

<PROPOSE, hi, d> σπ(p1), m>

<ACCEPT, hi, hj, d, r> σπ(r)

<COMMIT, hi, hj, d, r> σr

SharPer-SIGMOD'21 12

hi: sequence number assigned by the initiator cluster (p1)
hj: sequence number assigned by an involved cluster (p2)

Deal With Conflicting Messages

• A quorum of matching Accept messages from each
cluster might not be received

1. Nodes of a cluster assign inconsistent sequence numbers
• e.g., an overlapping cluster receives parallel requests

2. There is more than one overlapping cluster
• Nodes do not process the second transaction before committing the first
transaction to ensure consistency

• Might result in deadlock situation

• SharPer uses Timers
• Crash-only nodes: The initiator primary multicasts Super-Propose message to the

primary nodes of conflicting clusters
• Byzantine nodes: all nodes of conflicting clusters multicast Super-Accept messages
• Deadlock situations: reach a unique order between deadlocked messages.

SharPer-SIGMOD'21 13

Deal with Heavy Workloads

p2p1

Super-
Propose

Accept

Commit

c1

Propose

p2p1c1

Super-
Accept

Accept

Commit

Request

Super-
Propose

• Only the primary node of each cluster assigns all sequence numbers: no conflicts occur
• Requires an extra intra-cluster message passing

Crash-only nodes Byzantine nodes

SharPer-SIGMOD'21 14

Request

Experimental Settings

• Systems:
• Active/Passive Replication (APR-C, APR-B)
• Fast Agreement (F-Paxos, FaB)
• AHL-C, AHL-B
• SharPer

• Platform: Amazon EC2
• Measuring performance

• Throughput
• Latency

15

Cross-Shard Transactions (Crash-only)

0% Cross-shard 20% Cross-shard 80% Cross-shard 100% Cross-shard

With high percentage of cross-shard transactions, using sharding has no advantage.

With no cross-shard transaction the performance of SharPer scales linearly

With low percentage of cross-shard transactions, SharPer demonstrates the best performance.

4 Clusters

f = 1

SharPer-SIGMOD'21 16

[35230,91]

Cross-Shard Transactions (Byzantine)

0% Cross-shard 20% Cross-shard 80% Cross-shard 100% Cross-shard

4 Clusters

f = 1

SharPer-SIGMOD'21 17

Performance with Different Number of Nodes

Crash-Only Nodes Byzantine Nodes

10
%

 C
ro

ss
-S

ha
rd

The overall throughput of SharPer improves semi-linearly

SharPer-SIGMOD'21 18

Conclusion

SharPer incorporates two flattened cross-shard consensus
protocols for crash-only and Byzantine nodes

SharPer, a permissioned blockchain system that improves scalability
by clustering (partitioning) the nodes

The protocols order cross-shard transactions with non-overlapping
clusters in parallel.

The throughput of SharPer increases semi-linearly by increasing the
number of clusters

Nodes of each cluster maintain a data shard and only a view of
the blockchain ledger

SharPer-SIGMOD'21 19

Thank You!

20SharPer-SIGMOD'21

