

SharPer: Sharding Permissioned Blockchains Over Network Clusters

Mohammad Javad Amiri¹, Divyakant Agrawal², Amr El Abbadi²

¹University of Pennsylvania, ²University of California Santa Barbara

Anyone can participate without a specific (physical) identity

Participants are known and Identified

Permissionless Blockchain

Permissioned Blockchain

A Permissioned Blockchain system consists of a set of known, identified entities that might not fully trust each other.

Blockchain Scalability

- The ability of a blockchain system to process an increasing number of transactions by adding resources to the system
- Two classes of solutions for scalability:

1) Off-chain (layer two): built on top of the main chain, move a portion of the transactions off the chain, e.g. lightning networks

2) On-chain (layer one): increase the throughput of the main chain

- Vertical techniques: more power is added to each node to perform more tasks
- Horizontal techniques: increase the number of nodes in the network

Sharding (as a horizontal technique): Partitioning the data into multiple shards that are maintained by different subsets of nodes

Sharding-based Approaches

- Proven technique to improve scalability of distributed databases
 - e.g., Amazon Dynamo, Spanner, Facebook's Tao, E-store, Calvin, H-store
- 1. Nodes are assumed to be crash-only
 - nodes may fail by stopping, and may restart, no malicious behavior
- 2. Cross-shard transactions are processed using a coordinator-based approach
- Coordinator-based approach has been used in Permissioned blockchain AHL
 - A committee (consisting of Byzantine nodes) plays the coordinator role [SIGMOD'19]

Support Byzantine Nodes

- Process cross-shard transactions without any coordinator
 - Requires a smaller number of nodes
 - Process cross-shard transactions in parallel

SharPer

Network, Data, and Blockchain Ledger

Network

• Network is partitioned into clusters (either 2f+1 crash-only or 3f+1 Byzantine nodes)

Data

- Shard the application data and assign shards to clusters
- Each data shard is replicated on the nodes of a cluster

Blockchain Ledger

- The entire blockchain ledger is not maintained by any node
- Each cluster only maintains its own view of the blockchain ledger

SharPer Blockchain Ledger

- Intra-shard transactions of different clusters are processed in parallel
- Cross-shard transactions with non-overlapping clusters are processed in parallel
- Each cluster maintains its own view of the ledger

XII an, Shaanxi, China SIGMOD/PODS 2021

Consensus in SharPer

Intra-Shard Consensus

- Pluggable
- Depends on the failure model of nodes
 - Crash-Only: (Multi-)Paxos
 - Byzantine: PBFT

Cross-Shard Consensus

- Needs the participation of all involved clusters
 - Either f+1 crash-only or 2f+1 Byzantine nodes of every involved cluster must participate

"Jenkins, if I want another yes-man I'll build one."

(Multi-)Paxos [Lamport 1998]

Practical Byzantine Fault Tolerance [Castro and Liskov 1999]

At Most f

Cross-Shard Consensus with Crash-Only Nodes

Non-overlapping cross-shard transactions can be processed in parallel

 h_i : sequence number assigned by the initiator cluster (p_1 or p_3) h_i : sequence number assigned by an involved cluster (p_2 or p_4)

Cross-Shard Consensus with Byzantine Nodes

Wait for 2f+1 matching accept from every involved cluster Wait for 2f+1 matching commit from every involved cluster

 h_i : sequence number assigned by the initiator cluster (p_1) h_j : sequence number assigned by an involved cluster (p_2)

Deal With Conflicting Messages

- A quorum of matching **Accept** messages from each cluster might not be received
 - 1. Nodes of a cluster assign inconsistent sequence numbers
 - e.g., an overlapping cluster receives parallel requests
 - 2. There is more than one overlapping cluster
 - Nodes do not process the second transaction before committing the first transaction to ensure consistency
 - Might result in deadlock situation

- SharPer uses Timers
 - Crash-only nodes: The initiator primary multicasts Super-Propose message to the primary nodes of conflicting clusters
 - Byzantine nodes: all nodes of conflicting clusters multicast Super-Accept messages
 - Deadlock situations: reach a unique order between deadlocked messages.

Deal with Heavy Workloads

- Only the primary node of each cluster assigns all sequence numbers: no conflicts occur
- Requires an extra intra-cluster message passing

Experimental Settings

• Systems:

- Active/Passive Replication (APR-C, APR-B)
- Fast Agreement (F-Paxos, FaB)
- AHL-C, AHL-B
- SharPer
- Platform: Amazon EC2
- Measuring performance
 - Throughput
 - Latency

Cross-Shard Transactions (Crash-only)

With no cross-shard transaction the performance of SharPer scales linearly With low percentage of cross-shard transactions, SharPer demonstrates the best performance.

With high percentage of cross-shard transactions, using sharding has no advantage.

4 Clusters

f = 1

Cross-Shard Transactions (Byzantine)

4 Clusters

f = 1

Performance with Different Number of Nodes

The overall throughput of SharPer improves semi-linearly

Conclusion

SharPer, a permissioned blockchain system that improves scalability by clustering (partitioning) the nodes

Nodes of each cluster maintain a data shard and only a view of the blockchain ledger

SharPer incorporates two flattened cross-shard consensus protocols for crash-only and Byzantine nodes

The protocols order cross-shard transactions with non-overlapping clusters in parallel.

The throughput of SharPer increases semi-linearly by increasing the number of clusters

