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Anyone can participate without a 
specific (physical) identity

Participants are known and Identified

Permissionless Blockchain Permissioned Blockchain
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A Permissioned Blockchain system consists of  a set of  known, 

identified entities that might not fully trust each other.
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Blockchain Scalability

• The ability of a blockchain system to process an increasing number of 
transactions by adding resources to the system

• Two classes of solutions for scalability:
1) Off-chain (layer two): built on top of the main chain, move a portion of the 
transactions off the chain, e.g. lightning networks
2) On-chain (layer one): increase the throughput of the main chain

• Vertical techniques: more power is added to each node to perform more tasks
• Horizontal techniques: increase the number of nodes in the network

Sharding (as a horizontal technique): Partitioning the data into
multiple shards that are maintained by different subsets of nodes
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Sharding-based Approaches

• Proven technique to improve scalability of distributed databases
• e.g., Amazon Dynamo, Spanner, Facebook's Tao, E-store, Calvin, H-store

1. Nodes are assumed to be crash-only
• nodes may fail by stopping, and may restart, no malicious behavior

2. Cross-shard transactions are processed using a coordinator-based approach
• Coordinator-based approach has been used in Permissioned blockchain AHL

• A committee (consisting of Byzantine nodes) plays the coordinator role [SIGMOD’19]

• Support Byzantine Nodes
• Process cross-shard transactions without any coordinator 

• Requires a smaller number of nodes
• Process cross-shard transactions in parallel

SharPer
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Network, Data, and Blockchain Ledger
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• Network is partitioned into clusters (either 2f+1 crash-only or 3f+1 Byzantine nodes)

Network

• Shard the application data and assign shards to clusters
• Each data shard is replicated on the nodes of a cluster

Data

• The entire blockchain ledger is not maintained by any node
• Each cluster only maintains its own view of the blockchain ledger

Blockchain Ledger
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SharPer Blockchain Ledger
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• Intra-shard transactions of different clusters are processed in parallel
• Cross-shard transactions with non-overlapping clusters are processed in parallel
• Each cluster maintains its own view of the ledger
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Sequence number 
has multiple parts
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Consensus in SharPer

Cross-Shard Consensus

• Needs the participation of  all involved clusters
• Either  f+1 crash-only or 2f+1 Byzantine nodes 

of every involved cluster must participate

Intra-Shard Consensus
• Pluggable
• Depends on the failure model of nodes

• Crash-Only: (Multi-)Paxos
• Byzantine: PBFT
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(Multi-)Paxos [Lamport 1998]

quorum A quorum B

Network: 2f+1
Quorum: f+1
Intersection: 1

At Most f
Crash Failures

Phases: Two
Messages: O(n)
Quorum: f+1

f+1

f+1node 0

node 1

node 2

Request Accept Accepted Commit & Replyclient
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Practical Byzantine Fault Tolerance [Castro and Liskov 1999]

quorum Aquorum B

Network: 3f+1
Quorum: 2f+1
Intersection: f+1 

At Most f
Malicious Failures

Phases: Three
Messages: O(n2)
Quorum: 2f+1

2f+1

2f+1
node 0

node 1

node 3

node 2

Request Pre-prepare Prepare Commit Replyclient
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Cross-Shard Consensus with Crash-Only Nodes

p2 p3p1

Propose

Accept

Commit

Request
p4c2c1

Wait for f+1 matching accept
from every involved cluster

Non-overlapping cross-shard transactions can be processed in parallel

<PROPOSE, hi, d, m>

<ACCEPT, hi, hj, d, r>

<COMMIT, hi, hj, d> σπ(p1)

hi: sequence number assigned by the initiator cluster (p1 or p3)
hj: sequence number assigned by an involved cluster (p2 or p4)
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Cross-Shard Consensus with Byzantine Nodes

p2p1

Propose

Accept

Commit

Request
c1

Wait for 2f+1 matching accept
from every involved cluster
Wait for 2f+1 matching commit
from every involved cluster

<PROPOSE, hi, d> σπ(p1), m>

<ACCEPT, hi, hj, d, r> σπ(r)

<COMMIT, hi, hj, d, r> σr
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Deal With Conflicting Messages

• A quorum of matching Accept messages from each
cluster might not be received

1. Nodes of a cluster assign inconsistent sequence numbers
• e.g., an overlapping cluster receives parallel requests

2. There is more than one overlapping cluster
• Nodes do not process the second transaction before committing the first
transaction to ensure consistency

• Might result in deadlock situation

• SharPer uses Timers
• Crash-only nodes: The initiator primary multicasts Super-Propose message to the 

primary nodes of conflicting clusters
• Byzantine nodes: all nodes of conflicting clusters multicast Super-Accept messages
• Deadlock situations: reach a unique order between deadlocked messages.
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Deal with Heavy Workloads
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• Only the primary node of each cluster assigns all sequence numbers: no conflicts occur
• Requires an extra intra-cluster message passing

Crash-only nodes Byzantine nodes
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Experimental Settings

• Systems:
• Active/Passive Replication (APR-C, APR-B)
• Fast Agreement (F-Paxos, FaB)
• AHL-C, AHL-B
• SharPer

• Platform: Amazon EC2
• Measuring performance

• Throughput
• Latency
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Cross-Shard Transactions (Crash-only)

0% Cross-shard 20% Cross-shard 80% Cross-shard 100% Cross-shard

With high percentage of cross-shard transactions, using sharding has no advantage.

With no cross-shard transaction the performance of SharPer scales linearly

With low percentage of cross-shard transactions, SharPer demonstrates the best performance.

4 Clusters

f = 1
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Cross-Shard Transactions (Byzantine)

0% Cross-shard 20% Cross-shard 80% Cross-shard 100% Cross-shard

4 Clusters

f = 1
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Performance with Different Number of  Nodes
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The overall throughput of SharPer improves semi-linearly
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Conclusion

SharPer incorporates two flattened cross-shard consensus 
protocols for crash-only and Byzantine nodes

SharPer, a permissioned blockchain system that improves scalability 
by clustering (partitioning) the nodes

The protocols order cross-shard transactions with non-overlapping 
clusters in parallel.

The throughput of SharPer increases semi-linearly by increasing the 
number of clusters

Nodes of each cluster maintain a data shard and only a view of 
the blockchain ledger
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Thank You!
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