
VIEW: An Incremental Approach to 
Verify Evolving Workflows

UC Santa Barbara

Computer Science Department

Mohammad Javad Amiri, Divyakant Agrawal

The 34th Annual ACM/SIGAPP Symposium on Applied Computing



Workflows and Workflow Verification
• A workflow consists of a set of activities performed in coordination in an 

organizational Environment to accomplish a business goal
• Workflow Verification: Determining whether a workflow exhibits certain 

desirable behaviors
• Complete execution, i.e., Soundness 

• Consistent data

• User-defined properties, e.g., LTL Constraint

• Workflow verification has high complexity
• In presence of data the general verification problem is unsolvable

2Incremental Verification of Evolving Workflows



Even worse, Workflows need to be changed

3

• Workflows need to be changed to react quickly and adequately to events
• Every change could affect the correctness of workflow
• The evolved workflow has to be verified again!
• Do we really need to verify the entire workflow after each change?

• No
• Incremental Verification: Verify an evolved workflow without checking every node

Incremental Verification of Evolving Workflows

Problem: Given a workflow schema, a change operation, and a set of constraints, 
do all possible executions of the evolved workflow satisfy the constraints?



(Object-aware) Workflow Schema

• P = (N, s, f, L, E, O)
• Each object in O has a set of states
• Activity: a set of objects and transitions: (α,O,τ)
• Choice gateway: an object and a set of states: (o,χ)

• Workflow schemas are restricted to be well-structured
• Either and activity or a composite block
• A composite block: two sequential, two conditional, two parallel, or a loop sub-block

• Workflow schemas are constructed recursively

Incremental Verification of Evolving Workflows 4



Workflow Change Operations

5

1. RepBySeq

2. R
epByC

ond 3. RepByPar

4. RepByLoop

1. RevActivity

6. Shrin
kSeq

7. S
hrin

kC
ond 8. ShrinkPar

9. ShrinkLoop

Incremental Verification of Evolving Workflows



DecSerFlow Constraints

Incremental Verification of Evolving Workflows 6

1. Cardinality

2. Existence

3. Ordering

4. Alternating

5. Chain

Lb(α): minimum number of occurrences of activity α
Ub(α): maximum number of occurrences of activity α
Fix(α): exact number of occurrences of activity α
Rng(α): range of occurrences of activity α

Ex(α,ß): each occurrence of activity α implies an occurrence of activity ß
coEx(α,ß): either both α, ß or none of them are occurred

Response Precedence Succession

Res(α, ß): each occurrence of α is 
followed by an occurrence of ß

Pre(α, ß): each occurrence of ß is
preceded by an occurrence of α

Res(α, ß) and 
Pre(α, ß)

aRes(α, ß): in addition to Res(α, ß) α 
and ß alternate

aPre(α, ß): in addition to Pre(α, ß) α 
and ß alternate

aRes(α, ß) and 
aPre(α, ß)

cRes(α, ß): each occurrence of α is 
immediately followed by an 
occurrence of ß

cRes(α,ß): each occurrence of ß is 
immediately preceded by an 
occurrence of α

cRes(α,ß) and 
cPre(α,ß)



Process Tree
• Each Workflow schema P has a corresponding process tree T(P)
• Process Tree is constructed recursively
• Each Block in P has a corresponding sub-tree in T(P)

Incremental Verification of Evolving Workflows 7

1

4

2 3



Incremental Verification

Incremental Verification of Evolving Workflows 8

Verify an evolved workflow without checking all the nodes

For each node within a process tree an auxiliary data is stored

Auxiliary data stores are used during the verification step

Auxiliary data stores keep track of the execution paths



Execution Paths

Incremental Verification of Evolving Workflows 9

A snapshot of schema P: Σ = (D, I) where D : O ⟼ S assigns each object in P 
a state, and I is a set of edges in P.

• The workflow has totally six complete executions
• two paths from ([b], {s, 5}) to ([c], {6, f })
• four paths from ([a], {s, 5}) to ([c], {6, f })

Final Snapshot

Initial Snapshots



Auxiliary Data Store
• Given a workflow schema P, let r be the root node of the corresponding tree T(P),
An auxiliary data store of node r is a relation Dr consists of tuples (x,y,C)

• x, y are two state (relations)
• C counts execution paths from an initial snapshot with state x to a final snapshot with state y

• Element C is defined based on the class of the given constraint

Incremental Verification of Evolving Workflows 10



Count C of Auxiliary data Stores

Incremental Verification of Evolving Workflows 11

Cardinality Lb(α) {c1,…cn} each c in C shows the number of α’s in a distinct path

Existence Ex(α, ß) C[4] C[0], C[1], C[2] and C[3] are the number of distinct paths consisting α but not ß, ß
but not α, both α and ß, and neither α nor ß respectively 

Ordering Res(α, ß) C[6] C[0]: there is an α without a following ß, and each ß is preceded by an α
C[1]: there is a ß without a preceding α, and each α is followed by a ß
C[2]: there is an α without a following ß, and there is a ß without a preceding α
C[3]: each α is followed by a ß, and each ß is preceded by an α
C[4]: paths have neither α nor ß
C[5]: paths that never satisfy the constraint

Alternating aRes(α, ß) C[6] similar to ordering, except that the following and preceding α and ß are distinct 

Chain aRes(α, ß) C[7] similar to ordering, except that the following and preceding α and ß are immediate
C[6]: paths with no activity nodes

Class Example C Explanation



• Cardinality Constraint Ub(4) = 1 ⇒ D = {(a,c,{0, 1, 1, 2}), (b,c,{0, 0})}

• Existence Constraint Ex(3,4) ⇒ D = {(a,c,[1,0,3,0]), (b,c,[0,0,0,2])}

Incremental Verification of Evolving Workflows 12

Count C of Auxiliary data Stores

Cardinality Lb(α) {c1,…cn} each c in C shows the number of α’s in a distinct path

Existence Ex(α, ß) C[4] C[0], C[1], C[2] and C[3] are the number of distinct paths consisting α but not ß, ß
but not α, both α and ß, and neither α nor ß respectively 



Bottom Up Construction of Auxiliary Data

Incremental Verification of Evolving Workflows 13

(a,c,{0,1,1,2})
(b,c,{0,0}) 

(b,c,{0})
(c,c,{0})

(a,c,{0,1,1,2})(b,c,{0,0})

(b,a,{0})
(b,b,{0}) 
(b,c,{0})

(a,a,{0})
(a,b,{0}) 
(a,c,{0})

(a,c,{1,2}) 
(b,c,{1})
(c,c,{0})

(a,b,{1})
(b,c,{1}) 
(a,c,{1})

5

10

8

4

3

9

1 2

u is an activity node where L(u) = (α,O, τ ):
for all (x,y) in τ: Add (x,y,C) to Du

u is a sequence node with child nodes v1 and v2:
Du(x,y, fQ(C1,C2,φ)) ⟵ Dv1(x,z,C1),Dv2(z,y,C2)

u is a conditional node with child nodes v1 and v2:
Du(x,y,C) ⟵ Dv1 (x,y,C), χ1(xi)
Du(x,y,C) ⟵ Dv2 (x,y,C), χ2(xi)

u is a parallel node with child nodes v1 and v2:
Du (x,y, fP(C1,C2,φ)) ⟵ Dv1 (x,z,C1),Dv2(z,y,C2)

u is a loop node with a child v1 where L(u) = (xi,χ):
Tu(x,y,C) ⟵ Dv1 (x,y,C), χ1(xi)
Tu(x,y, fQ(C1,C2,φ)) ⟵ Tu(x,z,C1),Dv1 (z,y,C2), χ1(xi)
Tu(x,x,C0(φ)) ⟵ (x,x),χ2(xi)
Du(x,y,C) ⟵ Tu(x,y,C), χ2(yi)

Cardinality Constraint (activity 4)



Incremental Verification of Evolving Workflows 14

(a,c,[1,0,3,0])
(b,c,[0,0,0,2]) 

(b,c,[0,0,0,1])
(c,c,[0,0,0,1])

(a,c,[1,0,3,0])(b,c,[0,0,0,2])

(b,a,[0,0,0,1])
(b,b,[0,0,0,1]) 
(b,c,[0,0,0,1])

(a,a,[1,0,0,0])
(a,b,[1,0,0,0]) 
(a,c,[1,0,0,0])

(c,c,[0,0,0,1])
(a,c,[0,2,0,0]) 
(b,c,[0,1,0,0])

(a,b,[0,1,0,0])
(b,c,[0,1,0,0]) 
(a,c,[0,1,0,0])

5

10

8

4

3

9

1

2

(a,c,[0,0,0,0,4,0])
(b,c,[0,0,0,2,0,0]) 

(b,c,[0,1,0,0,0,0])
(c,c,[0,1,0,0,0,0])

(a,c,[0,0,0,0,4,0])(b,c,[0,0,0,2,0,0])

(b,a,[1,0,0,0,0,0])
(b,b,[1,0,0,0,0,0]) 
(b,c,[1,0,0,0,0,0])

(a,a,[0,0,0,0,1,0])
(a,b,[0,0,0,0,1,0]) 
(a,c,[0,0,0,0,1,0])

(c,c,[0,0,0,0,1,0])
(a,c,[0,0,0,0,2,0]) 
(b,c,[0,0,0,0,1,0])

(a,b,[0,0,0,0,1,0])
(b,c,[0,0,0,0,1,0]) 
(a,c,[0,0,0,0,1,0])

5

10

8

4

3

9

1

2

(a,c,[1,0,0,2,0,1])
(b,c,[0,0,0,0,2,0]) 

(b,c,[0,0,0,0,1,0])
(c,c,[0,0,0,0,1,0])

(a,c,[1,0,0,2,0,1])(b,c,[0,0,0,0,2,0])

(b,a,[0,0,0,0,1,0])
(b,b,[0,0,0,0,1,0]) 
(b,c,[0,0,0,0,1,0])

(a,a,[1,0,0,0,0,0])
(a,b,[1,0,0,0,0,0]) 
(a,c,[1,0,0,0,0,0])

(c,c,[0,0,0,0,1,0])
(a,c,[0,1,0,0,0,1]) 
(b,c,[0,1,0,0,0,0])

(a,b,[0,1,0,0,0,0])
(b,c,[0,1,0,0,0,0]) 
(a,c,[0,1,0,0,0,0])

5

10

8

4

3

9

1

2

(a,c,[1,0,0,2,0,1,0])
(b,c,[0,0,0,0,2,0,0]) 

(b,c,[0,0,0,0,1,0,0])
(c,c,[0,0,0,0,1,0,0])

(a,c,[1,0,0,2,0,1,0])(b,c,[0,0,0,0,2,0,0])

(b,a,[0,0,0,0,1,0,0])
(b,b,[0,0,0,0,1,0,0]) 
(b,c,[0,0,0,0,1,0,0])

(a,a,[1,0,0,0,0,0,0])
(a,b,[1,0,0,0,0,0,0]) 
(a,c,[1,0,0,0,0,0,0])

(c,c,[0,0,0,0,0,0,1])
(a,c,[0,1,0,0,0,1,0]) 
(b,c,[0,1,0,0,0,0,0])

(a,b,[0,1,0,0,0,0,0])
(b,c,[0,1,0,0,0,0,0]) 
(a,c,[0,1,0,0,0,0,0])

5

10

8

4

3

9

1

2

Existence Constraint Ex(α3,α4) Alternating Constraint aRes(α3,α4)

Chain Constraint cPre(α3,α4) Ordering Constraint Res(α1,α2)



Incremental Construction of Auxiliary Data

Incremental Verification of Evolving Workflows 15

• The leaf level (activity) nodes and their auxiliary data are updated
• The changes are propagated incrementally only along the path to the root node
• For each node, two relations D+ and D− are defined

• D+: elements which are added
• D-: elements which are removed

• D′ =D − D− + D+



Incremental Construction of Auxiliary Data

Incremental Verification of Evolving Workflows 16

(a,c,{0,1,1,2})
(b,c,{0,0}) 

(b,c,{0})
(c,c,{0})

(a,c,{0,1,1,2})(b,c,{0,0})

(a,a,{0})
(a,b,{0}) 
(a,c,{0})

(c,c,{0})
(a,c,{1,2}) 
(b,c,{1})

(a,b,{1})
(b,c,{1}) 
(a,c,{1})

5

10

8

4

3

9

2

(a,b,{0})
(b,c,{0})
(c,c,{0})

(b,a,{0})
(b,b,{0}) 
(b,c,{0})

1

11

Change Operation: RepBySeq(1,11)

(a,c,{0,1,1,2})
(b,c,{0,0,0}) 

(b,c,{0,0,0})

(b,a,{0})
(b,b,{0}) 
(b,c,{0,0})

(b,a,{0})
(b,b,{0}) 
(b,c,{0})

1

12

Cardinality Constraint



Verification of Constraints
• Only check the auxiliary data of the root node to verify a given constraint

Incremental Verification of Evolving Workflows 17

Cardinality
Lb(α) For all c in C : c ≥ Lb(α)
Ub(α) For all c in C : c ≤ Lb(α)
Fix(α) For all c in C : c = Fix(α)
Rng(α) For all c in C : c ∈ Rng(α)

Existence Ex(α,ß) C[0] = 0
coEx(α,ß) C[0] = C[1] = 0

Alternating aRes(α,ß) C[0] = C[2] = C[5] = 0
aPre(α,ß) C[1] = C[2] = C[5] = 0
aSuc(α,ß) C[0] = C[1] = C[2] = C[5] = 0

Ordering Res(α,ß) C[0] = C[2] = 0
Pre(α,ß) C[1] = C[2] = 0
Suc(α,ß) C[0] = C[1] = C[2] = 0

Chain cRes(α,ß) C[0] = C[2] = C[5] = 0
cPre(α,ß) C[1] = C[2] = C[5] = 0
cSuc(α,ß) C[0] = C[1] = C[2] = C[5] = 0

• Cardinality Constraint “Ub(4) = 1” is not verified
• D = {(a,c, {0, 1, 1, 2}), (b, c, {0, 0})} ⟹ there is path with more than one occurrences of 4

• Existence Constraint Ex(3,4) is not verified
• D = {(a, c, [1, 0, 3, 0]), (b, c,[0, 0, 0, 2])} ⟹ there is path that goes through 3, but not 4



Experiments Setup
• Algorithms: Spin-based, bottom up, and incremental construction
• Dataset: randomly generated
• Input constraints: a set of 10 constraints, 2 from each class (8 verified, 2 unverified)
• Parameters: number of activities (#A), objects (#O), states per object (#S), 

transitions per activity (#T), and loops (#L)
• To measure the impact of

• Workflow size (#A): sequential workflows with #O=3, #S=10, and #T=3 are considered
• last four parameters: workflows consisting of all fragments with #A=10, #O=3, #S=10, #T=3, and 

#L=1 is considered (each time one of the #O, #S, #T, or #L is changed)

• Each experiment is performed 9 times, each time with a different change operation

Incremental Verification of Evolving Workflows 18



Experiments Results

Incremental Verification of Evolving Workflows 19

logarithmic

Bottom up: exponential 
grow rate in terms of 
the number of objects



Conclusion

Incremental Verification of Evolving Workflows 20

D
e

si
g

n
 t

im
e

E
vo

lu
ti

o
n

 t
im

e

Input Models Process Tree Process Tree with 
Auxiliary Data

Verification

Constraints to verify
e.g. Res(t1,t2) (bottom-up)

(Incremental)

A change operation
e.g. RepBySeq(t1,t4)



Future Work

Incremental Verification of Evolving Workflows 21

Extend the approach to support the same set of constraints regarding the 
object states (instead of activity nodes)

Support other types of constraints like Soundness (we need to change the 
structure of our auxiliary data)

Support schemas that do not have the liveness property (where executions 
might enter infinite loops)

Suggest a set of change operations on a workflow to make the specified 
constraints satisfiable.

Use the presented technique to solve model counting problems



THANK YOU!

Incremental Verification of Evolving Workflows

Questions?!
I’m on Skype! (Hopefully J)


