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High complexity of  BFT protocols in 
large-scale geo-distributed systems
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Large-scale geo-distributed systems over wide-area

• Hierarchical fully replicated (e.g., Steward [DSN’06], Blockplane [ICDE’19])
• Fully replicated data across multiple Byzantine fault-tolerant clusters
• A CFT protocol is used to establish global consensus among clusters
• The maliciousness of servers is confined within clusters 

• Every single transaction needs to be globally synchronized
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• Sharded partially replicated (e.g., Caper [VLDB’19], Qanaat [VLDB’22])
• Shard data and replicate a data shard on each cluster
• Do not run a global consensus for every transaction

• Use BFT protocols for global consensus



Ziziphus

• A geo-distributed system to support edge 
applications with possibly mobile edge clients

• Edge nodes are partitioned into Byzantine fault-
tolerant zones

: each zone processes local 
transactions initiated by its nearby clients 
independent of other zones.

• Nodes maintain global system meta-data
• To enforce network-wide policies
• E.g., a zone cannot host more than 10000 clients

• Global synchronization is only needed to update 
system meta-data
• E.g., when a client migrates to another zone

• Confines the maliciousness of Byzantine servers
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System model

• Target applications:
• Performance in terms of throughput and latency is paramount
• Data accesses have an affinity towards locality
• The probability of failure of an entire zone is insignificant

• Design decisions:
• Clustering nodes into fault-tolerant zones
• Replicating local transactions of edge devices only on nodes of their nearby zone

• Design trade-offs:
• Scalability vs. security

• Ziziphus is more prone to DoS attacks in comparison to a flat system with the same number of nodes
• Performance vs. availability

• The availability of Ziziphus is reduced if an entire zone fails, e.g., due to natural disasters

5



Local transactions

• Initiated by the clients of a zone on their local data in the zone
• Processes local transactions using PBFT (pluggable)
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Global transactions

• Consists of two atomic sub-transactions [in case of client migration]
• Update the global system meta-data of all zones (data synchronization protocol)
• Copy the actual client data from the source to the destination zone (data migration protocol)
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Lazy synchronization

• The zone data becomes unavailable during zone failures
• Ziziphus use checkpointing to provide (a weaker degree of) fault tolerance

• Inspired by checkpointing mechanism of BFT protocols

• Nodes periodically share their latest stable states with each other
• No need to run global synchronization for every transaction

• Each zone replicates the latest stable state of every zone on all its nodes
• Stable state: all executed local transactions
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Zone clusters
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Data synchronization protocol

• Client migration within a zone cluster: data synchronization and migration protocols
• Client migration across zone clusters: cross-cluster data synchronization
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Experimental settings

• Platform: Amazon EC2
• Measuring performance

• Throughput & Latency

• Application:
• Banking

• Local transactions:
• PBFT

• Systems:
• Flat PBFT
• Two-level PBFT
• Steward (i.e., Ziziphus with 100% global transactions)
• Ziziphus
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Performance with increasing the number of  zones
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• Ziziphus with 3 zones and 10% global transactions:
• Processes 12% more transactions with 46% lower latency compared to two-level PBFT
• Processes 470% more transactions with 86% lower latency compared to Steward



Fault tolerance scalability
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• Increasing the number of nodes, reduces the overall throughput and increases latency of all protocols.
• With 10% global transaction and increasing the zone size from 4 to 16:

• Ziziphus shows 53% higher latency
• PBFT shows 480% higher latency

Increasing f from 1 to 5, i.e., increasing zone size from 4 to 16.



Scalability using zone clusters
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Each cluster includes 3 zones and each zone contains 4 nodes

• Ziziphus demonstrates higher throughput by increasing the number of zone clusters
• Increasing the number of zone clusters does not affect latency
• With (10%G(10%C) Ziziphus is able to process 749 ktps with 31 ms latency with 10 zone clusters.



Ziziphus conclusion

Provides a zonal abstraction to confine maliciousness of Byzantine 
servers within each zone.

A geo-distributed system that partitions Byzantine edge servers into fault-
tolerant zones.

The performance of Ziziphus improves semi-linearly with increasing the 
number of zones or zone clusters.

Global synchronization is needed when system meta-data needs to be 
updated.

In typical workloads, Ziziphus achieves significantly better performance 
compared to flat PBFT, two-level PBFT and Steward.
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Thank You!

mjamiri@seas.upenn.edu
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Questions?


