Anahei

, CA April 3 -7, 202

w

\\ = Ziziphus:
7 Scalable Data Management
% Across Byzantine Edge Servers

Mohammad Javad Amiri' Daniel Shu? Sujaya Maiyya3 Divy Agrawal? Amr El Abbadi?

'University of Pennsylvania, 2University of California Santa Barbara, 3University of Waterloo

High complexity of BFT protocols in
large-scale geo-distributed systems

s - ' . > - . vee J s
. ' ' y ‘e . R K L . as » ot 3 3
' : . . ’ ' A . ¥ A A

. ' . .. g . .
. p 3 . ' 4 . i " . . .
‘. . ' . . NG
. . o . o . . ' . '

Large-scale geo-distributed systems over wide-area

e Hierarchical fully replicated (e.g., Steward [DSN’06], Blockplane [ICDE’19])
* Fully replicated data across multiple Byzantine fault-tolerant clusters

* A CFT protocol is used to establish global consensus among clusters
* The maliciousness of servers is confined within clusters
* Every single transaction needs to be globally synchronized

e Sharded partially replicated (e.g., Caper [VLDB’19], Qanaat [VLDB’22])
* Shard data and replicate a data shard on each cluster

* Do not run a global consensus for every transaction
e Use BFT protocols for global consensus

Ziziphus

nq ny)\N3/iNg

@@@ Ns)\ne)\N7) \Ng
@ &) (] @) (@) [d) @) @) Zone z;
Zone z, EAREAREANEY NS
Zone z, @ @ & &
EANCAREANCH
o) @) @) @)
d) (@) & (d)
Zone z,
N17,/1N4g, | N1, | N20
@) GJ @) @y
(s (d) (ds) (o)
Zone z;

A geo-distributed system to support edge
applications with possibly mobile edge clients

Edge nodes are partitioned into Byzantine fault-
tolerant zones

Local level: each zone processes local
transactions initiated by its nearby clients
independent of other zones.

Nodes maintain global system meta-data
* To enforce network-wide policies
* E.g., a zone cannot host more than 10000 clients

Global synchronization is only needed to update
system meta-data

* E.g.,, when a client migrates to another zone

Confines the maliciousness of Byzantine servers

System model

* Target applications:
* Performance in terms of throughput and latency is paramount
» Data accesses have an affinity towards locality
* The probability of failure of an entire zone is insignificant

* Design decisions:
e Clustering nodes into fault-tolerant zones
* Replicating local transactions of edge devices only on nodes of their nearby zone

* Design trade-offs:
 Scalability vs. security
e Ziziphus is more prone to DoS attacks in comparison to a flat system with the same number of nodes

* Performance vs. availability
e The availability of Ziziphus is reduced if an entire zone fails, e.g., due to natural disasters

Local transactions

* |nitiated by the clients of a zone on their local data in the zone

* Processes local transactions using PBFT (pluggable)

Pre-prepare Prepare Commit

PBFT

Global transactions

* Consists of two atomic sub-transactions [in case of client migration]
* Update the global system meta-data of all zones ()
* Copy the actual client data from the source to the destination zone (data migration protocol)

L | eader, Election
Req: Propose | Promise Commit State Reply

Client -: ﬁ

!
!
Zone 1 E |
(destination) X%% % % : X%
- PBFT 5 |
Zone 2 % | ¥
(source) 5 A
Zone 3 %

———————————————————————————————— 1 -\ }

Y
Data Migration Protocol
7

Lazy synchronization

* The zone data becomes unavailable during zone failures

 Ziziphus use checkpointing to provide (a weaker degree of) fault tolerance
* Inspired by checkpointing mechanism of BFT protocols

* Nodes periodically share their latest stable states with each other
* No need to run global synchronization for every transaction

* Each zone replicates the latest stable state of every zone on all its nodes
e Stable state: all executed local transactions

Zone clusters

(regional) system meta-data

C10

Data synchronization protocol

e Client migration within a zone cluster: data synchronization and migration protocols

* Client migration across zone clusters: cross-cluster data synchronization

Request C-propose Propose Promise Accept Accepted Prepared ~ Commit

zone cluster C1
1

(Izone 3| Zzone 2 zone 1|\

\

zone cluster C2

A
zone 6 zone 5 zone 4

[

10

Experimental settings

o Platform:

« Measuring performance
« Throughput & Latency

» Application:
« Banking

 Local transactions:
« PBFT

« Systems:
* Flat PBFT
« Two-level PBFT
« Steward (i.e., Ziziphus with 100% global transactions)
« Ziziphus

Throughput [ktps]

Performance with increasing the number of zones

& Ziziphus-10% - Ziziphus-30% -#- Ziziphus-50% & 2L-PBFT-10% -6- 2L-PBFT-307 - 2L-PBFT-50% —~ PBFT -- Steward |

80

60

40

20

Clients per zone
(a) F =1 (3 zones)

240
£ 180
P
2 120
3
<
= 60 o8
T 100 200 300 400 500 0 100 200 300 400 500
Clients per zone Clients per zone
(b) F = 2 (5 zones) (¢) F = 3 (7 zones)

400

1300

200

100

\
| i
. o
Ut o
(e} [}
T

100 200 300 400 500
Clients per zone
(a) F =1 (3 zones)

e Ziziphus with 3 zones and 10% global transactions:
* Processes 12% more transactions with 46% lower latency compared to two-level PBFT
* Processes 470% more transactions with 86% lower latency compared to Steward

100 200 300 400 500 100 200 300 400 500

Clients per zone Clients per zone
(b) F =2 (5 zones) (c) F = 3 (7 zones)

12

Fault tolerance scalability

- Ziziphus-10% -@- Ziziphus-30% - Ziziphus-50% & 2L-PBFT-10% -6- 2L-PBFT-30Y - 2L-PBFT-50% —+ PBFT - Steward

e
0.0)

3
X 1,000
=)
£ E 70| :
2 24\\‘\’ 5 500 f
5 5
2 12&% 250
"2 a1 30 30 48 1221 30 39 48

Number of nodes Number of nodes

Increasing f from 1to 5, i.e., increasing zone size from 4 to 16.

* Increasing the number of nodes, reduces the overall throughput and increases latency of all protocols.
* With 10% global transaction and increasing the zone size from 4 to 16:

e Ziziphus shows 53% higher latency

* PBFT shows 480% higher latency

13

Scalability using zone clusters

800 .

600

400

200

Throughput [ktrans/sec]

123456 7 8910
Zone Clusters

Zone clusters

2 .1G(.1C) 8- .3G(.1C) e .5G(.1C) & .1G(.5C) e .3G(.5C) - .5G(.oC)

Each cluster includes 3 zones and each zone contains 4 nodes

e Ziziphus demonstrates higher throughput by increasing the number of zone clusters
* Increasing the number of zone clusters does not affect latency

e With (10%G(10%C) Ziziphus is able to process 749 ktps with 31 ms latency with 10 zone clusters.

14

Ziziphus conclusion

= A geo-distributed system that partitions Byzantine edge servers into fault-
tolerant zones.

(

o Global synchronization is needed when system meta-data needs to be
updated.

A Provides a zonal abstraction to confine maliciousness of Byzantine
T servers within each zone.

6 In typical workloads, Ziziphus achieves significantly better performanc
- compared to flat PBFT, two-level PBFT and Steward.

e

i The performance of Ziziphus improves semi-linearly with increasing the
- number of zones or zone clusters.

NN AN N

Thank You!

Ay u-ElQuestlons ?

