
Ziziphus:
Scalable Data Management

Across Byzantine Edge Servers

Mohammad Javad Amiri1 Daniel Shu2 Sujaya Maiyya3 Divy Agrawal2 Amr El Abbadi2

1University of Pennsylvania, 2University of California Santa Barbara, 3University of Waterloo

High complexity of BFT protocols in
large-scale geo-distributed systems

2

Large-scale geo-distributed systems over wide-area

• Hierarchical fully replicated (e.g., Steward [DSN’06], Blockplane [ICDE’19])
• Fully replicated data across multiple Byzantine fault-tolerant clusters
• A CFT protocol is used to establish global consensus among clusters
• The maliciousness of servers is confined within clusters

• Every single transaction needs to be globally synchronized

3

• Sharded partially replicated (e.g., Caper [VLDB’19], Qanaat [VLDB’22])
• Shard data and replicate a data shard on each cluster
• Do not run a global consensus for every transaction

• Use BFT protocols for global consensus

Ziziphus

• A geo-distributed system to support edge
applications with possibly mobile edge clients

• Edge nodes are partitioned into Byzantine fault-
tolerant zones

: each zone processes local
transactions initiated by its nearby clients
independent of other zones.

• Nodes maintain global system meta-data
• To enforce network-wide policies
• E.g., a zone cannot host more than 10000 clients

• Global synchronization is only needed to update
system meta-data
• E.g., when a client migrates to another zone

• Confines the maliciousness of Byzantine servers

4

d2
dg

d2
dg

d2
dg

d2
dg

n5 n6 n7 n8

d4
dg

d4
dg

d4
dg

d4
dg

n13 n14 n15 n16

d5
dg

d5
dg

d5
dg

d5
dg

n17 n18 n19 n20

d1
dg

d1
dg

d1
dg

d1
dg

n1 n2 n3 n4

d3
dg

d3
dg

d3
dg

d3
dg

n9 n10 n11 n12
Zone z2

Zone z1
Zone z3

Zone z4

Zone z5

System model

• Target applications:
• Performance in terms of throughput and latency is paramount
• Data accesses have an affinity towards locality
• The probability of failure of an entire zone is insignificant

• Design decisions:
• Clustering nodes into fault-tolerant zones
• Replicating local transactions of edge devices only on nodes of their nearby zone

• Design trade-offs:
• Scalability vs. security

• Ziziphus is more prone to DoS attacks in comparison to a flat system with the same number of nodes
• Performance vs. availability

• The availability of Ziziphus is reduced if an entire zone fails, e.g., due to natural disasters

5

Local transactions

• Initiated by the clients of a zone on their local data in the zone
• Processes local transactions using PBFT (pluggable)

6

Pre-prepare Prepare Commit

PB
FT

Global transactions

• Consists of two atomic sub-transactions [in case of client migration]
• Update the global system meta-data of all zones (data synchronization protocol)
• Copy the actual client data from the source to the destination zone (data migration protocol)

7

Zone 2
(source)

Zone 3

Client ProposeReq Promise Accept Accepted Commit State Reply

Data Synchronization Protocol Data Migration Protocol

Leader Election

PBFT

PBFT

Zone 1
(destination)

Lazy synchronization

• The zone data becomes unavailable during zone failures
• Ziziphus use checkpointing to provide (a weaker degree of) fault tolerance

• Inspired by checkpointing mechanism of BFT protocols

• Nodes periodically share their latest stable states with each other
• No need to run global synchronization for every transaction

• Each zone replicates the latest stable state of every zone on all its nodes
• Stable state: all executed local transactions

8

Zone clusters

9

z01
z02 z03

z04
z05 z06

z14
z16 z17
z18

z08
z10 z11
z12 z13

z09
z07

z19
z20 z21

z28
z30 z31
z32 z33

z29
z27

z40
z42 z43
z44 z45

z41
z39

z95 z97
z98 z99 z100

z96
z94

z15

z22
z24 z25
z26

z23

z34
z36 z37
z38

z35

z46
z48 z49
z50

z47

z51
z52 z53

z54
z56 z57
z58

z55z59
z61 z62
z63

z60

z64
z65 z66

z91
z92 z93

z86
z88 z89
z90

z87

z67
z68 z69

z75
z76 z77

z70
z72 z73
z74

z71

z78
z79 z80

z81
z83 z84
z85

z82

C1 C2

C4
C3

C5

C6
C7

C8

C9

C10

C11

C12C13

C14

C15

C16

C17

C18

C19

C20

C21

C22

(regional) system meta-data

Data synchronization protocol

• Client migration within a zone cluster: data synchronization and migration protocols
• Client migration across zone clusters: cross-cluster data synchronization

10

ProposeRequest Promise Accept Accepted Commit

zo
ne

 1
zo

ne
 2

zo
ne

 3

zo
ne

 c
lu

st
er

 C
1

zo
ne

 4
zo

ne
 5

zo
ne

 6

zo
ne

 c
lu

st
er

 C
2

C-propose Prepared

PBFT

PBFT

Experimental settings

• Platform: Amazon EC2
• Measuring performance

• Throughput & Latency

• Application:
• Banking

• Local transactions:
• PBFT

• Systems:
• Flat PBFT
• Two-level PBFT
• Steward (i.e., Ziziphus with 100% global transactions)
• Ziziphus

11

Performance with increasing the number of zones

12

• Ziziphus with 3 zones and 10% global transactions:
• Processes 12% more transactions with 46% lower latency compared to two-level PBFT
• Processes 470% more transactions with 86% lower latency compared to Steward

Fault tolerance scalability

13

• Increasing the number of nodes, reduces the overall throughput and increases latency of all protocols.
• With 10% global transaction and increasing the zone size from 4 to 16:

• Ziziphus shows 53% higher latency
• PBFT shows 480% higher latency

Increasing f from 1 to 5, i.e., increasing zone size from 4 to 16.

Scalability using zone clusters

14

Each cluster includes 3 zones and each zone contains 4 nodes

• Ziziphus demonstrates higher throughput by increasing the number of zone clusters
• Increasing the number of zone clusters does not affect latency
• With (10%G(10%C) Ziziphus is able to process 749 ktps with 31 ms latency with 10 zone clusters.

Ziziphus conclusion

Provides a zonal abstraction to confine maliciousness of Byzantine
servers within each zone.

A geo-distributed system that partitions Byzantine edge servers into fault-
tolerant zones.

The performance of Ziziphus improves semi-linearly with increasing the
number of zones or zone clusters.

Global synchronization is needed when system meta-data needs to be
updated.

In typical workloads, Ziziphus achieves significantly better performance
compared to flat PBFT, two-level PBFT and Steward.

15

Thank You!

mjamiri@seas.upenn.edu

16

Questions?

