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High complexity of BFT protocols in
large-scale geo-distributed systems
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Large-scale geo-distributed systems over wide-area

e Hierarchical fully replicated (e.g., Steward [DSN’06], Blockplane [ICDE’19])
* Fully replicated data across multiple Byzantine fault-tolerant clusters

* A CFT protocol is used to establish global consensus among clusters
* The maliciousness of servers is confined within clusters
* Every single transaction needs to be globally synchronized

e Sharded partially replicated (e.g., Caper [VLDB’19], Qanaat [VLDB’22])
* Shard data and replicate a data shard on each cluster

* Do not run a global consensus for every transaction
e Use BFT protocols for global consensus



Ziziphus
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A geo-distributed system to support edge
applications with possibly mobile edge clients

Edge nodes are partitioned into Byzantine fault-
tolerant zones

Local level: each zone processes local
transactions initiated by its nearby clients
independent of other zones.

Nodes maintain global system meta-data
* To enforce network-wide policies
* E.g., a zone cannot host more than 10000 clients

Global synchronization is only needed to update
system meta-data

* E.g.,, when a client migrates to another zone

Confines the maliciousness of Byzantine servers




System model

* Target applications:
* Performance in terms of throughput and latency is paramount
» Data accesses have an affinity towards locality
* The probability of failure of an entire zone is insignificant

* Design decisions:
e Clustering nodes into fault-tolerant zones
* Replicating local transactions of edge devices only on nodes of their nearby zone

* Design trade-offs:
 Scalability vs. security
e Ziziphus is more prone to DoS attacks in comparison to a flat system with the same number of nodes

* Performance vs. availability
e The availability of Ziziphus is reduced if an entire zone fails, e.g., due to natural disasters



Local transactions

* |nitiated by the clients of a zone on their local data in the zone

* Processes local transactions using PBFT (pluggable)

Pre-prepare Prepare Commit

PBFT




Global transactions

* Consists of two atomic sub-transactions [in case of client migration]
* Update the global system meta-data of all zones ( )
* Copy the actual client data from the source to the destination zone (data migration protocol)

L | eader, Election
Req:  Propose | Promise Commit State Reply

Client -: ﬁ

!
!
Zone 1 E |
(destination) X%% % % : X%
- PBFT 5 |
Zone 2 % | ¥
(source) 5 A
Zone 3 %

———————————————————————————————— 1 -\ }

Y
Data Migration Protocol
7




Lazy synchronization

* The zone data becomes unavailable during zone failures

 Ziziphus use checkpointing to provide (a weaker degree of) fault tolerance
* Inspired by checkpointing mechanism of BFT protocols

* Nodes periodically share their latest stable states with each other
* No need to run global synchronization for every transaction

* Each zone replicates the latest stable state of every zone on all its nodes
e Stable state: all executed local transactions



Zone clusters

(regional) system meta-data

C10




Data synchronization protocol

e Client migration within a zone cluster: data synchronization and migration protocols

* Client migration across zone clusters: cross-cluster data synchronization

Request C-propose Propose Promise Accept  Accepted Prepared ~ Commit

zone cluster C1
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Experimental settings

o Platform:

« Measuring performance
« Throughput & Latency

» Application:
« Banking

 Local transactions:
« PBFT

« Systems:
* Flat PBFT
« Two-level PBFT
« Steward (i.e., Ziziphus with 100% global transactions)
« Ziziphus
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Performance with increasing the number of zones
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e Ziziphus with 3 zones and 10% global transactions:
* Processes 12% more transactions with 46% lower latency compared to two-level PBFT
* Processes 470% more transactions with 86% lower latency compared to Steward
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Fault tolerance scalability
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Increasing f from 1to 5, i.e., increasing zone size from 4 to 16.

* Increasing the number of nodes, reduces the overall throughput and increases latency of all protocols.
* With 10% global transaction and increasing the zone size from 4 to 16:

e Ziziphus shows 53% higher latency

* PBFT shows 480% higher latency
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Scalability using zone clusters
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Zone clusters

2 .1G(.1C) 8- .3G(.1C) e .5G(.1C) & .1G(.5C) e .3G(.5C) - .5G(.oC)

Each cluster includes 3 zones and each zone contains 4 nodes

e Ziziphus demonstrates higher throughput by increasing the number of zone clusters
* Increasing the number of zone clusters does not affect latency

e With (10%G(10%C) Ziziphus is able to process 749 ktps with 31 ms latency with 10 zone clusters.
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Ziziphus conclusion

= A geo-distributed system that partitions Byzantine edge servers into fault-
tolerant zones.

(

o Global synchronization is needed when system meta-data needs to be
updated.

A Provides a zonal abstraction to confine maliciousness of Byzantine
T servers within each zone.

6 In typical workloads, Ziziphus achieves significantly better performanc
- compared to flat PBFT, two-level PBFT and Steward.

e

i The performance of Ziziphus improves semi-linearly with increasing the
- number of zones or zone clusters.
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