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Abstract. We present new algorithms for reinforcement learning and prove that they have polynomial bounds
on the resources required to achieve near-optimal return in general Markov decision processes. After observing
that the number of actions required to approach the optimal return is lower bounded by the mixing time T of
the optimal policy (in the undiscounted case) or by the horizon time T (in the discounted case), we then give
algorithms requiring a number of actions and total computation time that are only polynomial in T and the number
of states and actions, for both the undiscounted and discounted cases. An interesting aspect of our algorithms is
their explicit handling of the Exploration-Exploitation trade-off.
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1. Introduction

In reinforcement learning, an agent interacts with an unknown environment, and attempts
to choose actions that maximize its cumulative payoff (Sutton & Barto, 1998; Barto, Sutton,
& Watkins, 1990; Bertsekas & Tsitsiklis, 1996). The environment is typically modeled as
a Markov decision process (MDP), and it is assumed that the agent does not know the
parameters of this process, but has to learn how to act directly from experience. Thus, the
reinforcement learning agent faces a fundamental trade-off between exploitation and explo-
ration (Bertsekas, 1987; Kumar & Varaiya, 1986; Thrun, 1992): that is, should the agent
exploit its cumulative experience so far, by executing the action that currently seems best,
or should it execute a different action, with the hope of gaining information or experience
that could lead to higher future payoffs? Too little exploration can prevent the agent from
ever converging to the optimal behavior, while too much exploration can prevent the agent
from gaining near-optimal payoff in a timely fashion.

There is a large literature on reinforcement learning, which has been growing rapidly in the
last decade. Many different algorithms have been proposed to solve reinforcement learning
problems, and various theoretical results on the convergence properties of these algorithms
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have been proven. For example, Watkins Q-learning algorithm guarantees asymptotic con-
vergence to optimal values (from which the optimal actions can be derived) provided every
state of the MDP has been visited an infinite number of times (Watkins, 1989; Watkins &
Dayan, 1992; Jaakkola, Jordan, & Singh, 1994; Tsitsiklis, 1994). This asymptotic result
does not specify a strategy for achieving this infinite exploration, and as such does not
provide a solution to the inherent exploitation-exploration trade-off. To address this, Singh
et al. (2000) specify two exploration strategies that guarantee both sufficient exploration
for asymptotic convergence to optimal actions, and asymptotic exploitation, for both the
Q-learning and SARSA algorithms (a variant of Q-learning) (Rummery & Niranjan, 1994;
Singh & Sutton, 1996; Sutton, 1995). Gullapalli and Barto (1994) and Jalali and Ferguson
(1989) presented algorithms that learn a model of the environment from experience, per-
form value iteration on the estimated model, and with infinite exploration converge to the
optimal policy asymptotically.

These results, and to the best of our knowledge, all other results for reinforcement learning
in general MDPs, are asymptotic in nature, providing no guarantee on either the number of
actions or the computation time the agent requires to achieve near-optimal performance.

On the other hand, non-asymptotic results become available if one considers restricted
classes of MDPs, if the model of learning is modified from the standard one, or if one changes
the criteria for success. Thus, Saul and Singh (1996) provide an algorithm and learning
curves (convergence rates) for an interesting special class of MDPs problem designed
to highlight a particular exploitation-exploration trade-off. Fiechter (1994, 1997), whose
results are closest in spirit to ours, considers only the discounted-payoff case, and makes
the learning protocol easier by assuming the availability of a “reset” button that allows his
agent to return to a set of start-states at arbitrary times. Others have provided non-asymptotic
results for prediction in uncontrolled Markov processes (Schapire & Warmuth, 1994; Singh
& Dayan, 1998).

Thus, despite the many interesting previous results in reinforcement learning, the liter-
ature has lacked algorithms for learning optimal behavior in general MDPs with provably
finite bounds on the resources (actions and computation time) required, under the standard
model of learning in which the agent wanders continuously in the unknown environment.
The results presented in this paper fill this void in what is essentially the strongest possible
sense.

We present new algorithms for reinforcement learning, and prove that they have poly-
nomial bounds on the resources required to achieve near-optimal payoff in general MDPs.
After observing that the number of actions required to approach the optimal return is lower
bounded, for any algorithm, by the mixing time T of the optimal policy (in the undiscounted-
payoff case) or by the horizon time T (in the discounted-payoff case), we then give algo-
rithms requiring a number of actions and total computation time that are only polynomial in
T and the number of states, for both the undiscounted and discounted cases. An interesting
aspect of our algorithms is their rather explicit handling of the exploitation-exploration
trade-off.

Two important caveats apply to our current results, as well as all the prior results men-
tioned above. First, we assume that the agent can observe the state of the environment, which
may be an impractical assumption for some reinforcement learning problems. Second, we
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do not address the fact that the state space may be so large that we will have to resort to
methods such as function approximation. While some results are available on reinforcement
learning and function approximation (Sutton, 1988; Singh, Jaakkola, & Jordan, 1995;
Gordon, 1995; Tsitsiklis & Roy, 1996), and for partially observable MDPs (Chrisman,
1992; Littman, Cassandra, & Kaelbling, 1995; Jaakkola, Singh, & Jordan, 1995), they are
all asymptotic in nature. The extension of our results to such cases is left for future work.

The outline of the paper is as follows: in Section 2, we give standard definitions for
MDPs and reinforcement learning. In Section 3, we argue that the mixing time of policies
must be taken into consideration in order to obtain finite-time convergence results in the
undiscounted case, and make related technical observations and definitions. Section 4 makes
similar arguments for the horizon time in the discounted case, and provides a needed
technical lemma. The heart of the paper is contained in Section 5, where we state and prove
our main results, describe our algorithms in detail, and provide intuitions for the proofs
of convergence rates. Section 6 eliminates some technical assumptions that were made
for convenience during the main proofs, while Section 7 discusses some extensions of the
main theorem that were deferred for the exposition. Finally, in Section 8 we close with a
discussion of future work.

2. Preliminaries and definitions

We begin with the basic definitions for Markov decision processes.

Definition 1. A Markov decision process (MDP) M on states 1, . . . , N and with actions
a1, . . . , ak , consists of:

• The transition probabilities Pa
M(i j) ≥ 0, which for any action a, and any states i and

j , specify the probability of reaching state j after executing action a from state i in M .
Thus,

∑
j Pa

M(i j) = 1 for any state i and action a.
• The payoff distributions, for each state i , with mean RM(i) (where Rmax ≥ RM(i) ≥ 0),

and variance VarM(i) ≤ Varmax. These distributions determine the random payoff received
when state i is visited.

For simplicity, we will assume that the number of actions k is a constant; it will be easily
verified that if k is a parameter, the resources required by our algorithms scale polynomially
with k.

Several comments regarding some benign technical assumptions that we will make on
payoffs are in order here. First, it is common to assume that payoffs are actually associated
with state-action pairs, rather than with states alone. Our choice of the latter is entirely for
technical simplicity, and all of the results of this paper hold for the standard state-action
payoffs model as well. Second, we have assumed fixed upper bounds Rmax and Varmax on the
means and variances of the payoff distributions; such a restriction is necessary for finite-time
convergence results. Third, we have assumed that expected payoffs are always non-negative
for convenience, but this is easily removed by adding a sufficiently large constant to every
payoff.
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Note that although the actual payoffs experienced are random variables governed by the
payoff distributions, for most of the paper we will be able to perform our analyses in terms
of the means and variances; the only exception will be in Section 5.5, where we need to
translate high expected payoffs into high actual payoffs.

We now move to the standard definition of a stationary and deterministic policy in an
MDP.

Definition 2. Let M be a Markov decision process over states 1, . . . , N and with actions
a1, . . . , ak . A policy in M is a mapping π : {1, . . . , N } → {a1, . . . , ak}.
Later we will have occasion to define and use non-stationary policies, that is, policies in
which the action chosen from a given state also depends on the time of arrival at that state.

An MDP M , combined with a policyπ , yields a standard Markov process on the states, and
we will say that π is ergodic if the Markov process resulting from π is ergodic (that is, has a
well-defined stationary distribution). For the development and exposition, it will be easiest to
consider MDPs for which every policy is ergodic, the so-called unichain MDPs (Puterman,
1994). In a unichain MDP, the stationary distribution of any policy does not depend on the
start state. Thus, considering the unichain case simply allows us to discuss the stationary
distribution of any policy without cumbersome technical details, and as it turns out, the
result for unichains already forces the main technical ideas upon us. Our results generalize
to non-unichain (multichain) MDPs with just a small and necessary change to the definition
of the best performance we can expect from a learning algorithm. This generalization to
multichain MDPs will be given in Section 7. In the meantime, however, it is important to
note that the unichain assumption does not imply that every policy will eventually visit every
state, or even that there exists a single policy that will do so quickly; thus, the exploitation-
exploration dilemma remains with us strongly.

The following definitions for finite-length paths in MDPs will be of repeated technical
use in the analysis.

Definition 3. Let M be a Markov decision process, and let π be a policy in M . A T -path
in M is a sequence p of T + 1 states (that is, T transitions) of M :

p = i1, i2, . . . , iT , iT +1. (1)

The probability that p is traversed in M upon starting in state i1 and executing policy π is

Prπ
M [p] = �T

k=1 Pπ(ik )
M (ikik+1). (2)

We now define the two standard measures of the return of a policy.

Definition 4. Let M be a Markov decision process, let π be a policy in M , and let p be a
T -path in M . The (expected) undiscounted return along p in M is

UM(p) = 1

T

(
Ri1 + · · · + RiT

)
(3)

and the (expected) discounted return along p in M is

VM(p) = Ri1 + γ Ri2 + γ 2 Ri3 · · · + γ T −1 RiT (4)
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where 0 ≤ γ < 1 is a discount factor that makes future reward less valuable than immediate
reward. The T -step undiscounted return from state i is

Uπ
M(i, T ) =

∑

p

Prπ
M [p]UM(p) (5)

and the T -step discounted return from state i is

V π
M(i, T ) =

∑

p

Prπ
M [p]VM(p) (6)

where in both cases the sum is over all T -paths p in M that start at i . We define Uπ
M(i) =

limT →∞ Uπ
M(i, T ) and V π

M(i) = limT →∞ V π
M(i, T ). Since we are in the unichain case, Uπ

M(i)
is independent of i , and we will simply write Uπ

M .
Furthermore, we define the optimal T -step undiscounted return from i in M by

U ∗
M(i, T ) = max

π

{
Uπ

M(i, T )
}

(7)

and similarly, the optimal T -step discounted return from i in M by

V ∗
M(i, T ) = max

π

{
V π

M(i, T )
}
. (8)

Also, U ∗
M(i) = limT →∞ U ∗

M(i, T ) and V ∗
M(i) = limT →∞ V ∗

M(i, T ). Since we are in the
unichain case, U ∗

M(i) is independent of i , and we will simply write U ∗
M . The existence

of these limits is guaranteed in the unichain case.
Finally, we denote the maximum possible T -step return by GT

max; in the undiscounted
case GT

max ≤ Rmax, while in the discounted case GT
max ≤ TRmax.

3. The undiscounted case and mixing times

It is easy to see that if we are seeking results about the undiscounted return of a learning
algorithm after a finite number of steps, we need to take into account some notion of the
mixing times of policies in the MDP. To put it simply, in the undiscounted case, once we
move from the asymptotic return to the finite-time return, there may no longer be a well-
defined notion of “the” optimal policy. There may be some policies which will eventually
yield high return (for instance, by finally reaching some remote, high-payoff state), but take
many steps to approach this high return, and other policies which yield lower asymptotic
return but higher short-term return. Such policies are simply incomparable, and the best we
could hope for is an algorithm that “competes” favorably with any policy, in an amount of
time that is comparable to the mixing time of that policy.

The standard notion of mixing time for a policy π in a Markov decision process M
quantifies the smallest number T of steps required to ensure that the distribution on states
after T steps of π is within ε of the stationary distribution induced by π , where the dis-
tance between distributions is measured by the Kullback-Leibler divergence, the variation
distance, or some other standard metric. Furthermore, there are well-known methods for
bounding this mixing time in terms of the second eigenvalue of the transition matrix Pπ

M ,
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and also in terms of underlying structural properties of the transition graph, such as the
conductance (Sinclair, 1993). It turns out that we can state our results for a weaker notion
of mixing that only requires the expected return after T steps to approach the asymptotic
return.

Definition 5. Let M be a Markov decision process, and let π be an ergodic policy in M . The
ε-return mixing time of π is the smallest T such that for all T ′ ≥ T , |Uπ

M(i, T ′) − Uπ
M | ≤ ε

for all i .

Suppose we are simply told that there is a policy π whose asymptotic return Uπ
M exceeds

some value R in an unknown MDP M , and that the ε-return mixing time of π is T .
In principle, a sufficiently clever learning algorithm (for instance, one that managed to
discover π “quickly”) could achieve return close to Uπ

M − ε in not much more than T
steps. Conversely, without further assumptions on M or π , it is not reasonable to expect
any learning algorithm to approach return Uπ

M in many fewer than T steps. This is simply
because it may take the assumed policy π itself on the order of T steps to approach its
asymptotic return. For example, suppose that M has just two states and only one action (see
figure 1): state 0 with payoff 0, self-loop probability 1 − �, and probability � of going
to state 1; and absorbing state 1 with payoff R � 0. Then for small ε and �, the ε-return
mixing time is on the order of 1/�; but starting from state 0, it really will require on the
order of 1/� steps to reach the absorbing state 1 and start approaching the asymptotic
return R.

We now relate the notion of ε-return mixing time to the standard notion of mixing time.

Lemma 1. Let M be a Markov decision process on N states, and let π be an ergodic policy
in M. Let T be the smallest value such that for all T ′ ≥ T, for any state i, the probability
of being in state i after T ′ steps of π is within ε/(NRmax) of the stationary probability of i
under π . Then the ε-return mixing time of π is at most 3TRmax

ε
.

The proof of the lemma follows in a straightforward way from the linearity of expecta-
tions, and is omitted. The important point is that the ε-return mixing time is polynomially

Figure 1. A simple Markov process demonstrating that finite-time convergence results must account for mixing
times.
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bounded by the standard mixing time, but may in some cases be substantially smaller. This
would happen, for instance, if the policy quickly settles on a subset of states with common
payoff, but takes a long time to settle to its stationary distribution within this subset. Thus,
we will choose to state our results for the undiscounted return in terms of the ε-return mixing
time, but can always translate into the standard notion via Lemma 1.

With the notion of ε-return mixing time, we can now be more precise about what type of
result is reasonable to expect for the undiscounted case. We would like a learning algorithm
such that for any T , in a number of actions that is polynomial in T , the return of the learning
algorithm is close to that achieved by the best policy among those that mix in time T . This
motivates the following definition.

Definition 6. Let M be a Markov decision process. We define �
T,ε
M to be the class of all

ergodic policies π in M whose ε-return mixing time is at most T . We let opt (�
T,ε
M ) denote

the optimal expected asymptotic undiscounted return among all policies in �
T,ε
M .

Thus, our goal in the undiscounted case will be to compete with the policies in �
T,ε
M in

time that is polynomial in T , 1/ε and N . We will eventually give an algorithm that meets this
goal for every T and ε simultaneously. An interesting special case is when T = T ∗, where
T ∗ is the ε-mixing time of the asymptotically optimal policy, whose asymptotic return is
U ∗. Then in time polynomial in T ∗, 1/ε and N , our algorithm will achieve return exceeding
U ∗ − ε with high probability. It should be clear that, modulo the degree of the polynomial
running time, such a result is the best that one could hope for in general MDPs.

4. The discounted case and the horizon time

For the discounted case, the quantification of which policies a learning algorithm is compet-
ing against is more straightforward, since the discounting makes it possible in principle to
compete against all policies in time proportional to the horizon time. In other words, unlike
in the undiscounted case, the expected discounted return of any policy after T ≈ 1/(1 − γ )

steps approaches the expected asymptotic discounted return. This is made precise by the
following lemma.

Lemma 2. Let M be any Markov decision process, and let π be any policy in M. If

T ≥ (1/(1 − γ )) log(Rmax/(ε(1 − γ ))) (9)

then for any state i,

V π
M(i, T ) ≤ V π

M(i) ≤ V π
M(i, T ) + ε. (10)

We call the value of the lower bound on T given above the ε-horizon time for the discounted
MDP M.

Proof: The lower bound on V π
M(i) follows trivially from the definitions, since all expected

payoffs are nonnegative. For the upper bound, fix any infinite path p, and let R1, R2, . . . be
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the expected payoffs along this path. Then

VM(p) = R1 + γ R2 + γ 2 R3 + · · · (11)

≤
T∑

k=1

γ k−1 Rk + Rmaxγ
T

∞∑

k=0

γ k (12)

= VM(p′) + Rmaxγ
T (1/(1 − γ )) (13)

where p′ is the T -path prefix of the infinite path p. Solving

Rmaxγ
T (1/(1 − γ )) ≤ ε (14)

for T yields the desired bound on T ; since the inequality holds for every fixed path, it also
holds for the distribution over paths induced by any policy π . ✷

In the discounted case, we must settle for a notion of “competing” that is slightly different
than for the undiscounted case. The reason is that while in the undiscounted case, since the
total return is always simply averaged, a learning algorithm can recover from its “youthful
mistakes” (low return during the early part of learning), this is not possible in the discounted
case due to the exponentially decaying effects of the discounting factor. The most we can
ask for is that, in time polynomial in the ε-horizon time, the learning algorithm has a policy
that, from its current state, has discounted return within ε of the asymptotic optimal for that
state. Thus, if time were reinitialized to 0, with the current state being the start state, the
learned policy would have near-optimal expected return. This is the goal that our algorithm
will achieve for general MDPs in the discounted case.

5. Main theorem

We are now ready to describe our new learning algorithms, and to state and prove our main
theorem: namely, that the new algorithms will, for a general MDP, achieve near-optimal
performance in polynomial time,where the notions of performance and the parameters of
the running time (mixing and horizon times) have been described in the preceding sections.
For ease of exposition only, we will first state the theorem under the assumption that the
learning algorithm is given as input a “targeted” mixing time T , and the optimal return
opt(�T,ε

M ) achieved by any policy mixing within T steps (for the undiscounted case), or the
optimal value function V ∗(i) (for the discounted case). This simpler case already contains
the core ideas of the algorithm and analysis, and these assumptions are entirely removed in
Section 6.

Theorem 3 (Main Theorem). Let M be a Markov decision process over N states.
• (Undiscounted case) Recall that �

T,ε
M is the class of all ergodic policies whose ε-return

mixing time is bounded by T, and that opt(�T,ε
M ) is the optimal asymptotic expected

undiscounted return achievable in �
T,ε
M . There exists an algorithm A, taking inputs

ε, δ, N , T and opt(�T,ε
M ), such that the total number of actions and computation time

taken by A is polynomial in 1/ε, 1/δ, N , T, and Rmax, and with probability at least 1−δ,

the total actual return of A exceeds opt(�T,ε
M ) − ε.
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• (Discounted case) Let V ∗(i) denote the value function for the policy with the optimal
expected discounted return in M. Then there exists an algorithm A, taking inputs ε, δ, N
and V ∗(i), such that the total number of actions and computation time taken by A
is polynomial in 1/ε, 1/δ, N , the horizon time T = 1/(1 − γ ), and Rmax, and with
probability at least 1 − δ, A will halt in a state i, and output a policy π̂ , such that
V π̂

M(i) ≥ V ∗(i) − ε.

The remainder of this section is divided into several subsections, each describing a
different and central aspect of the algorithm and proof. The full proof of the theorem is rather
technical, but the underlying ideas are quite intuitive, and we sketch them first as an outline.

5.1. High-level sketch of the proof and algorithms

Although there are some differences between the algorithms and analyses for the undis-
counted and discounted cases, for now it will be easiest to think of there being only a single
algorithm. This algorithm will be what is commonly referred to as indirect or model-based:
namely, rather than only maintaining a current policy or value function, the algorithm will
actually maintain a model for the transition probabilities and the expected payoffs for some
subset of the states of the unknown MDP M . It is important to emphasize that although the
algorithm maintains a partial model of M , it may choose to never build a complete model
of M , if doing so is not necessary to achieve high return.

It is easiest to imagine the algorithm as starting off by doing what we will call balanced
wandering. By this we mean that the algorithm, upon arriving in a state it has never visited
before, takes an arbitrary action from that state; but upon reaching a state it has visited
before, it takes the action it has tried the fewest times from that state (breaking ties between
actions randomly). At each state it visits, the algorithm maintains the obvious statistics: the
average payoff received at that state so far, and for each action, the empirical distribution
of next states reached (that is, the estimated transition probabilities).

A crucial notion for both the algorithm and the analysis is that of a known state. Intuitively,
this is a state that the algorithm has visited “so many” times (and therefore, due to the
balanced wandering, has tried each action from that state many times) that the transition
probability and expected payoff estimates for that state are “very close” to their true values
in M . An important aspect of this definition is that it is weak enough that “so many” times is
still polynomially bounded, yet strong enough to meet the simulation requirements we will
outline shortly. The fact that the definition of known state achieves this balance is shown in
Section 5.2.

States are thus divided into three categories: known states, states that have been visited
before, but are still unknown (due to an insufficient number of visits and therefore unreliable
statistics), and states that have not even been visited once. An important observation is that
we cannot do balanced wandering indefinitely before at least one state becomes known: by
the Pigeonhole Principle, we will soon start to accumulate accurate statistics at some state.
This fact will be stated more formally in Section 5.5.

Perhaps our most important definition is that of the known-state MDP. If S is the set
of currently known states, the current known-state MDP is simply an MDP MS that is
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naturally induced on S by the full MDP M ; briefly, all transitions in M between states in
S are preserved in MS , while all other transitions in M are “redirected” in MS to lead to a
single additional, absorbing state that intuitively represents all of the unknown and unvisited
states.

Although the learning algorithm will not have direct access to MS , by virtue of the
definition of the known states, it will have an approximation M̂S . The first of two central
technical lemmas that we prove (Section 5.2) shows that, under the appropriate definition
of known state, M̂S will have good simulation accuracy: that is, the expected T -step return
of any policy in M̂S is close to its expected T -step return in MS . (Here T is either the mixing
time that we are competing against, in the undiscounted case, or the horizon time, in the
discounted case.) Thus, at any time, M̂S is a partial model of M , for that part of M that the
algorithm “knows” very well.

The second central technical lemma (Section 5.3) is perhaps the most enlightening part of
the analysis, and is named the “Explore or Exploit” Lemma. It formalizes a rather appealing
intuition: either the optimal (T -step) policy achieves its high return by staying, with high
probability, in the set S of currently known states—which, most importantly, the algorithm
can detect and replicate by finding a high-return exploitation policy in the partial model
M̂S—or the optimal policy has significant probability of leaving S within T steps—which
again the algorithm can detect and replicate by finding an exploration policy that quickly
reaches the additional absorbing state of the partial model M̂S .

Thus, by performing two off-line, polynomial-time computations on M̂S (Section 5.4),
the algorithm is guaranteed to either find a way to get near-optimal return in M quickly, or to
find a way to improve the statistics at an unknown or unvisited state. Again by the Pigeonhole
Principle, the latter case cannot occur too many times before a new state becomes known,
and thus the algorithm is always making progress. In the worst case, the algorithm will
build a model of the entire MDP M , but if that does happen, the analysis guarantees that it
will happen in polynomial time.

The following subsections flesh out the intuitions sketched above, providing the full proof
of Theorem 3. In Section 6, we show how to remove the assumed knowledge of the optimal
return.

5.2. The simulation lemma

In this section, we prove the first of two key technical lemmas mentioned in the sketch of
Section 5.1: namely, that if one MDP M̂ is a sufficiently accurate approximation of another
MDP M , then we can actually approximate the T -step return of any policy in M quite
accurately by its T -step return in M̂ .

Eventually, we will appeal to this lemma to show that we can accurately assess the return
of policies in the induced known-state MDP MS by computing their return in the algorithm’s
approximation M̂S (that is, we will appeal to Lemma 4 below using the settings M = MS

and M̂ = M̂S). The important technical point is that the goodness of approximation required
depends only polynomially on 1/T , and thus the definition of known state will require only
a polynomial number of visits to the state.

We begin with the definition of approximation we require.
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Definition 7. Let M and M̂ be Markov decision processes over the same state space. Then
we say that M̂ is an α-approximation of M if:

• For any state i ,

RM(i) − α ≤ RM̂(i) ≤ RM(i) + α; (15)

• For any states i and j , and any action a,

Pa
M(i j) − α ≤ Pa

M̂
(i j) ≤ Pa

M(i j) + α. (16)

We now state and prove the Simulation Lemma, which says that provided M̂ is sufficiently
close to M in the sense just defined, the T -step return of policies in M̂ and M will be similar.

Lemma 4 (Simulation Lemma). Let M be any Markov decision process over N states.
• (Undiscounted case) Let M̂ be an O((ε/(NTGT

max))
2)-approximation of M. Then for any

policy π in �
T,ε/2
M , 1 and for any state i,

Uπ
M(i, T ) − ε ≤ Uπ

M̂
(i, T ) ≤ Uπ

M(i, T ) + ε. (17)

• (Discounted case) Let T ≥ (1/(1 − γ )) log(Rmax/(ε(1 − γ ))), and let M̂ be an O(ε/

(NTGT
max))

2)-approximation of M. Then for any policy π and any state i,

V π
M(i) − ε ≤ V π

M̂
(i) ≤ V π

M(i) + ε. (18)

Proof: Let us fix a policy π and a start state i . Let us say that a transition from a state i ′

to a state j ′ under action a is β-small in M if Pa
M(i ′ j ′) ≤ β. Then the probability that T

steps from state i following policy π will cross at least one β-small transition is at most
βNT . This is because the total probability of all β-small transitions in M from any state i ′

under action π(i ′) is at most βN , and we have T independent opportunities to cross such a
transition. This implies that the total expected contribution to either Uπ

M(i, T ) or V π
M(i, T )

by the walks of π that cross at least one β-small transition of M is at most βNTGT
max.

Similarly, since Pa
M(i ′ j ′) ≤ β implies Pa

M̂
(i ′ j ′) ≤ α+β (since M̂ is an α-approximation

of M), the total contribution to either Uπ

M̂
(i, T ) or V π

M̂
(i, T ) by the walks of π that cross

at least one β-small transition of M is at most (α + β)NTGT
max. We can thus bound the

difference between Uπ
M(i, T ) and Uπ

M̂
(i, T ) (or between V π

M(i, T ) and V π

M̂
(i, T )) restricted

to these walks by (α + 2β)NTGT
max. We will eventually determine a choice for β and solve

(α + 2β)NTGT
max ≤ ε/4 (19)

for α.
Thus, for now we restrict our attention to the walks of length T that do not cross any

β-small transition of M . Note that for any transition satisfying Pa
M(i ′ j ′) > β, we can convert

the additive approximation

Pa
M(i ′ j ′) − α ≤ Pa

M̂
(i ′ j ′) ≤ Pa

M(i ′ j ′) + α (20)
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to the multiplicative approximation

(1 − �)Pa
M(i ′ j ′) ≤ Pa

M̂
(i ′ j ′) ≤ (1 + �)Pa

M(i ′ j ′) (21)

where � = α/β. Thus, for any T -path p that, under π , does not cross any β-small transitions
of M , we have

(1 − �)T Prπ
M [p] ≤ Prπ

M̂
[p] ≤ (1 + �)T Prπ

M [p]. (22)

For any T -path p, the approximation error in the payoffs yields

UM(p) − α ≤ UM̂(p) ≤ UM(p) + α (23)

and

VM(p) − T α ≤ VM̂(p) ≤ VM(p) + T α. (24)

Since these inequalities hold for any fixed T -path that does not traverse any β-small tran-
sitions in M under π , they also hold when we take expectations over the distributions on
such T -paths in M and M̂ induced by π . Thus,

(1 − �)T
[
Uπ

M(i, T ) − α
] − ε/4 ≤ Uπ

M̂
(i, T ) ≤ (1 + �)T

[
Uπ

M(i, T ) + α
] + ε/4

(25)

and

(1 − �)T
[
V π

M(i, T ) − T α
] − ε/4 ≤ V π

M̂
(i, T ) ≤ (1 + �)T

[
V π

M(i, T ) + T α
] + ε/4

(26)

where the additive ε/4 terms account for the contributions of the T -paths that traverse
β-small transitions under π , as bounded by Eq. (19).

For the upper bounds, we will use the following Taylor expansion:

log(1 + �)T = T log(1 + �) = T (� − �2/2 + �3/3 − · · ·) ≥ T �/2. (27)

Now to complete the analysis for the undiscounted case, we need two conditions to hold:

(1 + �)T Uπ
M(i, T ) ≤ Uπ

M(i, T ) + ε/8 (28)

and

(1 + �)T α ≤ ε/8, (29)
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because then (1 + �)T [Uπ
M(i, T ) + α] + ε/4 ≤ Uπ

M(i, T ) + ε/2. The first condition would
be satisfied if (1 + �)T ≤ 1 + ε/8GT

max; solving for � we obtain T �/2 ≤ ε/8GT
max or

� ≤ ε/(4TGT
max). This value of � also implies that (1 + �)T is a constant and therefore

satisfying the second condition would require that α = O(ε).
Recalling the earlier constraint given by Eq. (19), if we choose β = √

α, then we find that

(α + 2β)NTGT
max ≤ 3

√
αNTGT

max ≤ ε/4 (30)

and

� = α/β = √
α ≤ ε

/(
4TGT

max

)
(31)

and α = O(ε) are all satisfied by the choice of α given in the lemma. A similar argument
yields the desired lower bound, which completes the proof for the undiscounted case. The
analysis for the discounted case is entirely analogous, except we must additionally appeal
to Lemma 2 in order to relate the T -step return to the asymptotic return. ✷

The Simulation Lemma essentially determines what the definition of known state should
be: one that has been visited enough times to ensure (with high probability) that the
estimated transition probabilities and the estimated payoff for the state are all within
O((ε/(NTGT

max))
2) of their true values. The following lemma, whose proof is a straightfor-

ward application of Chernoff bounds, makes the translation between the number of visits
to a state and the desired accuracy of the transition probability and payoff estimates.

Lemma 5. Let M be a Markov decision process. Let i be a state of M that has been visited
at least m times, with each action a1, . . . , ak having been executed at least �m/k� times
from i. Let P̂a

M(i j) denote the empirical probability transition estimates obtained from the
m visits to i . For

m = O
(((

NTGT
max

)/
ε
)4

Varmax log(1/δ)
)

(32)

with probability at least 1 − δ, we have

∣∣P̂a
M(i j) − Pa

M(i j)
∣∣ = O

(
ε
/(

NTGT
max

))2)
(33)

for all states j and actions a, and

∣∣R̂M(i) − RM(i)
∣∣ = O

(
ε
/(

NTGT
max

))2)
(34)

where Varmax = maxi [VarM(i)] is the maximum variance of the random payoffs over all
states.

Thus, we get our formal definition of known states:
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Definition 8. Let M be a Markov decision process. We say that a state i of M is known if
each action has been executed from i at least

mknown = O
(((

NTGT
max

)/
ε
)4

Varmax log(1/δ)
)

(35)

times.

5.3. The “explore or exploit” lemma

Lemma 4 indicates the degree of approximation required for sufficient simulation accuracy,
and led to the definition of a known state. If we let S denote the set of known states, we
now specify the straightforward way in which these known states define an induced MDP.
This induced MDP has an additional “new” state, which intuitively represents all of the
unknown states and transitions.

Definition 9. Let M be a Markov decision process, and let S be any subset of the states
of M . The induced Markov decision process on S, denoted MS , has states S ∪ {s0}, and
transitions and payoffs defined as follows:

• For any state i ∈ S, RMS (i) = RM(i); all payoffs in MS are deterministic (zero variance)
even if the payoffs in M are stochastic.

• RMS (s0) = 0.
• For any action a, Pa

MS
(s0s0) = 1. Thus, s0 is an absorbing state.

• For any states i, j ∈ S, and any action a, Pa
MS

(i j) = Pa
M(i j). Thus, transitions in M

between states in S are preserved in MS .
• For any state i ∈ S and any action a, Pa

MS
(is0) = ∑

j /∈S Pa
M(i j). Thus, all transitions in

M that are not between states in S are redirected to s0 in MS .

Definition 9 describes an MDP directly induced on S by the true unknown MDP M ,
and as such preserves the true transition probabilities between states in S. Of course, our
algorithm will only have approximations to these transition probabilities, leading to the
following obvious approximation to MS: if we simply let M̂ denote the obvious empirical
approximation to M2, then M̂S is the natural approximation to MS . The following lemma
establishes the simulation accuracy of M̂S , and follows immediately from Lemma 4 and
Lemma 5.

Lemma 6. Let M be a Markov decision process, and let S be the set of currently known
states of M. Then with probability at least 1 − δ,

• (Undiscounted case) For any policy π in �
T,ε/2
MS

, and for any state i,

Uπ
MS

(i, T ) − ε ≤ Uπ

M̂S
(i, T ) ≤ Uπ

MS
(i, T ) + ε. (36)
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• (Discounted case) Let T ≥ (1/(1 − γ )) log(Rmax/(ε(1 − γ ))). Then for any policy π

and any state i,

V π
MS

(i) − ε ≤ V π

M̂S
(i) ≤ V π

MS
(i) + ε. (37)

Let us also observe that any return achievable in MS (and thus approximately achievable
in M̂S) is also achievable in the “real world” M :

Lemma 7. Let M be a Markov decision process, and let S be the set of currently known
states of M. Then for any policy π in M, any state i ∈ S, and any T, Uπ

MS
(i, T ) ≤ Uπ

M(i, T )

and V π
MS

(i, T ) ≤ V π
M(i, T ).

Proof: Follows immediately from the facts that MS and M are identical on S, the expected
payoffs are non-negative, and that outside of S no payoff is possible in MS . ✷

We are now at the heart of the analysis: we have identified a “part” of the unknown MDP
M that the algorithm “knows” very well, in the form of the approximation M̂S to MS . The
key lemma follows, in which we demonstrate the fact that MS (and thus, by the Simulation
Lemma, M̂S) must always provide the algorithm with either a policy that will yield large
immediate return in the true MDP M , or a policy that will allow rapid exploration of an
unknown state in M (or both).

Lemma 8 (Explore or Exploit Lemma). Let M be any Markov decision process, let S
be any subset of the states of M, and let MS be the induced Markov decision process on
M. For any i ∈ S, any T, and any 1 > α > 0, either there exists a policy π in MS such
that Uπ

MS
(i, T ) ≥ U ∗

M(i, T ) − α (respectively, V π
MS

(i, T ) ≥ V ∗
M(i, T ) − α), or there exists a

policy π in MS such that the probability that a walk of T steps following π will terminate
in s0 exceeds α/GT

max.

Proof: We give the proof for the undiscounted case; the argument for the discounted case
is analogous. Let π be a policy in M satisfying Uπ

M(i, T ) = U ∗
M(i, T ), and suppose that

Uπ
MS

(i, T ) < U ∗
M(i, T ) − α (otherwise, π already witnesses the claim of the lemma). We

may write

Uπ
M(i, T ) =

∑

p

Prπ
M [p]UM(p) (38)

=
∑

q

Prπ
M [q]UM(q) +

∑

r

Prπ
M [r ]UM(r) (39)

where the sums are over, respectively, all T -paths p in M that start in state i , all T -paths q
in M that start in state i and in which every state in q is in S, and all T -paths r in M that
start in state i and in which at least one state is not in S. Keeping this interpretation of the
variables p, q and r fixed, we may write

∑

q

Prπ
M [q]UM(q) =

∑

q

Prπ
MS

[q]UMS (q) ≤ Uπ
MS

(i, T ). (40)
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The equality follows from the fact that for any path q in which every state is in S, Prπ
M [q] =

Prπ
MS

[q] and UM(q) = UMS (q), and the inequality from the fact that Uπ
MS

(i, T ) takes the
sum over all T -paths in MS , not just those that avoid the absorbing state s0. Thus

∑

q

Prπ
M [q]UM(q) ≤ U ∗

M(i, T ) − α (41)

which implies that
∑

r

Prπ
M [r ]UM(r) ≥ α. (42)

But
∑

r

Prπ
M [r ]UM(r) ≤ GT

max

∑

r

Prπ
M [r ] (43)

and so

∑

r

Prπ
M [r ] ≥ α/GT

max (44)

as desired. ✷

5.4. Off-line optimal policy computations

Let us take a moment to review and synthesize. The combination of Lemmas 6, 7 and 8
establishes our basic line of argument:

• At any time, if S is the set of current known states, the T -step return of any policy π in
M̂S (approximately) lower bounds the T -step return of (any extension of) π in M .

• At any time, there must either be a policy in M̂S whose T -step return in M is nearly
optimal, or there must be a policy in M̂S that will quickly reach the absorbing state—in
which case, this same policy, executed in M , will quickly reach a state that is not currently
in the known set S.

In this section, we discuss how with two off-line, polynomial-time computations on M̂S ,
we can find both the policy with highest return (the exploitation policy), and the one with
the highest probability of reaching the absorbing state in T -steps (the exploration policy).
This essentially follows from the fact that the standard value iteration algorithm from the
dynamic programming literature is able to find T -step optimal policies for an arbitrary MDP
with N states in O(N 2T ) computation steps for both the discounted and the undiscounted
cases.

For the sake of completeness, we present the undiscounted and discounted value iteration
algorithms (Bertsekas & Tsitsiklis, 1989) below. The optimal T -step policy may be non-
stationary, and is denoted by a sequence π∗ = {π∗

1 , π∗
2 , π∗

3 , . . . , π∗
T }, where π∗

t (i) is the
optimal action to be taken from state i on the t th step.
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T -step Undiscounted Value Iteration:

Initialize: for all i ∈ M̂S , UT +1(i) = 0.0

For t = T, T − 1, T − 2, . . . , 1:
for all i , Ut (i) = RM̂S

(i) + maxa
∑

j Pa
M̂S

(i j)Ut+1( j)

for all i , π∗
t (i) = argmaxa[RM̂S

(i) + ∑
j Pa

M̂S
(i j)Ut+1( j)]

Undiscounted value iteration works backwards in time, first producing the optimal policy
for time step T , then the optimal policy for time step T − 1, and so on. Observe that for
finite T a policy that maximizes cumulative T -step return will also maximize the average
T -step return.

T -step Discounted Value Iteration:

Initialize: for all i ∈ M̂S , VT +1(i) = 0.0

For t = T, T − 1, T − 2, . . . , 1:
for all i , Vt (i) = RM̂S

(i) + γ maxa
∑

j Pa
M̂S

(i j)Vt+1( j)

for all i , π∗
t (i) = argmaxa[RM̂S

(i) + γ
∑

j Pa
M̂S

(i j)Vt+1( j)]

Again, discounted value iteration works backwards in time, first producing the optimal
policy for time step T , then the optimal policy for time step T − 1, and so on.

Note that the total computation involved is O(N 2T ) for both the discounted and the
undiscounted cases.

Our use of value iteration will be straightforward: at certain points in the execution of
the algorithm, we will perform value iteration off-line twice: once on M̂S (using either the
undiscounted or discounted version, depending on the measure of return), and a second
time on what we will denote M̂ ′

S (on which the computation will use undiscounted value
iteration, regardless of the measure of return).

The MDP M̂ ′
S has the same transition probabilities as M̂S , but different payoffs: in M̂ ′

S ,
the absorbing state s0 has payoff Rmax and all other states have payoff 0. Thus we reward
exploration (as represented by visits to s0) rather than exploitation. If π̂ is the policy returned
by value iteration on M̂S and π̂ ′ is the policy returned by value iteration on M̂ ′

S , then Lemma 8
guarantees that either the T -step return of π̂ from our current known state approaches the
optimal achievable in M (which for now we are assuming we know, and can thus detect), or
the probability that π̂ ′ reaches s0, and thus that the execution of π̂ ′ in M reaches an unknown
or unvisited state in T steps with significant probability (which we can also detect).

5.5. Putting it all together

All of the technical pieces we need are now in place, and we now give a more detailed
description of the algorithm, and tie up some loose ends. In Section 6, we remove the
assumption that we know the optimal returns that can be achieved in M .
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In the sequel, we will use the expression balanced wandering to denote the steps of the
algorithm in which the current state is not a known state, and the algorithm executes the
action that has been tried the fewest times before from the current state. Note that once a
state becomes known, by definition it is never involved in a step of balanced wandering
again. We use mknown to denote the number of visits required to a state before it becomes a
known state (different for the undiscounted and discounted cases), as given by Definition 8.

We call the algorithm the Explicit Explore or Exploit (or E3) algorithm, because when-
ever the algorithm is not engaged in balanced wandering, it performs an explicit off-line
computation on the partial model in order to find a T -step policy guaranteed to either exploit
or explore. In the description that follows, we freely mix the description of the steps of the
algorithm with observations that will make the ensuing analysis easier to digest.

The Explicit Explore or Exploit (E3) Algorithm:

• (Initialization) Initially, the set S of known states is empty.
• (Balanced Wandering) Any time the current state is not in S, the algorithm performs

balanced wandering.
• (Discovery of New Known States) Any time a state i has been visited mknown times during

balanced wandering, it enters the known set S, and no longer participates in balanced
wandering.

• Observation: Clearly, after N (mknown − 1) + 1 steps of balanced wandering, by the
Pigeonhole Principle some state becomes known. This is the worst case, in terms of
the time required for at least one state to become known. More generally, if the to-
tal number of steps of balanced wandering the algorithm has performed ever exceeds
Nmknown, then every state of M is known (even if these steps of balanced wandering are
not consecutive). This is because each known state can account for at most mknown steps
of balanced wandering.

• (Off-line Optimizations) Upon reaching a known state i ∈ S during balanced wandering,
the algorithm performs the two off-line optimal policy computations on M̂S and M̂ ′

S
described in Section 5.4:

– (Attempted Exploitation) If the resulting exploitation policy π̂ achieves return from i in
M̂S that is at least U ∗ − ε/2 (respectively, in the discounted case, at least V ∗(i) − ε/2),
the algorithm executes π̂ for the next T steps (respectively, halts and outputs i and π̂ ).
Here T is the given ε/2-mixing time given to the algorithm as input (respectively, the
horizon time).

– (Attempted Exploration) Otherwise, the algorithm executes the resulting exploration
policy π̂ ′ (derived from the off-line computation on M̂ ′

S) for T steps in M , which by
Lemma 8 is guaranteed to have probability at least ε/(2GT

max) of leaving the set S.

• (Balanced Wandering) Any time an attempted exploitation or attempted exploration visits
a state not in S, the algorithm immediately resumes balanced wandering.

• Observation: Thus, every action taken by the algorithm in M is either a step of balanced
wandering, or is part of a T -step attempted exploitation or attempted exploration.

This concludes the description of the algorithm; we can now wrap up the analysis.
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One of the main remaining issues is our handling of the confidence parameter δ in the
statement of the main theorem: for both the undiscounted and discounted case, Theorem 3
ensures that a certain performance guarantee is met with probability at least 1 − δ. There
are essentially three different sources of failure for the algorithm:

• At some known state, the algorithm actually has a poor approximation to the next-state
distribution for some action, and thus M̂S does not have sufficiently strong simulation
accuracy for MS .

• Repeated attempted explorations fail to yield enough steps of balanced wandering to
result in a new known state.

• (Undiscounted case only) Repeated attempted exploitations fail to result in actual return
near U ∗.

Our handling of the failure probability δ is to simply allocate δ/3 to each of these sources
of failure. The fact that we can make the probability of the first source of failure (a “bad”
known state) controllably small is quantified by Lemma 6. Formally, we use δ′ = δ/3N in
Lemma 6 to meet the requirement that all states in MS be known simultaneously.

For the second source of failure (failed attempted explorations), a standard Chernoff
bound analysis suffices: by Lemma 8, each attempted exploration can be viewed as an
independent Bernoulli trial with probability at least ε/(2GT

max) of “success” (at least one
step of balanced wandering). In the worst case, we must make every state known before
we can exploit, requiring Nmknown steps of balanced wandering. The probability of having
fewer than Nmknown steps of balanced wandering will be smaller than δ/3 if the number of
(T -step) attempted explorations is

O
((

GT
max

/
ε
)
N log(N/δ)mknown

)
. (45)

We can now finish the analysis for the discounted case. In the discounted case, if we ever
discover a policy π̂ whose return from the current state i in M̂S is close to V ∗(i) (attempted
exploitation), then the algorithm is finished by arguments already detailed—since (with high
probability) M̂S is a very accurate approximation of part of M , π̂ must be a near-optimal
policy from i in M as well (Lemma 7). As long as the algorithm is not finished, it must be
engaged in balanced wandering or attempted explorations, and we have already bounded
the number of such steps before (with high probability) every state is in the known set S.
If and when S does contain all states of M , then M̂S is actually an accurate approximation
of the entire MDP M , and then Lemma 8 ensures that exploitation must be possible (since
exploration is not). We again emphasize that the case in which S eventually contains all of
the states of M is only the worst case for the analysis—the algorithm may discover it is
able to halt with a near-optimal exploitation policy long before this ever occurs.

Using the value of mknown given for the discounted case by Definition 8, the total number
of actions executed by the algorithm in the discounted case is thus bounded by T times the
maximum number of attempted explorations, given by Eq. (45), for a bound of

O
((

NTGT
max

/
ε
)

log(N/δ)mknown
)
. (46)
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The total computation time is bounded by O(N 2T ) (the time required for the off-line
computations) times the maximum number of attempted explorations, giving

O
((

N 3T GT
max

/
ε
)

log(N/δ)mknown
)
. (47)

For the undiscounted case, things are slightly more complicated, since we do not want
to simply halt upon finding a policy whose expected return is near U ∗, but want to achieve
actual return approaching U ∗, which is where the third source of failure (failed attempted
exploitations) enters. We have already argued that the total number of T -step attempted
explorations the algorithm can perform before S contains all states of M is polynomially
bounded. All other actions of the algorithm must be accounted for by T -step attempted
exploitations. Each of these T -step attempted exploitations has expected return at least
U ∗ − ε/2. The probability that the actual return, restricted to just these attempted exploita-
tions, is less than U ∗ − 3ε/4, can be made smaller than δ/3 if the number of blocks exceeds
O((1/ε)2 log(1/δ)); this is again by a standard Chernoff bound analysis. However, we also
need to make sure that the return restricted to these exploitation blocks is sufficient to
dominate the potentially low return of the attempted explorations. It is not difficult to show
that provided the number of attempted exploitations exceeds O(GT

max/ε) times the number
of attempted explorations (bounded by Eq. (45)), both conditions are satisfied, for a total
number of actions bounded by O(T/ε) times the number of attempted explorations, which
is

O
(
NT

(
GT

max

/
ε
)2

log(N/δ)mknown
)
. (48)

The total computation time is thus O(N 2T/ε) times the number of attempted explorations,
and thus bounded by

O
(
N 3T

(
GT

max

/
ε
)2

log(N/δ)mknown
)
. (49)

This concludes the proof of the main theorem. We remark that no serious attempt to
minimize these worst-case bounds has been made; our immediate goal was to simply prove
polynomial bounds in the most straightforward manner possible. It is likely that a practical
implementation based on the algorithmic ideas given here would enjoy performance on
natural problems that is considerably better than the current bounds indicate. (See Moore
and Atkeson (1993) for a related heuristic algorithm.)

6. Eliminating knowledge of the optimal returns and the mixing time

In order to simplify our presentation of the main theorem, we made the assumption that
the learning algorithm was given as input the targeted mixing time T and the optimal
return opt(�T,ε

M ) achievable in this mixing time (in the undiscounted case), or the value
function V ∗(i) (in the discounted case; the horizon time T is implied by knowledge of the
discounting factor γ ). In this section, we sketch the straightforward way in which these
assumptions can be removed without changing the qualitative nature of the results, and
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briefly discuss some alternative approaches that may result in a more practical version of the
algorithm.

Let us begin by noting that knowledge of the optimal returns opt(�T,ε
M ) or V ∗(i) is used

only in the Attempted Exploitation step of the algorithm, where we must compare the return
possible from our current state in M̂S with the best possible in the entire unknown MDP M .
In the absence of this knowledge, the Explore or Exploit Lemma (Lemma 8) ensures us that
it is safe to have a bias towards exploration. More precisely, any time we arrive in a known
state i , we will first perform the Attempted Exploration off-line computation on the modified
known-state MDP M̂ ′

S described in Section 5.4, to obtain the optimal exploration policy π̂ ′.
Since it is a simple matter to compute the probability that π̂ ′ will reach the absorbing state
s0 of M̂ ′

S in T steps, we can then compare this probability to the lower bound ε/(2GT
max) of

Lemma 8. As long as this lower bound is exceeded, we may execute π̂ ′ in an attempt to visit
a state not in S. If this lower bound is not exceeded, Lemma 8 guarantees that the off-line
computation on M̂S in the Attempted Exploitation step must result in an exploitation policy
π̂ that is close to optimal. As before, in the discounted case we halt and output π̂ , while in
the undiscounted case we execute π̂ in M and continue.

Note that this exploration-biased solution to removing knowledge of opt(�T,ε
M ) or V ∗(i)

results in the algorithm always exploring all states of M that can be reached in a reasonable
amount of time, before doing any exploitation. Although this is a simple way of removing the
knowledge while keeping a polynomial-time algorithm, practical variants of our algorithm
might pursue a more balanced strategy, such as the standard approach of having a strong
bias towards exploitation instead, but doing enough exploration to ensure rapid convergence
to the optimal performance. For instance, we can maintain a schedule α(t) ∈ [0, 1], where
t is the total number of actions taken in M by the algorithm so far. Upon reaching a known
state, the algorithm performs Attempted Exploitation (execution of π̂ ) with probability
1 − α(t), and Attempted Exploration (execution of π̂ ′) with probability α(t). For choices
such as α(t) = 1/t , standard analyses ensure that we will still explore enough that M̂S

will, in polynomial time, contain a policy whose return is near the optimal of M , but the
return we have enjoyed in the meantime may be much greater than the exploration-biased
solution given above. Note that this approach is similar in spirit to the “ε-greedy” method
of augmenting algorithms such as Q-learning with an exploration component, but with a
crucial difference: while in ε-greedy exploration, we with probability α(t) attempt a single
action designed to visit a rarely visited state, here we are proposing that with probability
α(t) we execute a multi-step policy for reaching an unknown state, a policy that is provably
justified by M̂ ′

S .
For the undiscounted case, it still remains to remove our assumption that the algorithm

knows the targeted mixing time T . Indeed, we would like to state our main theorem for any
value of T : that is, for any T , as long as we run the algorithm for a number of steps that is
polynomial in T and the other parameters, the total return will exceed opt(�T,ε

M ) − ε with
high probability. This is easily accomplished: ignoring all other parameters, we already have
an algorithm A(T ) that, given T as input, runs for P(T ) steps for some fixed polynomial
P(·) and meets the desired criterion. We now propose a new algorithm A′, which does not
need T as input, and simply runs A sequentially for T = 1, 2, 3, . . . . For any T , the amount
of time A′ must be run before A′ has executed A(T ) is

∑T
t=1 P(t) ≤ TP(T ) = P ′(T ), which
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is still polynomial in T . We just need to run A′ for sufficiently many steps after the first
P ′(T ) steps to dominate any low-return periods that took place in those P ′(T ) steps, similar
to the analysis done for the undiscounted case towards the end of Section 5.5. We again
note that this solution, while sufficient for polynomial time, is far from the one we would
implement in practice: for instance, we would clearly want to modify the algorithm so
that the many sequential executions of A shared and accumulated common partial models
of M .

7. The multichain case

The main issue in extending our results to arbitrary multichain MDPs is that the asymptotic
undiscounted return for any policy π is not independent of the start state. This makes the
undiscounted case for multichain MDPs look a lot like the usual discounted case. Indeed, our
results extend to arbitrary multichain MDPs in the discounted case without any modification.
Therefore, one way to deal with the undiscounted-case multichain MDPs is to only ask that
given polynomial time our algorithm will be in a state for which it has a policy that has
an expected return that is near-optimal for that state. Another way is to modify what we
can expect when we compete against a policy: instead of expecting to compete against the
largest asymptotic return over any start state for that policy, we can compete against the
lowest asymptotic return over any start state for that policy. Thus, we modify Definitions 5
and 6 as follows:

Definition 5. Let M be a Markov decision process, and let π be any policy in M . The ε-
return mixing time of π is the smallest T such that for all T ′ ≥ T , |Uπ

M(i, T ′)−Uπ
M(i)| ≤ ε

for all i .

Definition 6. Let M be an arbitrary Markov decision process. We define �
T,ε
M to be the

class of all policies in M whose ε-return mixing time is at most T . We let opt(�T,ε
M ) =

maxπ∈�
T,ε
M

[mini Uπ
M(i)], be the optimal expected asymptotic undiscounted return among all

policies in �
T,ε
M .

Under these refined definitions, all of our undiscounted-case results on unichain MDPs
extend without modification to arbitrary MDPs.

8. Future work

There are a number of interesting lines for further research.

• Practical implementation. Although the polynomial bounds proven here are far too large
to immediately claim the practical relevance of our algorithm, we feel that the under-
lying algorithmic ideas are very promising and will eventually result in a competitive
algorithm. We are currently examining the practical issues and choices that arise for an
implementation, some of which were discussed briefly in Section 6, and we hope to report
on an implementation and experiments soon.
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• A model-free version. Partially related to the last item, it would be nice to find an algorithm
similar to ours that did not require maintaining a partial model, but only a policy (or
perhaps several). We are currently investigating this as well.

• Large state spaces. It would be interesting to study the applicability of recent methods for
dealing with large state spaces, such as function approximation, to our algorithm. This
has been recently investigated in the context of factored MDPs (Kearns & Koller, 1999).
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Notes

1. Note that the lemma for the undiscounted case is stated with respect to those policies whose ε/2-return mixing
time is T, as opposed to ε-return mixing time. However, the ε/2-return and ε-return mixing times are linearly
related by standard eigenvalue arguments.

2. That is, the states of M̂ are simply all the states visited so far, the transition probabilities of M̂ are the observed
transition frequencies, and the rewards are the observed rewards.

References

Barto, A. G., Sutton, R. S., & Watkins, C. (1990). Sequential decision problems and neural networks. In D. S.
Touretzky (Ed.), Advances in neural information processing systems 2 (pp. 686–693). San Mateo, CA: Morgan
Kaufmann.

Bertsekas, D. P. (1987). Dynamic programming: Deterministic and stochastic models. Englewood Cliffs, NJ:
Prentice-Hall.

Bertsekas, D. P., & Tsitsiklis, J. N. (1989). Parallel and distributed computation: Numerical methods. Englewood
Cliffs, NJ: Prentice-Hall.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Belmont, MA: Athena Scientific.
Chrisman, L. (1992). Reinforcement learning with perceptual aliasing: The perceptual distinctions approach. In

AAAI-92.
Fiechter, C. (1994). Efficient reinforcement learning. In COLT94: Proceedings of the Seventh Annual ACM

Conference on Computational Learning Theory (pp. 88–97). New York: ACM Press.
Fiechter, C. (1997). Expected mistake bound model for on-line reinforcement learning. In Machine Learning:

Proceedings of the Fourteenth International Conference, ICML97 (pp. 116–124). San Mateo, CA: Morgan
Kaufmann.

Gordon, G. J. (1995). Stable function approximation in dynamic programming. In A. Prieditis, & S., Russell
(Eds.), Machine Learning: Proceedings of the Twelth International Conference (pp. 261–268). San Mateo, CA:
Morgan Kaufmann.

Gullapalli, V., & Barto, A. G. (1994). Convergence of indirect adaptive asynchronous value iteration algorithms. In
J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances is neural information processing systems 6 (pp. 695–
702). San Mateo, CA: Morgan Kauffman.

Jaakkola, T., Jordan, M. I., & Singh, S. (1994). On the convergence of stochastic iterative dynamic programming
algorithms. Neural Computation, 6:6, 1185–1201.



232 M. KEARNS AND S. SINGH

Jaakkola, T., Singh, S., & Jordan, M. I. (1995). Reinforcement learning algorithm for partially observable Markov
decision problems. In G. Tesauro, D. S. touretzky, & T. K. Leen (Eds.), Advances in neural information
processing systems 7 (pp. 345–352). San Mateo, CA: Morgan Kaufmann.

Jalali, A., & Ferguson, M. (1989). A distributed asynchronous algorithm for expected average cost dynamic
programming. In Proceedings of the 29th Conference on Decision and Control, Honolulu, Hawaii (pp. 1283–
1288).

Kearns, M., & Koller, D. (1999). Efficient reinforcement learning in factored MDPs. In Proceeding of the Sixteenth
International Joint Conference on Artificial Intelligence (pp. 740–747). Morgan Kaufmann.

Kumar, P. R., & Varaiya, P. P. (1986). Stochastic systems: Estimation, identification, and adaptive control.
Englewood Cliffs, N.J.: Prentice Hall.

Littman, M., Cassandra, A., & Kaelbling., L. (1995). Learning policies for partially observable environments:
Scaling up. In A. Prieditis, & S. Russell (Eds.), Proceedings of the Twelfth International Conference on Machine
Learning (pp. 362–370). San Francisco, CA: Morgan Kaufmann.

Moore, A. W., & Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning with less data and less real
time. Machine Learning, 12:1.

Puterman, M. L. (1994). Markov decision processes : Discrete stochastic dynamic programming. New York: John
Wiley & Sons.

Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using connectionist systems. Technical Report
CUED/F-INFENG/TR 166, Cambridge University Engineering Dept.

Saul, L., & Singh, S. (1996). Learning curve bounds for markov decision processes with undiscounted rewards.
In COLT96: Proceedings of the Ninth Annual ACM Conference on Computational Learning Theory.

Schapire, R. E., & Warmuth, M. K. (1994). On the worst-case analysis of temporal-difference learning algorithms.
In W. W. Cohen, & H. Hirsh (Eds.), Machine Learning: Proceedings of the Eleventh International Conference
(pp. 266–274). San Mateo, CA: Morgan Kaufmann.

Sinclair, A. (1993). Algorithms for random generation and counting: A Markov chain approach. Boston:
Birkhauser.

Singh, S., & Dayan, P. (1998). Analytical mean squared error curves for temporal difference learning. Machine
Learning, 32:1, 5–40.

Singh, S., Jaakkola, T., & Jordan, M. I. (1995). Reinforcement learning with soft state aggregation. In Advances
in neural information processing systems 7. San Mateo, CA: Morgan Kaufmann.

Singh, S., Jaakkola, T., Littman, M. L., & Szepesvari, C. (2000). Convergence results for single-step on-policy
reinforcement learning algorithms. Machine Learning, 38:3, 287–308.

Singh, S., & Sutton, R. S. (1996). Reinforcement learning with replacing eligibility traces. Machine Learning, 22,
123–158.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3, 9–44.
Sutton, R. S. (1995). Generalization in reinforcement learning: Successful examples using sparse coarse coding.

In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems
8 (pp. 1038–1044). Cambridge, MA: MIT Press.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.
Thrun, S. B. (1992). The role of exploration in learning control. In D. A. White, & D. A. Sofge (Eds.), Handbook

of intelligent control: Neural, fuzzy and adaptive approaches. Florence, KY: Van Nostrand Reinhold.
Tsitsiklis, J. (1994). Asynchronous stochastic approximation and Q-learning. Machine Learning, 16:3, 185–202.
Tsitsiklis, J., & Roy, B. V. (1996). Feature-based methods for large scale dynamic programming. Machine Learning,

22, 59–94.
Watkins, C. J. C. H. (1989). Learning from delayed rewards. Ph.D. thesis, Cambridge Univ., Cambridge, England,

UK.
Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8:3/4, 279–292.

Received March 17, 1999
Revised October 4, 2001
Accepted October 4, 2001
Final manuscript October 4, 2001


