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Abstract

With increased interest and research in the use of synthetic DNA as a medium of archival storage,
it has become important to quickly iterate and evaluate proposed approaches in storing DNA.
However, current experiments on DNA have a high cost and high latency, leading to the need
for cheap and fast simulation prior to experimentation. We propose and develop a simulator
that approximates the noisy channel of DNA storage, which produces similar error profiles when
compared to real experiments. Compared to existing simulators, our simulator converged closer
to real data based on per-strand accuracy (15% v/s 38% di↵erence) and per-character accuracy
(1% v/s 6%) for the BMA algorithm; however, it did not adequately converge for the Iterative
algorithm.

Further, we make the novel insight that the spatial distribution of errors within a strand is a
key determinant of trace reconstruction accuracy; which is a factor that had not been considered
by existing simulators. We conduct a sensitivity analysis on state-of-the-art trace reconstruction
algorithms based on this insight, and use it show that the accuracy of the Iterative reconstruction
algorithm can be significantly improved by performing two-way execution.

Keywords: DNA storage, error simulation, archival storage, trace reconstruction
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Chapter 1

Introduction

With the exponential increase in the production of data and stagnating costs of conventional elec-

tronic or magnetic storage, it has become essential to explore unconventional storage mediums

with low cost, and high density and durability. The rapid obsolescence of storage technologies

(espoused by the decline in use of floppy disks [1]) also poses challenges for archival storage which

deals with storage over hundreds of years. Storing data in the form of synthesized DNA molecules

(hereinafter referred to as DNA storage), has emerged as a promising means of dense and durable

archival storage.

This paper is organised as follows. Chapter 1 provides an overview of the steps in DNA storage

with an emphasis on the introduction of noise (errors) at each step. Chapter 2 reviews existing work

on modelling and simulating errors in DNA storage, and shows the inadequacy of existing simulators

to derive a problem statement. Chapter 3 proposes evaluation criteria for DNA simulators, and

progressively considers various parameters to derive a better simulation model. We show that

spatial distribution of errors is a key parameter in simulating error profiles, and then perform a

sensitivity analysis to gauge the impact of spatial distribution on the trace reconstruction phase of

the storage pipeline. Chapter 4 concludes with a discussion of the limitations and recommendations

for future work.

This chapter introduces the mechanism and errors associated with the DNA storage pipeline.

We then review the noise profiles of existing DNA technologies, which are fundamentally di↵erent

in mechanism and thus in noise distribution.

1.1 Overview of DNA Storage

DNA storage allows for write-store-read operations on digital information. Writes, also called syn-

thesis, produce physical DNA molecules of short length, called strands. Storing the strands simply

requires their placement in a physical container which contains other DNA strands. Reads, also

called sequencing, produce digital representations of DNA sequences on processing the correspond-

ing DNA strands.

There are 4 types of molecules (also called letters or bases) in DNA viz. A, G, C and T. Strands

of these molecules can be constructed with a desired sequence and length; examples include strands

such as GCTA (length = 4) and AATCAG (length = 5). To convert from digital information (in
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the form of bits) and DNA storage (in the form of strands) and vice-versa, a suitable encoding

scheme can be devised. A trivial example of such an encoding would be A: 00, G : 01, C : 10, and

T : 11. Illustratively, our earlier example GCTA corresponds to 01 10 11 00, and this conversion is

performed during reads.

Writes are thus modelled as a transformation from a binary alphabet to a set of strings of fixed

length L over the alphabet ⌃ = {A, G, C, T} and vice-versa for reads. However, both write and read

operations are noisy transformations which introduce errors stochastically. The introduction of

errors is modelled as a noisy channel (⌃L)N ! (⌃⇤)M , where N strands of length L can su↵er

insertion, deletion or substitution of substrings, or even full deletion of the strand, to result in M

reads of varying lengths, i.e not necessarily equal to L. Typically, M � N , i.e. the number of reads

is more than the number of writes since the sequencing process magnifies the number of reads (see

§1.1.1 below).

The ratio M : N , i.e. the ratio of the number of strands that are synthesized (references) to

the number of copies that are sequenced is termed the sequencing coverage. A higher sequencing

coverage leads to improved error correction, since more copies are available for every synthesized

strand.

In sum, the aim of DNA storage is to:

1. Accept a file structure as a sequence of bits viz. a binary string

2. Encode the binary alphabet to DNA sequences viz an AGCT string

3. Synthesize and store the DNA sequence (now called a strand)

4. Retrieve data according to queries

5. Sequence, cluster and reconstruct the DNA strands

6. Decode and correct errors to re-arrange the file structure

See Fig. 1.1 for a graphical overview.

Figure 1.1: Overview of the major steps of digital data storage in DNA [5].

To reduce the probability of errors, two forms of redundancy are employed: physical redundancy

and logical redundancy. Physical redundancy involves the generation of multiple copies of the same

strand, from which the original strand is recovered in a process known as trace reconstruction.
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Logical redundancy involves the addition of redundant information that can be used by an error-

correction code to detect and correct errors during decoding.

Since redundancy comes with a high cost of synthesis, a key aim is to ensure that the logical

density per letter (i.e the number of bits represented per DNA molecule) is maximized. The

theoretical maximum, demonstrated by [13] is 2 bits per nucleotide, assuming zero redundancy.

The physical density of DNA (i.e the number of molecules per unit weight) is another parameter

to be maximized; fewer, longer strands are more dense than several, shorter strands.

1.1.1 Retrieval

Unlike conventional electronic and magnetic storage, DNA storage is not physically organized,

making random-access and searching a non-trivial problem. The process that enables random-

access viz. polymerase-chain reactions, also injects errors into the channel.

Initial studies ([9], [11]) sequenced and read all of the data in the DNA pool, without any

scope for random access. This requires an O(n) search to read a particular chunk of data, and

was tolerable due to the low amount of data encoded (650 KB and 630KB). However, this solution

is not scalable, especially due to the extremely high potential density of 17 exabytes per gram of

DNA.

Two studies by Yazdi et al. [25] and Bornholt et al. [4] independently solved the problem

of random-access by the use of primers and polymerase-chain reaction (PCR). The DNA storage

system was modelled as a key-value store, with the key being analogous to a filename, and the

value being the file’s contents. Each key was mapped to a unique sequence of 20 bases called a

primer, and this primer was appended to each strand that encoded the file content. These primers

allow the PCR to selectively amplify only those strands with a chosen primer sequence. However,

the amplification is imperfect; strands of undesired files might remain, and even strands of desired

files might be corrupted via substitution.

1.1.2 Clustering and Reconstruction

The output of sequencing is an unordered list of noisy copies of original strands i.e. (⌃⇤)M . Similar

strands are clustered together based on the heuristic of edit distance, assuming that similar reads

correspond to noisy copies of the same strand. However, clustering might itself be imperfect, since a

noisy copy n0 of a strand n might be clustered together with copies of another strand m. Under this

setup, a sequence n (the designed DNA strand) is transmitted m times over the deletion-insertion-

substitution channel and generates m noisy copies (the cluster). A DNA reconstruction algorithm

is a mapping which receives the m noisy copies as an input and produces n̂ , an estimation of n,

and the target is to minimize the distance between n and n̂

Classic trace reconstruction algorithms can then be applied, including Multiple Sequence Align-

ment [24], Bitwise Majority Alignment (BMA) [3], Divider BMA [21] and others. All of these

algorithms require consensus or majority voting for each position of the DNA strand, and thus are

subject to deteriorating accuracy with lower sequencing coverage.
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Table 1.1: Comparison of DNA sequencing technologies

Sequencing technology 1st Gen. (Sanger) 2nd Gen. (Illumina) 3rd Gen. (Nanopore)

Cost (per Kb) $1-2 $10�5 � 10�3 $10�4 � 10�3

Error rate 0.001-0.01% 0.1-1% 10%
Sequencing length 500bp 25-150bp 105bp
Read speed (per Kb) 10�1 h 10�7-10�4 h 10�7-10�6 h

1.1.3 Decoding

The output of reconstruction is a (smaller) set of unordered, noisy, DNA sequences in silico, which

are then decoded into ordered binary sequences within files.

DNA strands can su↵er from two types of errors: erasures and corruption. Erasures occur due to

failed PCR amplification, low sequencing coverage, or imperfect clustering where all noisy copies of

a strand are classified as belonging to another strand. Erasures are detected easily when a strand is

not present after reconstruction, for example, by detecting that a given location in a file is missing.

Both physical and logical redundancy must be employed to correct them. Corruption occurs when

a strand undergoes substitution during synthesis, sequencing or incorrect trace reconstruction.

Several schemes, such as parity bit checks [11], low-density parity check code (LDPC) [6], generation

of redundant XOR copies [4], Reed-Solomon codes [12], and fountain codes [10] have been employed

to correct errors and ensure the original binary sequence is returned to the user.

1.2 Noise Profiles of DNA Technologies

As we have seen, the three critical steps where DNA molecules are altered undesirably are synthesis,

PCR, and sequencing. The most widely synthesis technologies are Twist Bioscience, CustomAr-

ray and Integrated DNA Technology (IDT) [5]. All of the synthesis methods have two common

properties. First, the synthesis of long strands (greater than 200 bases) leads to increasing error

rates, especially at terminal positions. This is why short strands of length in the range 100-400 are

used. Secondly, a 50% GC-ratio1, since extreme GC-ratios have been found to be unstable. Strands

with high GC-ratios are attracted to themselves in a self-loop, and form secondary structures that

prevent accurate sequencing [28].

However, several studies ([4], [11], [10], [24]) have shown that most errors occur during sequenc-

ing. In general, sequencing is vulnerable tohomopolymers which are repeated sequences of the same

base such as AAAAA, and several encoding techniques have been employed to prevent their oc-

currence [11]. For low-error sequencing (such as Sanger and Illumina), corruption is the dominant

concern, while for high-error sequencing (such as Nanopore), erasures are prevalent. A comparison

of the sequencing technologies is provided in Table 1.1. The maximum length of a strand that can

be successfully sequenced, termed the sequencing length, di↵ers greatly as well. Further, Nanopore

sequencing is particularly sensitive to burst errors, where 5 or more consecutive bases are either

substituted or deleted [17].

1
GC-ratio =

No. of G and C bases
Total no. of bases ⇥ 100
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Since DNA is intended for archival storage over hundreds of years, it is important to ensure

that reconstruction algorithms and error-correction schemes are robust not only when used with

current sequencing technologies, but also future sequencing technologies that might have di↵erent

error profiles. As evident from Table 1.1, trends in sequencing technologies suggest that a higher

throughput (and lower latency) technology tends to be associated with higher error rates. This acts

as another motivator for a DNA simulator, such that a user can be guaranteed a certain degree of

success in retrieval of information regardless of future sequencing technologies.
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Chapter 2

Literature Review

This chapter surveys the current state of work on DNA storage simulation, indicates areas for

improvement in the same, and defines the problem statement for the research project.

2.1 Survey of Prior Work

The problem of accurately modeling the noisy channels in DNA storage is key for designing sim-

ulators for DNA storage, as well as for devising highly accurate error-correction schemes. In [14],

a rudimentary model is proposed, where data is written on M molecules, PCR amplification is

assumed to be uniform, and sequencing is modelled as drawing N times uniformly at random with

replacement from the M DNA strands. However, the study acknowledges that the proposed model

only accounts for erasures (deletions of strands), since every read and write is assumed to be error-

free. A Poisson distribution, instead of a uniform distribution, is suggested for PCR amplification.

Heckel et al. [13] improved on this model, and characterizes errors as a Insertion-Deletion-

Substitution (IDS) channel. This study is the first to describe the DNA storage system as a noisy

channel with a multiset of M DNA strands of length L as input, and the output as sampling N

times independently from the multiset, and then disturbing the sampled strands with insertions,

deletions and substitutions. The following types of errors are posited:

1. Strands might not be successfully synthesized, and some might be synthesized more times

than others (i.e higher number of noisy copies).

2. During storage, DNA strands might decay, or be lost.

3. Sequencing only draws a fraction of molecules. IDS errors might occur, with higher probability

of errors in homopolymer subsequences and strands with unbalanced GC-ratios.

Heckel et al. analyze experimental data to show that PCR has a preference for some sequences

over others, which distorts the copy number distribution of individual strands. It demonstrates that

synthesis and sequencing errors are dominated by deletions and substitutions respectively. Con-

ditional error probabilities for mistaking a certain base for another were computed, which showed

that, for example, mistaking T for C or A for G was much more likely (p ⇠ 0.4) compared to other
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combinations (p ⇠ 0.01). The distribution of the number of reads per synthesized strand (using

Illumina) was found to be approximately negative binomial distributed, unlike prior assumptions

of a uniform distribution or even a constant coverage.

Other related work in the field of simulating DNA is only partially applicable to its use in

digital storage. For example, MESA [22] simulates DNA synthesis, sequencing, and, notably, PCR

amplification as well. It also includes a module that accounts for storage decay, as well as includ-

ing adjustments for homopolymers, GC-ratios and conditional substitution probabilities that are

absent from DNASimulator. However, the datasets used to compute the error statistics are based

on DNA stored in vivo, i.e. in living organisms such as E. coli. Further, only one noisy copy is

generated for a given strand, which prevents simulation of clusters and reconstruction.

Other works have partially addressed specific steps such as sequencing, albeit in the context of

bioinformatics. Two studies, ([23], [16]) have attempted to simulate errors in sequencing genomic

DNA fragments using Nanopore, while there has been work on Illumina sequencing as well [26].

However, these studies have limited applicability for this research project.

2.2 Study of Existing Simulators

Currently, only one prior work has attempted to devise an end-to-end simulator for the purposes

of DNA storage viz. DNASimulator by Gadihh et al. [7]. The simulator uses a dictionary of pre-

computed error statistics, generates noisy copies given an input file of strands, and provides a suite

of reconstruction algorithms to test the simulated noisy copies.

2.2.1 Algorithm

The algorithm used to inject errors in DNASimulator is given below. In the algorithm, a unique

dictionary E is predetermined for each pair of synthesis and sequencing technology, and the number

of noisy copies N is tunable by the user. The combination of these two parameters aims to reduce

the di↵erent error injections in synthesis and into a single-pass injection. The errors introduced at

di↵erent stages are not modelled separately, and the error-dictionary is computed by summarizing

experimental results using the di↵erent technologies. Errors introduced due to PCR amplifica-

tion or due to low sequencing coverage are not modelled explicitly. Furthermore, only 4⇥ 4 types

of errors are considered i.e. insertion, deletion, substitution and long-deletion for the di↵erent bases.

2.2.2 Evaluation

To test the fidelity of simulation of DNASimuator, we propose per-strand and per-character accuracy

as criteria for evaluation for simulators (see §3.1 for a broader discussion of suitable criteria). Data

generated by an ideal simulator should have the same per-strand and per-character accuracy as

real data when reconstructed with di↵erent trace reconstruction algorithms.
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Algorithm 1 Generating noisy copies for reference strands with DNASimulator

E  PA,del, PA,subs, PA,ins, ..., PT,ins . Base-wise probabilities for error types

N  ... . Desired coverage for strand

for strand in reference-strands do
for k  1 to N do

copyk  ;
for base in strand do

prob  random() . random real number 2 (0, 1)

if prob  Ebase,subs then
b random base 2 {A, G, C, T}
copyk  copyk + b

end
if prob  Ebase,subs + Ebase,ins then

b random base 2 {A, G, C, T}
copyk  copyk + base + b

end
if prob  Ebase,subs + Ebase,ins + Ebase,del then

continue
end
else

copyk  copyk + base
end

end

end

end

We provide an analysis of trace reconstruction accuracies to demonstrate the deficiencies in

DNASimulator when applied to high-error regimes such as Nanopore. In addition to DNASimulator,

we design a naive simulator [15] that ignores (i) conditional base-wise probabilities, and (ii) long-

deletions.

A Nanopore dataset from [3] was used, which contained 10,000 clusters, 269, 701 noisy copies,

and an average coverage of 26. The coverage of the Nanopore clusters ranged from 0 - 164, with

an aggregate error of 5.9% as reported in [3].

We prepared two simulated datasets, one each using DNASimulator and our naive simulator,

where each cluster has a custom coverage equal to the coverage in the real Nanopore data.

An additional dataset with a fixed coverage of 26 was also generated using DNASimulator. We

ran various trace reconstruction (TR) algorithms on these four datasets (see Table 2.1) to get

preliminary evidence on the e�cacy of DNASimulator.

We observed that the per-strand accuracy of simulated data was consistently greater than the

per-strand accuracy of real data. Further, DNASimulator performs roughly the same as a naive

simulator. This serves as preliminary evidence showing the deficiency of DNASimulator.

However, the prior analysis in Table 2.1 does not control for coverage, which can serve as

a confounding factor in the per-strand accuracy of di↵erent TR algorithms. Particularly, it is
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Table 2.1: Comparison of Per-Strand Accuracy of TR Algorithms on Real and Simulated Data

Data Coverage BMA (%) DivBMA (%) Iterative (%)

Real Nanopore Custom 77.88 2.73 83.16
Naive Simulator Custom 93.77 3.33 100
DNASimulator Custom 95.91 0.38 99.1
DNASimulator 26 94.12 0.07 100.

Table 2.2: Comparison of Accuracy of TR Algorithms at Fixed Coverage

Data Coverage
BMA Iterative

Per-Strand (%) Per-Char (%) Per-Strand (%) Per-Char (%)

Nanopore 5 29.04 87.74 66.70 90.32
DNASimulator 5 68.21 93.45 90.60 99.31
Nanopore 6 36.88 89.26 78.88 94.48
DNASimulator 6 81.09 95.55 98.04 99.87

possible that clusters with higher coverages have lower error, which will not be captured by either

the naive simulator or DNASimulator. Thus, we ran additional experiments using a fixed coverage

for both real data and simulated data (Table 2.2).

After controlling for coverage, both per-strand and per-character accuracy of simulated datasets

continued to be greater than those for real data. This demonstrates that static error-profiling as

used in DNASimulator is not adequate for simulating DNA storage.

2.2.3 Discussion

In this subsection, we posit reasons for the inadequacy of DNASimulator. The error model of

DNASimulator is localized to a single base, and ignores several characteristic sources of errors are

analyzed by Heckel et al. [13]. For example, all errors are assumed to be independent of a base’s

position in a strand, despite studies illustrating that error rates increase exponentially at terminal

positions [5], [17]. The increased error rate due to presence of homopolymers as discussed earlier

is also not included. The sequencing coverage of all strands is assumed to be uniform, which is

contrary to empirical data showing that sequencing coverage assumes a normal distribution across

all strands [4]. Entropy due to decay during storage is not considered. The conditional probabili-

ties of substitutions are modelled as roughly equal, since a random base 2 {A, G, C, T} is chosen

uniformly; this is contrary to observations specified above. Finally, DNASimulator fails to account

for the possibility errors due to strand-strand interactions, since the injection of errors for every

strand is performed independently.

Additionally, DNASimulator has recently been used as a synthetic data generator (SDG) to
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train DNAformer, a neural network that reconstructs strands from imperfect clusters [2]. The study

justifies the use of DNASimulator by demonstrating that the proposed neural network trained on

real data performs worse than one trained on data generated by the SDG. Deep learning approaches

have been applied partially in simulating Illumina sequencing as well [27]. A simulator superior to

DNASimulator could instead be used to train these neural networks, which would lead to improved

reconstruction accuracy.

2.3 Problem Definition

With the notable exception of DNASimulator [7], most of the existing work on simulating DNA has

dealt with genomics DNA, and with specific steps of the DNA sequencing and synthesis pipeline.

DNASimulator is the only end-to-end error simulator that aims to approximate the noisy channels

of DNA storage. However, it uses a simple model that treats errors as independent of each other

and of the position within a strand, does not distinguish between errors during synthesis, PCR or

sequencing, and does not o↵er the ability to simulate di↵erent sequencing coverages, which are key

in testing reconstruction algorithms and error-correction schemes.

This research project designs a simulator for DNA storage that accurately models the errors

introduced at di↵erent positions within a DNA strand. The problem can be formalized as follows:

Given a multiset (⌃L)N over an alphabet ⌃ = {A, G, C, T}, a set of parameters including but

not limited to methodsynth, methodseq, methodPCR, timestorage..., simulate an IDS noisy channel

(⌃L)N ! (⌃⇤)M that generates another multiset (⌃⇤)M of strings of varying length. The synthet-

ically generated (⌃⇤)M should be minimally distant from the reads from real wetlab experiments

(⌃⇤
real)

M 0
, according to suitable metrics for measuring distance (see Chapter 3 for a discussion of

possible metrics).

Additionally, the project uses a data-driven approach that does not require manual interven-

tion and classification of key probabilities. It also provides a command-line interface based on

DNASimulator to interact with the simulator (see appendix A for details).
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Chapter 3

Simulation Model

This chapter outlines possible metrics to evaluate the accuracy of a DNA simulator, progressively

refines this paper’s simulator based on these metrics, and conducts a sensitivity analysis based on

the spatial distribution of errors.

3.1 Evaluation Criteria

As discussed earlier, a DNA storage simulator generates an ordered list of M strings of the form

m11, m12, m13, .., m21, m22, ...mn1...mnk where a string mij represents the jth noisy copy of a strand

ni. Several approaches can be considered to evaluate the generated M strings to determine the

accuracy of the simulator and compare it to real data from wetlab experiments. However, prior to

evaluation, we must choose whether the generated noisy copies are clustered imperfectly or per-

fectly. In imperfect clustering, the noisy copies are shu✏ed randomly to yield an unordered set

M 0 that resembles an actual sequencing read-out in a wetlab experiment. The unordered set M 0 is

then evaluated using the state-of-the-art clustering algorithms [18], [8]. However, this might lead to

introduction of errors of a characteristic distribution due to the nature of the clustering algorithm.

To mitigate this, we can use perfect clustering (also termed pseudo-clustering) where the ordered

output of the simulator is considered to be already clustered.

Regardless of the choice of clustering, we now consider possible choices for metrics and evaluate

their trade-o↵s:

1. Error statistics: Compute the error profiles of the generated noisy copies, for example by

measuring error-rates per base, conditional probabilities of substitution P (b1|substitutionb2)

for all pairs b1, b2. The latter can be generalized to a frequency distribution for all possi-

ble types of errors of the form x1x2x3...xixi,1xi,2...xi,n...xl where xi is the original base in a

strand, and xi,j are the (possibly empty) replacements of it under the IDS channel. The �2

distance between the frequency histograms of the real data and the simulated data would be

used to evaluate the simulator in this case.

2. Normalized edit, Hamming or Levenshtein distance: Compute the normalized edit,
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Hamming or Levenshtein distance between clusters sourced from real data and simulated data.

3. Gestalt Pattern Matching : Compute the gestalt pattern matching score to compare the

similarity of clusters sourced from real data and simulated data. Gestalt score [19] is used

to compute the similarity of two strings. Given two strings, S1 and S2, we set Km to be the

number of matching characters in both strings. Matching characters are defined as the longest

common substring (LCS) of S1 and S2 plus recursively the number of matching characters on

either side of the LCS. The gestalt score is then computed as Dscore = 2Km
|S1|+|S2| .

Figure 3.1: Example of gestalt matching on WIKIMEDIA and WIKIMANIA [5].

Importantly, gestalt pattern matching algorithm also generates the matching blocks in two

strings as a by-product of the score computation. For example, in Fig. 3.1, the terms WIKI

and IA are matching blocks in the strings WIKIMEDIA and WIKIMANIA. The substring AN is

considered a substitution of ED in the first string. In context of DNA storage, the gestalt

matching e↵ectively generates the aligned (or matched) portions of a reference strand and a

reconstructed strand; it corrects the misalignment due to the noisy channel.

4. Accuracy of reconstruction algorithms: The above methods attempt to compare the

similarities between simulated and real data using closed-form analysis and probabilities.

However, our motivation is not to generate DNA distributions that conform to a predeter-

mined distribution but to ensure that simulated and real data are agnostic to the end-user

of the reconstruction algorithms and the decoding, such that they may be optimized. Thus,

we propose that a simulator should be evaluated on the basis of the di↵erences in accuracies

(per-strand and per-character) when simulated and real data are passed to a suite of recon-

struction algorithms. Two algorithms are used in this report: BMA Look-Ahead [3], and

Iterative Reconstruction [21]. Per-strand accuracy is defined as to the percentage of reference

strands that are reconstructed without errors, and per-character accuracy is defined as the

percentage of characters in the reference strands that are reconstructed without errors (i.e.

with the correct base at the correct position).

Thus, we use per-strand and per-character accuracy after trace reconstruction as our key metric

for evaluating the simulator. We use Hamming distance and gestalt pattern matching to visualize

trace reconstruction outputs and to conduct sensitivity analyses. Both the Hamming and gestalt-

aligned comparisons show the errors remaining after applying the reconstruction algorithms on

noisy clusters.

3.2 Data

In this section, we choose and justify the sequencing dataset used, describe its error profile, and

determine relevant sequencing coverages for our evaluation.
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(b) Gestalt-aligned errors

Figure 3.2: Analysis of noise in Nanopore dataset before reconstruction

As in §2.2.2, we use the Nanopore dataset from [3], over Illumina datasets. This is because

Nanopore sequencing has a much higher error rate ( 5%) than Illumina (0.1%), which allows us

to distinguish between significant changes in reconstruction accuracies and random noise. The

Nanopore dataset comprises 10,000 reference strands of length 110 each, and 269, 709 noisy copies,

with an average coverage of 269709
10000 = 26.97. It includes 16 empty clusters or erasures, where no noisy

copy could be recovered for the reference strand. We first ran Hamming and gestalt-aligned tests

to determine the presence and sources of errors in the noisy copies. Hamming graphs indicate every

presence of an error within a strand (Fig. 3.2a), while gestalt-aligned graphs indicate the sources

of misalignment within a strand (Fig. 3.2b). For example, given a reference strand r = AGTC and

noisy copy c = ATC, and 0-based indices, the Hamming error occurs at c1, c2 and c3, however, the

gestalt-aligned error occurs only at c1 due to the deletion of G. The magnitude of gestalt-aligned

errors is thus always lower than that of Hamming errors.

The Hamming comparison is expected, since any error at the beginning of a strand will propa-

gate forward, leading to a linear trend upto position 110 (original strand length), after which there

is a drop in errors, since the number of noisy copies with length greater than 110 is low. The

gestalt-aligned comparison indicates that most errors occur at the terminal positions of the strand,

which is predicted by [13]. However, end of the strand has almost twice the number of errors as

the beginning of the strand.

In order to control for coverage, and choose relevant coverages for our analysis, we then ran the

Iterative reconstruction algorithm on the Nanopore dataset at coverages ranging from 1 - 10. First,

all clusters were shu✏ed. Only clusters with coverage greater than or equal to 10 were chosen, thus

1006 clusters were discarded at this step, since they did not have a minimum coverage of 10. For

clusters with coverage n � 10, the remaining n�10 copies were discarded. The trace reconstruction

for coverage i was measured by choosing the first i copies within each cluster. For example, for

N = 5, the first 5 copies in each strand were chosen, and for N = 6, the first 6 copies were chosen.

This ensured that the higher coverages di↵ered from the lower coverage only in the extra copies

chosen; the first few strands remained the same, and thus had the same error profile. Fig. 3.3

shows the per-strand and per-character accuracies for each coverage. Both the per-strand accuracy

and per-character accuracy increase rapidly at coverages 4, 5 and 6, and then stabilize beyond
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Figure 3.3: Accuracy of Iterative Reconstruction at N 2 1...10

coverage = 7. Coverages of N = 5 and N = 6 are chosen as our reference metrics for per-strand

and per-character accuracy due to the rapid fluctuation in that range.

After choosing suitable coverage points, we analyzed the outputs of running BMA and Iterative

reconstruction algorithms at N = 5 and N = 6 on the Nanopore dataset. The comparisons for

N = 5 are provided in Fig. 3.4. The corresponding comparisons for N = 6 yielded identical results,

and are supplied in appendix C. The behaviour across both coverages is identical. The Hamming

comparison for the Iterative algorithm is linear, as described earlier, due to the propagation of errors.

The lack of symmetry points to a significant weakness in the Iterative algorithm mechanism, since

the algorithm can potentially be improved by running it twice, on the strand and its reverse. This

behaviour is discussed further in §3.4. The gestalt-aligned comparison of Iterative mirrors the error

profile of Nanopore data (Fig. 3.2b), since errors occur at terminal positions.

The Hamming comparison for BMA is symmetrically A-shaped, which is expected, since unlike

Iterative, BMA performs a two-way execution on the cluster and its reverse as well. The first half

of the forward execution is concatenated with the first half of the backward execution. Thus, errors

propagate to the middle of the strand (position 55). The gestalt-aligned comparison reflects this,

since the source of the misalignment is the middle position.
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(b) Gestalt-aligned errors for Iterative
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(d) Gestalt-aligned errors for BMA

Figure 3.4: Post-reconstruction analysis of Nanopore data at N = 5

3.3 Factors Considered

A naive simulator only models three parameters, which are the aggregate probabilities of (i) inser-

tion (ii) deletion and (iii) substitution. In this section, we progressively consider four additional

parameters : the type of base (A, G, C or T), the proximity of errors, spatial distribution of er-

rors, and second-order orders (described later). We show that the trace reconstruction accuracy of

simulated data tends to that of real data for BMA, but not for the Iterative algorithm, due to its

sensitivity to spatial distribution. Results are summarized in Tables 3.1 and 3.2.
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Table 3.1: Comparison of Accuracy of TR Algorithms at N = 5

Data
BMA Iterative

Per-Strand (%) Per-Char (%) Per-Strand (%) Per-Char (%)

Nanopore 29.04 87.74 66.70 90.32

Naive Simulator 68.21 93.45 90.60 99.31

” + Cond. Prob + Del 59.65 91.39 92.20 99.35

” + Spatial Skew 47.86 89.49 35.36 82.15

” + 2nd-order Errors 44.78 88.67 33.87 77.39

Table 3.2: Comparison of Accuracy of TR Algorithms at N = 6

Data
BMA Iterative

Per-Strand (%) Per-Char (%) Per-Strand (%) Per-Char (%)

Nanopore 36.88 89.26 78.88 94.48

Naive Simulator 81.09 95.55 98.04 99.87

” + Cond. Prob + Del 73.04 93.13 98.10 99.88

” + Spatial Skew 63.44 92.72 71.57 94.36

” + 2nd-order Errors 58.19 91.50 69.41 91.34

3.3.1 Type of Base & Proximity of Errors

DNASimulator accounts for the type of base and the proximity of errors, but the values of the pa-

rameters are predetermined (hard-coded into the simulator). We provide an algorithm to compute

these values.

As noted earlier, Heckel et al’s model ([13] assumes that the occurrence of errors at a particular

position is independent of the type of base (A, G, C or T) at that position. However, due to

chemical properties of a�nitive bonding, the A-T and G-C are likely to be substituted for each

other. Thus, it is essential to use conditional probabilities for insertion, substitution and deletion

given the occurrence of a base, e.g. P (ins|A), P (subs|G), and so on.

Likewise, it is assumed that the occurrence of errors at a particular position is is independent of

the occurrence of errors at neighbouring positions. However, due to the nature of sequencing, it is

likely that errors occur in groups [21], and in particular, in long deletions viz. consecutive deletions

of length more than 2 [20].

Given a reference strand and its noisy cluster, we require the exact sequence of errors for each

noisy copy to compute the parameters for conditional probabilities and long deletions. However,

it is impossible to know which sequence of errors results in the noisy copies. For example, given a

reference strand r = AGCG and its noisy copy c = AGG, then we have several sequences of operations
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that are (unequally) possible: deletion of C at c2, deletion of G at c3 followed by substitution of C

at c2 with G, etc. We use the edit distance operations as a proxy to obtain the sequence of errors

with the maximum likelihood (e.g. we choose the first case of deletion for the previous example).

The algorithm is provided in Appendix B.

The edit distance operations are used to compute the conditional and long deletion probabilities.

The long deletion probability, pld was 0.33%, with a mean length of 2.17. The ratios of the lengths

of deletions were as follows: 2 (84%), 3 (13%), 4 (1.8%), 5 (0.2%), 6 (0.02%), � 7 (0%). These

parameters then used to simulate data, which improved on the naive simulator across all coverages

(Tables 3.1 and 3.2).

3.3.2 Spatial Distribution

The spatial distribution (also called skew) of errors refers to the spread of errors at various positions

in a strand. Both Heckel et al [13] and DNASimulator assume a uniform distribution of errors.

However, Fig 3.2b shows that the distribution is skewed toward the terminal ends of the strand,

with a greater skew toward the end of the strand. Only the first 2 positions (0 and 1), and the

last position (110) are a↵ected; the remaining positions have approximately amount of noise. The

chemical cause is likely faulty bonding during PCR, which causes primers to detach incorrectly

from terminal positions of the strand.

A spatial skew for the terminal ends was used as an additional parameter for the simulation.

Across all coverages, the BMA algorithm tended to converge to metrics for real data. However, the

accuracy of the Iterative algorithm decreased greatly; and dropped below that of real data. This

is due to the sensitivity of the Iterative algorithm to spatial distribution, as shown in §3.2 (Fig.

3.4a). Results for N = 6 were identical, and are provided in appendix C. The trace reconstruction

accuracy results for Iterative are thus an over-correction due to the underlying error distribution

introduced by the Iterative algorithm, and not by the simulator.

Note that the Hamming comparison for BMA is no longer symmetric due to the large number

of errors towards the end of the strand. Both halves of the strand follow a linear trend, but the

latter half has a greater baseline.
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(b) Gestalt-aligned errors for Iterative
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(d) Gestalt-aligned errors for BMA

Figure 3.5: Post-Reconstruction analysis of simulated data with skew at N = 5

3.3.3 Second-Order Errors

Second-order errors are insertions, deletions or substitutions of specific bases, for example, the

insertion of A, or the substitution of G with C. The Nanopore dataset was further analyzed with

second-order errors. It was observed that the 10 most common second-order errors comprised of

56% of all errors, since all of them were single base errors involving the deletion, substitution or

deletion of one base only; more complicated errors were obviously less likely.

However, it was also observed that the common second-order errors had a skew in their spatial

distribution as well (Fig. 3.6), with significantly more errors at one of the terminal positions. The

possible chemical reasons for this are not known, and the skew could be an artifact of the particular

Nanopore dataset, instead of the general Nanopore sequencing process.

The ten most common second-order errors were included as parameters for the simulation, which

resulted in a further decrease in accuracy despite the same aggregate probability (Table 3.1). The

results are identical to those for §3.3.2 since there is no addition of aggregate spatial distortions,

and are shown in Appendix C.

After applying this parameter to our model, both per-strand and per-character accuracies de-

crease for BMA, and converge to those for real data (Table 3.1). For example, at N = 5, the

per-strand accuracy for BMA is 44.78% as compared to 29.04% for real data, and the per-character

accuracy is 88.67% compared to 87.74% for real data. However, the metrics do not converge for the
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(d) Insertion of G

Figure 3.6: Analysis of Second Order Errors in Nanopore data before reconstruction

Iterative algorithm, likely due to the asymmetricity of its gestalt-aligned curve (see Fig 3.5b), and

its sensitivity to skewed spatial distribution of errors within a strand before reconstruction. We

investigate the sensitivity of these algorithms to some parameters (spatial distribution, coverage,

and aggregate error rate) below.

3.4 Sensitivity Analysis

In this section, we investigate the impact of di↵erent spatial distributions (uniform, A-shaped

and V-shaped) and di↵erent error profiles (p̄ = 0.03, 0.09, 0.12, and 0.15) on BMA and Iterative

reconstruction algorithms.

3.4.1 Varying Coverage and Error Rate at Uniform Distribution

First, we simulated data with uniform spatial distribution at various error rates (p = 0.03, 0.06,

0.09, 0.12 and 0.15) and at di↵erent coverages (n = 5, 6, and 10) for both Iterative and BMA

algorithms.

The Hamming and gestalt-aligned comparisons across all coverages were similar (see Fig. 3.10

for N = 5). Notably, the gestalt-aligned comparison for BMA tends to get skewed to the middle at

higher coverages, since the errors at terminal ends are negligible due to a higher number of noisy

19



0 10 25 40 55 70 85 100 110

Strand Position

0

1000

2000

3000

4000

5000

6000

7000

N
o.

of
E

rr
or

s

(a) Hamming errors for Iterative

0 10 25 40 55 70 85 100 110

Strand Position

180

200

220

240

260

280

300

N
o.

of
E

rr
or

s

(b) Gestalt-aligned errors for Iterative

0 10 25 40 55 70 85 100 110

Strand Position

0

1000

2000

3000

4000

5000

N
o.

of
E

rr
or

s

(c) Hamming errors for BMA

0 10 25 40 55 70 85 100 110

Strand Position

0

500

1000

1500

2000

N
o.

of
E

rr
or

s

(d) Gestalt-aligned errors for BMA

Figure 3.7: Post-Reconstruction analysis of p̄ = 0.15 data with uniform spatial distribution

copies (Fig. 3.8).

We observed that the two trace reconstruction algorithms respond di↵erently to skews in their

distribution, due to the underlying mechanism of the algorithms. For a given uniform error distri-

bution, the BMA algorithm tends to produce a symmetric spatial distribution for a uniform error

distribution, while the Iterative algorithm produces a linear spatial distribution. Further, the most

common errors after Iterative reconstruction were deletion errors (90% of total).

3.4.2 Varying Spatial Distribution at Constant Error and Coverage

In this experiment, we simulated two datasets with a A-shaped and V-shaped spatial distribution

respectively, and at aggregate p̄ = 0.15 (Fig. 3.9), and ran the BMA algorithm on the two datasets.

The A-shaped curve was obtained using a triangular distribution with a = 0, b = 0.30 and x̄ = 0.15.

The V-shaped distribution was obtained by inverting the A-shaped distribution.
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(b) N = 6
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(c) N = 10

Figure 3.8: Post-reconstruction gestalt-aligned errors of p̄ = 0.15 data for BMA
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(b) V-Shaped Curve

Figure 3.9: Pre-reconstruction spatial distributions at p̄ = 0.15

The BMA algorithm had a greater accuracy on strands with A-shaped distribution of errors.

This is because the A-shaped curve has a higher concentration of errors in the middle of the

strand, and BMA propagates errors to the middle anyway. The terminal positions are reconstructed

accurately due to the lower error incidence rate and the higher fidelity of BMA at terminal positions.

Consequently, the Hamming and gestalt-aligned comparisons are symmetric.

Conversely, BMA had a lower accuracy on strands with V-shaped distribution of errors. The
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(a) Hamming errors for A-Shaped Curve
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(b) Hamming errors for V-Shaped Curve
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(c) Gestalt-aligned errors for A-Shaped Curve
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(d) Gestalt-aligned errors for V-Shaped Curve

Figure 3.10: Post-reconstruction analysis for BMA; Data = p̄ = 0.15 data with skewed curves

Hamming and gestalt-aligned comparisons are not symmetric since there are significant errors at

the terminal positions.
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Chapter 4

Conclusions

4.1 Summary

In this research project, we devised and refined a simulator for noisy channels in DNA storage,

and improved on DNASimulator, an existing simulator. We analyzed suitable metrics, datasets,

and parameters for modelling the simulator. Compared to DNASimulator, our simulator converged

closer to real data based on per-strand accuracy (15% v/s 38% di↵erence for DNASimulator) and

per-character accuracy (1% v/s 6% di↵erence for DNASimulator) for the BMA algorithm. However,

like DNASimulator, our simulator did not adequately converge for the Iterative algorithm.

Further, we found that the spatial distribution of errors within a strand is a key determinant of

trace reconstruction accuracy; which is a factor that had not been considered by existing simulators.

We used this insight to measure the impact of varying spatial distribution on the performance of

trace reconstruction algorithms, and showed that the Iterative algorithm did not respond robustly

to changes in spatial distribution.

4.2 Limitations and Challenges

A key limitation of our simulator is that it does not separately model the errors introduced at each

stage of the DNA storage pipeline separately; it uses aggregate statistics across all stages. An ideal

simulator should allow for a multi-stage, composable simulation process.

Another issue was the di�culty in choice of discriminant or metric for the simulator. While trace

reconstruction accuracy is a justifiably reasonable metric, it is not clear which trace reconstruction

algorithm(s) should be prioritized; in other words, whether the simulator should attempt to converge

to accuracies for the BMA algorithm or the Iterative algorithm. Further, the choice of which

coverage should be prioritized is also important, since the simulator might converge to real data

for higher coverages while diverging at lower coverages.

4.3 Recommendations for Future Work

In order to make the simulator more robust, it should be comprehensively tested against multiple

high-error datasets. This may require generalizing second-order errors to more granular parameters
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such as a histogram of the counts and locations of all possible errors. However, with the addition of

more parameters, it must be ensured that the simulator is able to summarize the general properties

of the DNA storage pipeline, and not memorize a given dataset.

Further, a definitive metric or evaluation criteria could be devised to clearly prioritize specific

algorithms at specific coverages, since it is impossible to simulate data that converges on every

metric with the real data.

Finally, the insights drawn about the asymmetricity in strands reconstructed by the Iterative

algorithm, its sensitivity to spatial distribution, and its linear propagation of errors to the end

of the strand, could potentially be used to improve the Iterative algorithm. Possible techniques

would include performing a two-way reconstruction like BMA, or using heuristics to assign a higher

weightage to noisy copies that closely align with the partially reconstructed strand.
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Appendix A

Code Repository

The code for our project can be found on GitHub [15], and can be accessed via this link. It is

supplemented with a guide on how to set up the codebase, process data, conduct system testing,

and replicate the findings of this project. The repository contains the naive simulator, a fork of

DNASimulator, the Microsoft Nanopore datset, as well as an implementation of the trace reconstruc-

tion algorithms used in this project. Jupyter notebooks are included to enable quick prototyping

and visualization of the data.

Note that all experiments were performed on the rachmaninoff2.d2.comp.nus.edu.sg server

at the School of Computing, NUS. The clang C compiler is recommended for compiling C files,

and Python 3.7 for running the Python scripts under Scripts/.
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Appendix B

Edit Distance Operation Algorithm

Given a reference string s1 and a noisy copy s2, the following algorithm computes the minimum

edit distance operations required to transform s1 into s2. The types of operations are INS, DEL,

and SUBS. The source code is available here.

Algorithm 2 Computing edit distance operations

m 0 . m denotes the current position in s1
n 0 . n denotes the current position in s2
Function EditDistanceOps(s1, s2, m, n):

if m == 0 then
ops [ ]

for k  1 to N do
ops.insert(DEL)

end
return ops

end
if n == 0 then

ops [ ]

for k  1 to M do
ops.insert(INS)

end
return ops

end
if s1m�1 == s2n�1 then

ops EditDistanceOps(s1[: m� 1], s2[: n� 1], m� 1, n� 1)

ops.insert(EQUAL)

return ops
end
else

ops1  EditDistanceOps(s1[: m� 1], s2[: n], m� 1)

ops2  EditDistanceOps(s1[: m], s2[: n� 1], m, n� 1)

ops3  EditDistanceOps(s1[: m� 1], s2[: n� 1], m� 1, n� 1)

ops ChooseRandomAndInsertOp(ops1, ops2, ops3)
return ops

end
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Appendix C

Additional Figures

C.1 Analysis of Nanopore Data after Reconstruction
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Figure C.1: Post-Reconstruction analysis of Nanopore data at N = 6
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C.2 Analysis of Simulated Data with Skew
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Figure C.2: Post-Reconstruction Analysis of Simulated Data with Skew at N = 6
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C.3 Analysis of Simulated Data with Second-Order Skew
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Figure C.3: Post-reconstruction analysis of simulated data with second-order errors at N = 5
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C.4 Overall Post-Reconstruction
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Figure C.4: Real Nanopore at N = 5
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Figure C.5: Naive at N = 5

0 10 25 40 55 70 85 100 110

Strand Position

0

500

1000

1500

2000

2500

3000

3500

N
o.

of
E

rr
or

s

(a) Hamming errors

for Iterative

0 10 25 40 55 70 85 100 110

Strand Position

20

30

40

50

60

N
o.

of
E

rr
or

s

(b) Gestalt-aligned

errors for Iterative

0 10 25 40 55 70 85 100 110

Strand Position

0

200

400

600

800

1000

1200

N
o.

of
E

rr
or

s

(c) Hamming errors

for BMA

0 10 25 40 55 70 85 100 110

Strand Position

0

250

500

750

1000

1250

1500

1750

N
o.

of
E

rr
or

s

(d) Gestalt-aligned

errors for BMA

Figure C.6: Naive + Cond + LD at N = 5

0 10 25 40 55 70 85 100 110

Strand Position

0

1000

2000

3000

4000

5000

N
o.

of
E

rr
or

s

(a) Hamming errors

for Iterative

0 10 25 40 55 70 85 100 110

Strand Position

0

200

400

600

800

1000

1200

1400

N
o.

of
E

rr
or

s

(b) Gestalt-aligned

errors for Iterative

0 10 25 40 55 70 85 100 110

Strand Position

0

500

1000

1500

2000

N
o.

of
E

rr
or

s

(c) Hamming errors

for BMA

0 10 25 40 55 70 85 100 110

Strand Position

0

250

500

750

1000

1250

1500

1750

2000

N
o.

of
E

rr
or

s

(d) Gestalt-aligned

errors for BMA

Figure C.7: Naive + Cond + LD + Skew at N = 5
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Figure C.8: Naive + Cond + LD + Skew + Second-order errors at N = 5
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