
Implementing MicroKanren in Haskell
CS2104 Term Paper

Mayank Keoliya
School of Computing

National University of Singapore
Singapore, Singapore

mayank@u.nus.edu

E-Liang Tan
School of Computing

National University of Singapore
Singapore, Singapore
tan.eliang@u.nus.edu

Noel Kwan
School of Computing

National University of Singapore
Singapore, Singapore
noelkwan@u.nus.edu

Abstract—This paper discusses the miniKanren family of
languages, and in particular, the implementation of a desugared
subset, microKanren, in the Haskell programming language. A
comprehensive explanation of the implementation is undertaken,
and possible explorations for quines, SAT solvers and procedural-
logic programming are further elaborated.

Index Terms—MiniKanren, logic programming, declarative,
Haskell, delayed interleaving.

I. INTRODUCTION

Conceptualized in 2010 by William E. Byrd, and
published in The Reasoned Schemer miniKanren is a family
of programming languages with a common interface -
translating relational idioms in algebra purely to working
code. miniKanren supports a variety of relational idioms and
techniques, making it feasible and useful to write interesting
programs as relations. This interface is designed to be flexible,
and unlike patrons of conventional languages such as Java
or Haskell, users of miniKanren are encouraged to adapt the
miniKanren implementation according to their own needs.

miniKanren’s core, called microKanren or µKanren, is a
desugared subset of miniKanren, with Hemann et al [4]
implementing it in 54 LOC. Concrete implementations of
miniKanren in Scheme, Haskell, Racket and Clojure extend
this microKanren core to include constraint-logic program-
ming, probabilistic-logic programming, nominal programming
and tabling. This paper will:

• cover salient differences between miniKanren and con-
ventional logic programming languages such as Prolog,
Mercury and Curry

• present a full implementation of the microKanren core in
Haskell and discuss its assumptions and limitations

• explore quines, procedural-logic constructs, and a SAT
solver in microKanren

II. DIFFERENCES WITH CONVENTIONAL LOGIC
LANGUAGES

miniKanren uses different design choices compared
to conventional logic programming languages, and it is
instructive to consider these differences before implementing
the language. The novel differences in miniKanren arise
because of the motivation behind it - it was specifically

designed to be used for relational declarative programming.
miniKanren’s emphasis on both pure relations and finite
failure leads to complete (interleaving) search strategies
(unlike Prolog), and full unification (unlike Mercury), and an
absence of extra-logical constructs. [1].

A. Interleaving Search

miniKanren uses an interleaving DFS strategy (DFSi) to
unify disjunctions, which is an enhancement from Prolog’s
naive DFS, and has key implications for program termina-
tion [5]. This leads to interesting divergences in expected
behaviour, when the same query is run in miniKanren ver-
sus Prolog, where conde in miniKanren is analogous to the
disjunction ; operator in Prolog:

(run 1 (q)
(l e t non terminating ()

(conde
((non terminating)))
((== 3 q))))

non terminating rule (Q) :−
(rule (Y) , non terminating rule (Y)) ;
Q = 3.

miniKanren’s use of a BFS-infused DFS or DFSi results in
a goal searching on both branches of the conde interleaved
with each other, and terminates the unification when the latter
clause (==3 q) matches. However, a naive implementation
of DFS in Prolog would not terminate on account of
left-recursion. This is a pitfall of Prolog since it prevents
commutativity of disjunctions, which miniKanren fully
supports.

However, note that miniKanren’s interleaving isn’t entirely
fair. It assigns higher ”weightage,” or frequency in goal
matching, to the branches that appear earlier in the disjunction.
To understand the fuller implications of this, and to learn
about the other strategies that miniKanren can potentially
adopt, let us consider a Prolog-miniKanren analogue of the
repeato rule:

% in Prolog
repeato (X, [X]) .
repeato (X, [X|H]): − repeato (X, H) .

% in miniKanren
(defrel (repeato x out)

(conde
((== ‘(, x) out))
((fresh (res)

(== ‘(,x ◦ , res) out)
(repeato x res)))))

Next, consider the following query in miniKanren:

(run 12 q
(conde

((repeato ’a q))
((repeato ’b q))
((repeato ’c q))
((repeato ’d q))))

A truly fair interleaving (called fair-DFS or DFSf) would
accord equal weightage in depth to all branches of a disjunc-
tion. Note that DFSf will be implemented in Section III by
manipulating lazy streams.

’ ((a) (b) (c) (d)
(a a) (b b) (c c) (d d)
(a a a) (b b b) (c c c) (d d d))

An almost-fair balanced interleaving, termed DFSbi would
be fair only when the number of goals is a power of 2,
otherwise, it allocates some branch goals with twice the
weightage as the others.

’ ((a) (c) (b)
(a a) (c c) (b b) (d)
(a a a) (c c c) (b b b) (e)
(a a a a) (c c c c) (b b b b) (d d)
(a a a a a))

Finally, the purely interleaved vanilla version of DFSi,
which assigns priority weightage to branches that appear
earlier would result in:

’ ((a) (a a) (b) (a a a)
(a a a a) (b b)
(a a a a a) (c)
(a a a a a a) (b b b)
(a a a a a a a) (d))

TABLE I
FAIRNESS STRATEGIES W.R.T DISJUNCTION

Search Strategies Typical disjunction Disjunction with 2n goals
DFSf fair fair
DFSbi unfair fair
DFSi unfair unfair

The fairness of the search strategies are summarized above.
This illustrates that miniKanren provides for not only a single
strategy for terminating disjunctions, but multiple such search

strategies that the programmer can use to weight clauses. This
approach is particularly useful in building fuzzers for testing,
where the programmer can place a more complicated use-case
at the top to ensure that it has a heuristically higher coverage
while testing [5].

B. Absence of Extra-Logical Constructs

In practice, more complex Prolog programs tend to use at
least a few extra-logical features, such as cut, which inhibit the
ability to treat the resulting program as a relation, and interfere
with the process of unification. Consider the cut operator in
Prolog:

max1(X, Y, X) :− X > Y, ! .
max1(X, Y, Y) .

In this case, the cut (!) operator prevents backtracking to
the first rule to ensure the correctness of max1 in finding the
maximum of two numbers. Without, the second rule would
be matched as well, resulting in an incorrect answer. This
is a side-effect in Prolog, because instead operating as a
logical unification, the cut operator interferes with the solver
itself by changing the way results are unified. The use of this
procedural side-effect detracts from the aim of declarative
programming.

Prolog also exposes a retract keyword to enable the user to
explicitly remove rules during the execution of the program.
For example, consider the following session in Prolog:

?− l ikes (mary , pizza) .
true .
?− re t r ac t (l ikes (mary , pizza)) .
true .
?− l ikes (mary , pizza) .
fa lse .

In contrast, miniKanren is explicitly designed to support the
purely declarative (and thus non-procedural, non-side-effect-
prone) style of relational programming. There are no proce-
dural side-effects such as cut, and no global logic database
(and thus the problem of using the retract construct does not
arise). More recent versions of miniKanren have support for
symbolic constraint solving to make it easier to write non-
trivial programs such as quines (as shown in Section 5) as
relations.

III. BASIC SYNTAX OF MICROKANREN

The microKanren API is rather minimal, designed to be
pure and simple, to highlight the essentials of relational
programming [2].

module MicroKanren (
−− | Types

Stream (. .)
, Goal
, State
, Term (. .)
, Var
, VariableCounter
−− | Relational operators
, (===)
, unify
, fresh
, d i s j
, conj
−− | U t i l i t i e s
, delay)

IV. IMPLEMENTATION

A microKanren program has several core parts. In our
microKanren implementation [7], we have a goal, which is
constructed with relational operators and provides relational
constraints for our program. We have State which contains
variable bindings and a means to construct new variable
bindings. Lastly we have the results of program, which is
modelled as a stream of states.

The goal is applied to some state, returning all states
satisfying the declared constraints. The possible states are
represented as a stream of states.

In the following sections, we provide a detailed explana-
tion on how these are implemented. Before we proceed, we
demonstrate a simple program to complement our explanation
above.

A. Sample program - generating natural numbers

In the following program, we implement a goal which gives
us all natural numbers.

import MicroKanren
import MiniKanren (runEval)

n i l : : Term
ni l = Atom mempty

suc : : Term → Term
suc = Pair (Atom mempty)

−− | Constraint a variable to be a natural number
nat : : Term → Goal
nat x = dis j

(x === ni l)
(fresh (λd →

conj (x === suc d)
(nat d)))

main : : IO ()

main = putStrLn
$ prettyPrintResults
$ takeS 4
$ runEval nat i n i t i a l S t a t e

We do so in a declarative way, by binding a variable to
constraints. We assert that the variable is either:

• nil (Zero)
• the successor of some natural number.
The declaration extracted and shown below.

−− | Constrain a variable to be a natural number
nat : : Term → Goal
nat x = dis j

(x === ni l)
(fresh (λd →

conj (x === suc d)
(nat d)))

This results in the following output:

−− Zero
Var 0 := Atom ””

−− One
Var 0 := Pair (Atom ””) (Atom ””)

−− Two
Var 0 := Pair (Atom ””) (Pair (Atom ””) (Atom ””))

−− Three
Var 0 := Pair (Atom ””)

(Pair (Atom ””)
(Pair (Atom ””)

(Atom ””)))

In the above output, Var 0 is the reified form of variable x
in the declaration. As shown, x is natural number and can be
0, 1, 2, 3 and so on. Since we selected the first four elements
of the result stream, we only obtained the first four elements
in the output.

B. Initial State

type State = (Subst , VariableCounter)

State is represented as the product of an association list
and a variable counter as shown above. The association list
maintains all variable bindings. We then perform unification
to ensure constraints as well as bindings are satisfied.

The variable counter provides us the means to extend our
state with unique variables. Further explanation is given in
the section on the fresh operator.

Hence, we usually start from an empty state, and add new
variables and their constraints through the fresh operator.

We shall declare empty state as follows, to be used through
out the rest of this paper:

emptyState : : State
emptyState = ([] , 0)

C. Results

We represent our results as a Stream of states. This is
because a set of constraints can have multiple satisfactory
states.

We shall illustrate this with an example. We declare a
variable x, with the constraint that x is either 1 or 2. In
which case, we have two possible states which satisfy the
constraint, one where variable x is bound to 1 and another
where variable x is bound to 2.

D. goals

type Goal = State → Stream State

As you may infer from the type signature, goals allow
us to extend states and apply constraints the variable bindings.

The following example extends a state by creating a new
variable, and binding it to the literal ”1”.

newState : : State → Stream State
newState (s , c) = return (s ’ , c + 1)

where s ’ = (c , Atom ”1”) : s

In the above example, we use the variable counter to
instantiate our variable and increment it after, ensuring the
next variable is uniquely tagged.

A goal either succeeds, when it returns a non-empty stream
of states, or fails, when it returns an empty stream.

E. operators

MicroKanren has 4 operators which we use as building
blocks: fresh, disj, conj and === . These are used to construct
relational constraints in our program.

F. fresh

The fresh operator takes in a function which binds a single
variable to a goal, and returns a goal, as you can see below.

fresh : : (Term → Goal) → Goal
fresh f = λ(s , c) → f (Var c) (s , c + 1)

This is used to create new variable bindings with constraints.

varIsOne : : Goal
varIsOne = fresh $

λx → x === Atom ”1”

In the above example, we extend the state with a new
variable, x, with the constraint that it has to be one.

Applying it to an empty state gives us the following results:

varIsOne emptyState

−−−− Results in

Var 0 := Atom ”1”

G. disj

The disj operator takes in two goals and performs a logical
disjunction / union on them.

dis j : : Goal → Goal → Goal
d is j g1 g2 = λs → g1 s ‘mplus‘ g2 s

Sample goal with disjunction

oneOrTwo : : Goal
oneOrTwo = λfresh $ x →

dis j (x === 1)
(x === 2)

−−−−−− Results

Var 0 := 1

Var 0 := 2

As earlier mentioned in the introduction, we interleave our
results to provide a complete search. We declare a MonadPlus
instance which implements the mplus method above. mplus
in turn performs the interleaving and handles switching via
delays as well.

MonadPlus and Monad instances

instance Monad Stream where
return = pure
Nil >>= = Nil
x ‘Cons‘ xs >>= f = f x ‘mplus‘ (xs >>= f)
Delayed s >>= f = Delayed (s >>= f)

−− | We can reuse Alternative instances ,
−− due to i t being a class constraint for MonadPlus
instance MonadPlus Stream where

mzero = empty
mplus = (<|>)

−− | Interleaving rather than appending 2 streams
instance Alternative Stream where

empty = Nil
Nil <|> xs = xs
(x ‘Cons‘ xs) <|> ys = x ‘Cons‘ (ys <|> xs)
Delayed xs <|> ys = Delayed (ys <|> xs)

The first question usually asked is why we need a Stream
type to represent all possibilities of results, when we could
use the list datatype in Haskell ([]).

In strict languages, a new datatype has to be constructed as
both arguments of the cons operator would be fully evaluated.

In Haskell however, our cons operator, (:) is lazy in both
the head and tail as well. This means that even if a goal
returns an infinite list of possible states, we can just force
evaluation on what we need and ignore the rest.

Hence it seems strange to create a new Stream type.
Laziness of cons

∗MicroKanren> resu l t s = [”a” , ”b”]
∗MicroKanren> : spr int resu l t s

resu l t s =
∗MicroKanren> head x
”a”
∗MicroKanren> : spr int x
x = ”a” : −− Tail i s ignored

∗MicroKanren> resu l t s = [”a” , ”b”]
∗MicroKanren> : spr int resu l t s
resu l t s =
∗MicroKanren> t a i l x
[”b”]
∗MicroKanren> : spr int x
x = : [”b”] −− head is ignored

To understand why, we look at the following goal.
goalR : : Goal
goalR = goalR ‘ disj ‘ goalT

goalT : : Goal
goalT = return

Inutitively, this should work fine for us, as ‘disj‘ should
behave as follows:

• If one of its goals never terminates, and the other one
does, it should return the results from the terminal goal.

• ‘disj‘ should not care about the order of its arguments,
relations are commutative.

When we evaluate the above goal however,
goalR s = (goalR ‘ disj ‘ goalT) s

= goalR s ‘mplus‘ goalT s
−− mplus behavior i s the same as interleave
−− We evaluate the f i r s t argument ,
−− in order to deconstruct i t
= (goalR ‘ disj ‘ goalT) s ‘mplus‘ goalT s
= (goalR s ‘mplus‘ goalT s) ‘mplus‘ goalT s
= ((goalR s ‘mplus‘ goalT s)

‘mplus‘ goalT s)
‘mplus‘ goalT s

=◦ . .

We realize that we are never able to extract the head of
‘goalR s‘ due to its recursive definition.

However, if we swapped the arguments around:
goalR s = (goalT ‘ disj ‘ goalR) s

= goalT s ‘mplus‘ goalR s

We would be able to ignore the recursive part, as it is pushed
to the back, and mplus deconstructs its first argument.

Hence we need a way to encode this into the results. We
do so with Streams, by extending the definition of the list.

H. streams

data Stream a = Nil
| Cons a (Stream a)
| Delayed (Stream a) deriving (Eq, Show)

In the definition of our Stream, apart from normal list
primitives like Nil and Cons, we also have a Delayed
constructor.

If we go back to our declaration of MonadPlus, where we
defined mplus:

−− | We can reuse Alternative instances ,
−− due to i t being a class constraint for MonadPlus
instance MonadPlus Stream where

mzero = empty
mplus = (<|>)

−− | Interleaving rather than appending 2 streams
instance Alternative Stream where

empty = Nil
Nil <|> xs = xs
(x ‘Cons‘ xs) <|> ys = x ‘Cons‘ (ys <|> xs)
Delayed xs <|> ys = Delayed (ys <|> xs)

We can observe that we pattern match on the Delayed
constructor, swapping around streams and prioritizing the
other whenever a Stream is Delayed.

This manual annotation is still rather error prone however,
as we can easily forget to annotate, or incorrectly annotate
our goals.

To solve this, we need to encode the Delay constructor
inside recursive definitions.

We can wrap the resulting Stream of all our operators with
Delay to do so.

This results in the following expansion
goalR s = Delayed (goalR s ‘mplus‘ goalT s)

= Delayed (
(Delayed (goalR s

‘mplus‘ goalT s))
‘mplus‘ goalT s)

= Delayed
(Delayed (goalT s

‘mplus‘ goalR s
‘mplus‘ goalT s))

Since goalT s is not recursively defined, so we will always
be able to deconstruct it.

More generally, as long as one of the goals are not recur-
sively defined, we will always be able to evaluate ‘disj‘ to give
us results.

I. conj
The conj operator takes in 2 goals and performs a logical

conjunction on them.
conj : : Goal → Goal → Goal
conj g1 g2 = λs → g1 s ‘bind ‘ g2

Sample goal with conjunction
x And y eq one : : Goal
x And y eq one = fresh $ λx →

fresh $ λy →
conj (x === Atom ”1”)

(y === Atom ”1”)

−−−−− Results

Var 0 := Atom ”1”
Var 1 := Atom ”1”

J. equality (===)

The === operator takes in 2 terms and performs a equality
check on them.

(===) : : Term → Term → Goal
(===) t1 t2 = λ(s , vc) → case unify t1 t2 s of

Nothing → Nil
Just s ’ → return (s ’ , vc)

V. USAGE

Begin by defining a goal that we want to satisfy. For
example, this is how we can define the following boolean
expression:

(X = “1” ∨X = “2”) ∧ (Y = “a” ∨ Y = “b”)

goal : : Goal
goal = fresh $

λx → fresh $
λy → ((x === Atom ”1”) ‘ disj ‘ (x === Atom ”2”))

‘conj ‘ ((y === Atom ”a”) ‘ disj ‘ (y ===
Atom ”b”))

Goals are executed against state. We can use the initialGoal
for this, defined as a state with an empty set of bindings and a
variable counter set to 0. initialGoal is already defined within
our microKanren implementation.

i n i t i a l S t a t e : : State
i n i t i a l S t a t e = ([] , 0)

resu l t s : : Stream State
resu l t s = goal i n i t i a l S t a t e

prettyPrintResults can be used to reduce the stream of goals
into a string for display. All associations with satisfy the state
constraints in the goal will be output.

displayResults : : IO ()
displayResults = putStrLn $ prettyPrintResults resu l t s

−− Output
Var 1 := Atom ”a”
Var 0 := Atom ”1”

Var 1 := Atom ”a”
Var 0 := Atom ”2”

Var 1 := Atom ”b”
Var 0 := Atom ”1”

Var 1 := Atom ”b”
Var 0 := Atom ”2”

VI. EXTENSIONS

A. Quines

A quine is a program that evaluates to itself [3], more
formally, “A quine is an expression q in L such that uqq.”
A trivial such example would be a literal in Haskell, or
Scheme - numbers, booleans, or characters. Typically, quines

in procedural languages have tended to be complicated, such
as those submitted by Broukhis et al for the International Ob-
fuscated C Code Contest [6]. However, miniKanren, due to its
declarative nature, offers a way to translate the computational
meta notation (CSM) directly to code via the following:

(run 1 (e) (evalo e e))

Here, evalo binds the value of the first argument to the
second, i.e the value of e to itself [2]. Infinity such quines can
be generated using miniKanren’s run∗ command. Interestingly,
we can also generate the more notationally-complicated twines
(twin quines), which are distinct programs p and q that
evaluate to each other, and thrines, which are distinct programs
p, q, and r such that p evaluates to q, q evaluates to r , and
r evaluates to p. For example, twin quines can be generated
with the following:

(run 1 (p q)
(fresh (p q)

(=/= p q)
(evalo q p)
(evalo p q)))

B. Procedure in Logic Programming

Another benefit of using miniKanren is the ability to write
forward and backward queries for procedural functions, with-
out having to define the logical rules for the function. For
example, in when written in Scheme, miniKanren allows the
user to query the append function backwards (i.e with its
”output”) as well:

> (run 1 (q)
(evalo ‘(le t rec ((append

(λ (l s)
(i f (null ? l) s
(cons (car l) (append (cdr l) s))))))

(append ,q ‘(d e))
‘(a b c d e))

% resu l t s in ‘(a b c)

Here, we could define a procedural function using the
comfortable idiom of the host language (Scheme), pass in the
”output” of the function, and proceed in relationally backward
direction to bind the free variable q to the desired input. This
is paradigmatically different from the Prolog approach, where
to use the append function relationally, it would have to be
defined relationally as well:

append ([] , L, L) .
append ([H|T] , L, [H|R]) :−

append(T, L, R) .

C. SAT Solver

SAT solvers check if a boolean expression is solvable.
Although the boolean satisfiability problem is NP-hard in the
most general case, it can be solved efficiently if we only
consider boolean expressions in the conjunctive normal form,
(colloqiually, ”ands of ors”) or the disjunctive normal form

(”ors of ands”). We will demonstrate how a 2-SAT solver
can be implemented in microKanren, which solves the 2-SAT
problem.

First, we begin by defining utility constants and functions,
so that the final code will be more readable.

true : : Term
true = Atom ”True”

false : : Term
false = Atom ”False”

and : : Term → Term → Term
and (Atom ”True”) (Atom ”True”) = true
and = fa lse

or : : Term → Term → Term
or (Atom ”False ”) (Atom ”False ”) = fa lse
or = true

not : : Term → Term
not (Atom ”true ”) = Atom ”False”
not = Atom ”true”

Next, we define our SAT solver as a goal. In the main body,
we define twoSat to some arbitrary 2-SAT boolean expression
and bindings to all possible pairs of x and y.

satSolver : : Goal
satSolver =

fresh $ λq →
fresh $ λx →

fresh $ λy →
l e t twoSat = (x ‘or ‘ y) ‘and‘ (x ‘or ‘ y)

bindings = conj
((x === true) ‘ disj ‘ (x === fa lse))
((y === true) ‘ disj ‘ (y === fa lse))

−− | Our expression we want to
−− solve has to evaluate to true

in (twoSat === q) ‘conj ‘ (q === true)
‘conj ‘

bindings
−− | Bind True , False to x and y

Finally, we can evaluate the goal against the initial state and
print the results.

printRes : : Stream State → String
printRes Nil = ”False”
printRes = ”True”

main : : IO ()
main = putStrLn $ printRes $ satSolver i n i t i a l S t a t e

−− Output
True

VII. CONCLUSION

In sum, this paper has shown how miniKanren’s pure and
compact design allows deeper exploration into sophisticated
constructs - whereas microKanren’s implementation in Haskell
combines a lazy approach with logic programming, quines
and SAT solvers offer a purely declarative way to express
algebraic formulations. A further extension to the current

Haskell implementation that we aim to include is relational
type inference (which can aid in type-checking when used in
the backward direction).

REFERENCES

[1] William E Byrd. Relational programming in minikanren: techniques,
applications, and implementations. 2010.

[2] William E. Byrd, Eric Holk, and Daniel P. Friedman. minikanren, Live
and Untagged: Quine Generation via Relational Interpreters. In Olivier
Danvy, editor, Proceedings of the 2012 Annual Workshop on Scheme
and Functional Programming, Scheme 2012, Copenhagen, Denmark,
September 9-15, 2012, pages 8–29. ACM, 2012.

[3] Douglas. Godel, Escher, Bach : An Eternal Golden Braid. 1979.
[4] Jason Hemann, Daniel P. Friedman, William E. Byrd, and Matthew

Might. A simple complete search for logic programming. In Ricardo
Rocha, Tran Cao Son, Christopher Mears, and Neda Saeedloei, editors,
Technical Communications of the 33rd International Conference on Logic
Programming, ICLP 2017, August 28 to September 1, 2017, Melbourne,
Australia, volume 58 of OASICS, pages 14:1–14:8. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

[5] Weixi Ma Kuang-Chen Lu and Danniel P. Friedman. Towards a minikan-
ren with Fair Search Strategies. 2019.

[6] Simon Cooper Leo Broukhis and Landon Curt Noll. International
Obfuscated C Code Contest, http://www.ioccc.org/.

[7] Self. microkanren Implementation in Haskell. https://github.com/
kwannoel/uKanren.

VIII. APPENDIX

module MicroKanren (Stream (. .)
, Goal
, State
, Subst
, Term (. .)
, Var
, VariableCounter
, walk
, extS
, (===)
, unify
, fresh
, d i s j
, conj
, delay
−− | U t i l i t i e s
, fa i lu re
, i n i t i a l S t a t e
, takeS
, prettyPrintResult
, pret tyPrintResults
) where

import Control . Applicative (Alternative (. .))
import Control .Monad (MonadPlus (. .))

type Goal = State → Stream State
type State = (Subst , VariableCounter)
type Subst = [(Var , Term)]
type Var = Integer
type VariableCounter = Integer

data Term = Atom String
| Var Var
| Pair Term Term
deriving (Eq, Show)

walk : : Term → Subst → Term
walk (Var v) s = case lookup v s of Nothing → Var v

Just a → walk a s
walk (Pair t1 t2) s = Pair (walk t1 s) (walk t2 s)
walk t = t

extS : : Var → Term → Subst → Maybe Subst
extS v t s | occurs v t s = Nothing

| otherwise = Just $ (v , t) : s

(===) : : Term → Term → Goal
(===) t1 t2 = λ(s , vc) → case unify t1 t2 s of

Nothing → Nil
Just s ’ → return (s ’ , vc)

unify : : Term → Term → Subst → Maybe Subst
unify t1 t2 s = go (walk t1 s) (walk t2 s)

where
go (Atom a1) (Atom a2) | a1 == a2 = Just s
go (Var v1) (Var v2) | v1 == v2 = Just s
go (Var v1) t2 ’ = extS v1 t2 ’ s
go t1 ’ (Var v2) = extS v2 t1 ’ s
go (Pair u1 u2) (Pair v1 v2) = unify u1 v1 s >>= unify u2 v2
go = Nothing −− Short c i r cu i t i f we f a i l to unify

occurs : : Var → Term → Subst → Bool
occurs v t s = case walk t s of Var tv → tv == v

Pair s1 s2 → occurs v s1 s
| | occurs v s2 s

→ False

fresh : : (Term → Goal) → Goal
fresh f = λ(s , c) → f (Var c) (s , c + 1)

d is j : : Goal → Goal → Goal
d is j g1 g2 = λs → g1 s ‘mplus‘ g2 s

conj : : Goal → Goal → Goal
conj g1 g2 = λs → g1 s >>= g2

−−−−−−−−− Auxiliary functions and types

data Stream a = Nil
| Cons a (Stream a)
| Delayed (Stream a) deriving (Eq, Show)

instance Monad Stream where
return = pure
Nil >>= = Nil
x ‘Cons‘ xs >>= f = f x ‘mplus‘ (xs >>= f)
Delayed s >>= f = Delayed (s >>= f)

−− We can reuse Alternative instances , due to i t being a class constraint for MonadPlus
instance MonadPlus Stream where

mzero = empty
mplus = (<|>)

−− Interleaving rather than appending 2 streams
instance Alternative Stream where

empty = Nil
Nil <|> xs = xs
(x ‘Cons‘ xs) <|> ys = x ‘Cons‘ (ys <|> xs)
Delayed xs <|> ys = Delayed (ys <|> xs)

−− Unused , jus t to sa t i s fy class constraints for Applicative
instance Functor Stream where

fmap Nil = Nil
fmap f (a ‘Cons‘ s) = f a ‘Cons‘ fmap f s
fmap f (Delayed s) = Delayed (fmap f s)

−− Unused , jus t to sa t i s fy class constraints for Monad
instance Applicative Stream where

pure a = a ‘Cons‘ empty
Nil <∗> = Nil
<∗> Nil = Nil

(f ‘Cons‘ fs) <∗> as = fmap f as <|> (fs <∗> as)
Delayed fs <∗> as = Delayed (fs <∗> as)

−− | A goal which always f a i l s
fa i lu re : : Goal
fa i lu re = Nil

−− | Annotate recursive goals with th is
delay : : Goal → Goal
delay = fmap Delayed

−−−−−−−−− Pretty printing

prettyPrintResults : : Stream State → String
prettyPrintResults Nil = ””

prettyPrintResults (Delayed s) = prettyPrintResults s
prettyPrintResults (Cons s ss) = prettyPrintResult (f s t s) <> ”λn” <> prettyPrintResults ss

prettyPrintResult : : Subst → String
prettyPrintResult = unlines ◦ fmap showBinding

where showBinding (v , t) = unwords [”Var” , show v , ”:=” , show t]

−−−−−−−−− Tests

i n i t i a l S t a t e : : State
i n i t i a l S t a t e = ([] , 0)

t e s t s : : [Goal]
t e s t s = [atomTest

, conjTest1
, conjTest2
, disjTest1
, disjTest2
, fa i l1
]

where
atomTest = fresh (λx → x === Atom ”5”)
conjTest1 = conj (fresh (=== Atom ”7”))

(fresh (=== Atom ”8”))
conjTest2 = conj (fresh (=== Atom ”7”))

(fresh (=== Atom ”8”))
disjTest1 = dis j (fresh (=== Atom ”7”))

(fresh (=== Atom ”8”))
disjTest2 = dis j (fresh (=== Atom ”8”))

(fresh (=== Atom ”8”))
fa i l1 = fresh (λa → (a === Atom ”8”) ‘conj ‘ (a === Atom ”9”))

recursiveTests : : [Goal]
recursiveTests = [takeS 5 <$> recurseDelayedFstTest −− This t e s t terminates since recursive parts are delayed

, takeS 5 <$> recurseDelayedSndTest −− This t e s t terminates since recursive parts are delayed
, takeS 5 <$> recurseDelayedBothFstTest
, takeS 5 <$> recurseDelayedBothSndTest
, takeS 5 <$> recurseDelayedEverythingFst
, takeS 5 <$> recurseDelayedEverythingSnd
−− , takeS 2 <$> recurseFstTest −− This t e s t never terminates
−− , takeS 2 <$> recurseSndTest −− This t e s t never terminates
]

where
−− These te s t s f a i l because we did not make recursion expl ic i t
recurseFstTest = dis j recurseFstTest (fresh (=== Atom ”7”))
recurseSndTest = dis j (fresh (=== Atom ”7”)) recurseSndTest

recurseDelayedFstTest = dis j (delay recurseDelayedFstTest) (fresh (=== Atom ”7”))
recurseDelayedSndTest = dis j (fresh (=== Atom ”7”)) (delay recurseDelayedSndTest)

−− Delay both
recurseDelayedBothFstTest = dis j (delay recurseDelayedBothFstTest) (delay $ fresh (=== Atom ”7”))
recurseDelayedBothSndTest = dis j (delay $ fresh (=== Atom ”7”)) (delay recurseDelayedBothSndTest)

−− Delay everything
recurseDelayedEverythingFst = delay $ dis j recurseDelayedEverythingFst (fresh (=== Atom ”7”))
recurseDelayedEverythingSnd = delay $ dis j (fresh (=== Atom ”7”)) recurseDelayedEverythingSnd

takeS : : Int → Stream a → Stream a
takeS 0 = Nil
takeS n Nil = Nil
takeS n (Delayed s) = Delayed (takeS n s)
takeS n (a ‘Cons‘ as) = a ‘Cons‘ takeS (n − 1) as

runTests : : State → [Goal] → IO ()
runTests [] = return ()
runTests s (g : gs) = do

print $ g s
runTests s gs

main : : IO ()
main = do

runTests i n i t i a l S t a t e t e s t s
runTests i n i t i a l S t a t e recursiveTests

