
107

Mostly Automated Proof Repair for Verified Libraries

KIRAN GOPINATHAN, National University of Singapore, Singapore

MAYANK KEOLIYA, National University of Singapore, Singapore

ILYA SERGEY, National University of Singapore, Singapore

The cost of maintaining formally specified and verified software is widely considered prohibitively high due

to the need to constantly keep code and the proofs of its correctness in sync—the problem known as proof

repair. One of the main challenges in automated proof repair for evolving code is to infer invariants for a new

version of a once verified program that are strong enough to establish its full functional correctness.

In this work, we present the first proof repair methodology for higher-order imperative functions, whose

initial versions were verified in the Coq proof assistant and whose specifications remained unchanged. Our

proof repair procedure is based on the combination of dynamic program alignment, enumerative invariant

synthesis, and a novel technique for efficiently pruning the space of invariant candidates, dubbed proof-driven

testing, enabled by the constructive nature of Coq’s proof certificates.

We have implemented our approach in a mostly-automated proof repair tool called Sisyphus. Given an

OCaml function verified in Coq and its unverified new version, Sisyphus produces a Coq proof for the new

version, discharging most of the new proof goals automatically and suggesting high-confidence obligations

for the programmer to prove for the cases when automation fails. We have evaluated Sisyphus on 10 OCaml

programs taken from popular libraries, that manipulate arrays and mutable data structures, considering their

verified original and unverified evolved versions. Sisyphus has managed to repair proofs for all those functions,

suggesting correct invariants and generating a small number of easy-to-prove residual obligations.

CCS Concepts: • Software and its engineering→ Software verification; Software evolution.

Additional Key Words and Phrases: mechanised proofs, separation logic, proof repair, invariant inference

ACM Reference Format:

Kiran Gopinathan, Mayank Keoliya, and Ilya Sergey. 2023. Mostly Automated Proof Repair for Verified

Libraries. Proc. ACM Program. Lang. 7, PLDI, Article 107 (June 2023), 25 pages. https://doi.org/10.1145/3591221

1 INTRODUCTION

The last two decades of research in software verification have demonstrated that large codebases
can be formally verified with regard to non-trivial properties by means of constructing machine-
checkable correctness proofs. The examples of such verified software systems range from OS
kernels (Gu et al. 2016; Klein et al. 2009) and compilers (Kumar et al. 2014; Leroy 2006) to distributed
protocols (Hawblitzel et al. 2015; Rahli et al. 2018) and cryptographic libraries (Erbsen et al. 2019).

By and large, the recent practical success of formal verification is enabled by (a) the advances in
proof engineering and automation techniques (Ringer et al. 2019a), and (b) the vast body of research
dedicated to the design and implementation of mechanised domain-specific Floyd-Hoare-style
program logics (Floyd 1967; Hoare 1969) that allow for syntax-driven deductive symbolic reasoning
about programs as well as for modularity of their specifications and proof reuse.

Authors’ addresses: Kiran Gopinathan, National University of Singapore, Singapore, kirang@comp.nus.edu.sg; Mayank

Keoliya, National University of Singapore, Singapore, mayank@u.nus.edu; Ilya Sergey, National University of Singapore,

Singapore, ilya@nus.edu.sg.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/6-ART107

https://doi.org/10.1145/3591221

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-1877-9871
HTTPS://ORCID.ORG/0009-0000-3820-2036
HTTPS://ORCID.ORG/0000-0003-4250-5392
https://doi.org/10.1145/3591221
https://orcid.org/0000-0002-1877-9871
https://orcid.org/0009-0000-3820-2036
https://orcid.org/0009-0000-3820-2036
https://orcid.org/0000-0003-4250-5392
https://doi.org/10.1145/3591221


107:2 Kiran Gopinathan, Mayank Keoliya, and Ilya Sergey

Problem Statement. While the combined power of deductive machine-assisted reasoning and
proof automation can get one as far as to prove a realistic system correct and bug-free, it does not
provide an immediate solution to the well known problem of maintaining the proof in response to
the evolution of verified code and its specification (DeMillo et al. 1977). Such changes may involve:

(1) data type definitions and usages in the verified program and its proof,
(2) formal specifications and invariants ascribed to the system’s components, and
(3) implementation logic of the system’s components.

Any of the changes (1)–(3) will most likely require one to modify correctness proofs in order to
keep them valid—the process known as proof repair (Ringer 2021). Recent work by Ringer et al.
(2021, 2018) has made advances in automating proof repair for the first class of changes—in data
types—by exploiting possible equivalences between old and new type definitions. The second class
of changes—in specifications—has been acknowledged in several recent efforts (Klein et al. 2009;
Wilcox et al. 2015), and some of them presentedmethodologies to make proofs more manageable, but
only for specific case studies (Woos et al. 2016). To the best of our knowledge, the third, probably the
most common, class—arbitrary changes in the implementation logic—has been largely unexplored
from the perspective of proof repair; particularly so in the context of imperative programs.

In this work, we focus on the problem of repairing proofs about imperative programs in response
to local changes in their code, and propose a practical solution to it.

Proof Repair for Libraries. A particular class of programs, whose specifications and data types
change infrequently, are user-facing libraries. By their nature, to enable forward-compatibility,
library functions are expected to preserve their API and the contracts describing their interaction
with the user code. Because of this, verified software libraries (Appel and Naumann 2020; Char-
guéraud et al. 2017; Polikarpova et al. 2018) are a sweet spot for proof repair: it is not uncommon
for library functions to undergo changes in their bodies for the sake of improved performance or
readability, while modifications in their type definitions and specifications are relatively rare.
Given this setup (the spec is fixed) and the recent advances in automated deductive verifica-

tion (Jacobs et al. 2011; Leino 2010; Müller et al. 2016; Sammler et al. 2021), the reader might wonder
if it might be simpler to just prove the new version of a library function correct from scratch rather
than try to adapt its old proof. The reason why this is not so straightforward is because of the main
bane of fully-automated verification—invariants for loops and higher-order functions.

As an example, consider a fragment of an imperative program in a higher-order language, such
as OCaml, that manipulates elements of an array arr via an effectful function f in a for-loop over
the set of the array indices, and an updated version of the same program that replaces the for-loop
by a call to a higher-order function Array.iter that iterates over array elements implicitly:
(* old version *)

for i = 0 to Array.length(arr) - 1 do f arr.(i) done

(* new version *)

Array.iter f arr

Proving that the new version satisfies the same specification as the old one would require us to
provide a new invariant for the lemma describing the effect of a call to Array.iter, and finding
such an invariant is a daunting task for general-purpose automated program verifiers. On the other
hand, the programmer who performed this code refactoring with a knowledge about the relation
between array elements, their indices, and the workings of Array.iter, should be able to derive a
new invariant from an old one without too much trouble. Therefore, our hypothesis, supported by
this example, is that an old proof might be helpful for deriving a new one in the situation when
automated verification of a program from scratch would most definitely fail.

The goal of this work is to turn this intuition into a practical proof repair algorithm for libraries.

Approach and Key Challenges. Our goal is to implement the hinted above approach to proof
repair by utilising the “knowledge about old invariants.” We implemented our methodology as a

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



Mostly Automated Proof Repair for Verified Libraries 107:3

proof repair tool for OCaml programs verified in the CFML framework (Charguéraud 2011, 2020)—a
version of a sequential higher-order Separation Logic (SL) (O’Hearn et al. 2001; Reynolds 2002)
embedded into the higher-order logic of the Coq proof assistant.

The starting point for each proof repair task is an original OCaml program ? , its SL specification
q ≜ {%} {&} (i.e., its pre-/postconditions), the CFML proof P of ?’s correctness w.r.t. q and an
unverified new program version ?′ that is believed to satisfy q , for which we would like to obtain
the proof P′. We identify the following two challenges that need to be addressed to construct P′:

C1 The new program ?′ may be implemented using different computations; the relations between
their results and the computations of the old program are not specified and hence need to be
inferred in order to construct plausible invariant candidates.

C2 Given the arbitrary nature of assertions about the shape of data, even assuming that P′ does
not require new predicates, the search space of invariant candidates is enormous. Given the
non-negligeable time required to validate them using commodity solvers, such as Z3 (de Moura
and Bjørner 2008), and the inability of those solvers to handle many application-specific theories,
it is not clear what the best strategy is to efficiently prune this search space.

We address both challenges using a somewhat unorthodox approach for a problem targeting
deductive verification in a foundational proof assistant (i.e., Coq)—via dynamic analysis techniques.
To address C1, we use a trace-based program alignment technique. We run ? and ?′ on the

same randomly generated input, collecting traces of their execution and recording the values of
all program variables at each statement. As both programs still satisfy the same specification, ?′

should still compute the same or similar concrete values when run on the same input. Thus, by
comparing the concrete values that flow through the variables of each program, we heuristically
infer the mapping between the intermediate computations of both programs by relating statements
in ? and ?′ that have the most variables with similar concrete values.

The solution to C2 is enabled by exploiting the nature of Coq proofs using a new technique that
we call proof-driven testing. When reasoning about higher-order functions and program constructs
(e.g., loops) in program logics, proofs typically make use of second-order lemmas that encode the
semantics of those higher-order constructs and take invariants to constrain the behaviour of their
first-order arguments (e.g., of a loop body). In turn, when mechanising such proofs within Coq,
proofs of these second-order theorems become second-order programs, that, when instantiated
with sufficient arguments and invariants, compute a proof term that witnesses the execution of the
higher-order construct on these inputs. Furthermore, we observe that by applying these second-
order theorems for loops to particular concrete inputs, we necessarily obtain a concrete trace of
the program, annotated with additional meta-data capturing how the invariants are instantiated
over the course of the execution with different concrete values and states. Proof-driven testing
turns these observations into an efficient strategy for validating candidate invariants for a loop. It
applies the loop’s specification to concrete inputs and analyses the resulting proof term to extract
an executable function that tests whether a given invariant holds over a particular execution trace.
In conjunction, our solutions to C1 and C2 make it possible to reconstruct a proof for the new

program, inferring invariants for its loops and higher-order function applications. Our approach
is mostly-automated: the verification conditions for the invariants are discharged using domain-
specific automation. A relatively small amount of manual proof effort is required when automation
fails to dispatch the residual proof obligations. Crucially, no manual work is required for stating
invariants for the new program version.

Contributions. In summary, we make the following contributions.

• A methodology for mostly-automated proof repair for higher-order imperative programs written
in OCaml and verified in Separation Logic embedded into Coq (Sec. 2).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



107:4 Kiran Gopinathan, Mayank Keoliya, and Ilya Sergey

• An algorithm for synthesising basic proof structure and invariant candidates for a refactored
program using dynamic analysis and program alignment (Sec. 3).
• Proof-driven testing—a novel approach to test properties of data and programs for validity by
extracting tests from proofs of higher-order facts that rely on those properties. We provide the
intuition and formal description of the proof-driven testing methodology and show how to use it
for efficiently pruning the search-space of candidate invariants required for proof repair (Sec. 4).
• Sisyphus—a proof repair tool for OCaml programs verified in Coq. We evaluated Sisyphus on a
suite of 14 evolved programs, of which 10 were drawn from popular OCaml libraries, and found
that all inferred invariants for new versions were valid and required relatively small amounts of
manual effort to prove in comparison to the original programs (Sec. 5).

2 THE LABOURS OF SISYPHUS

We present an overview of Sisyphus by means of an illustrative example: repairing the proof of
correctness between two versions of a real-world program from a widely-used OCaml library. The
program in question is the function Seq.to_array, which converts a lazy sequence to an array,
taken from the popular containers library between versions 3.61 and 3.7,2 wherein it was updated
to improve its performance. We manually verified the initial version of to_array in Coq via CFML;
Sisyphus was then used to automatically generate a repaired proof for the updated program.

2.1 An Initial Verified Seq.to_array

1 let to_array s =

2 match s () with

3 | Nil -> [| |]

4 | Cons (hd, _) ->

5 let sz = length s in

6 let a = Array.make sz hd in

7 iteri

8 (fun i vl ->

9 a.(i) <- vl) s;

10 a

Fig. 1. Original to_array

Fig. 1 presents the original implementation of to_array,
which converts a sequence into an array, where a sequence
of type 'a t is encoded as a thunked list:

type 'a t = unit -> 'a node

and 'a node = Nil

| Cons of 'a * (unit -> 'a node)

A sequence is represented by a function that, when evaluated,
either returns Nil for the empty sequence, or returns a Cons

cell with a head element and a tail that can be evaluated on-
demand to retrieve the rest of the sequence. This encoding
of sequences can even be used to represent lists of infinite
length or encode arbitrary side-effects within the thunks of a sequence. However, for the purposes
of this work, we will be restricting our focus to the case in which these sequences are finite and
side-effect free, since to_array has undefined behaviour for other cases.

The implementation of to_array is as follows. If the sequence contains at least one element, the
function calculates its length and allocates a fresh result array with the capacity to store all of the
elements of the sequence. The function then calls the higher-order iterator function iteri, whose
argument function successively assigns elements of the sequence to the corresponding slots of the
allocated array, which is eventually returned as the result. Having stepped through the function, it
seems reasonable to believe that to_array is correct, and containers itself comes with an extensive
test suite. But if we truly wish to ensure the correctness of this implementation of to_array, we
should really prove its correctness.

2.1.1 Specification of Seq.to_array. In order to faithfully specify the effect of to_array on the
heap, we turn to a formalism tailored for that purpose—Separation Logic (SL) (O’Hearn et al. 2001;
Reynolds 2002)—a Hoare-style program logic for reasoning about heap-manipulating programs.

1to_array in containers 3.6: https://github.com/c-cube/ocaml-containers/blob/v3.6/src/core/CCSeq.ml#L397
2to_array in containers 3.7: https://github.com/c-cube/ocaml-containers/blob/v3.7/src/core/CCSeq.ml#L415

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.

https://github.com/c-cube/ocaml-containers/blob/v3.6/src/core/CCSeq.ml#L397
https://github.com/c-cube/ocaml-containers/blob/v3.7/src/core/CCSeq.ml#L415


Mostly Automated Proof Repair for Verified Libraries 107:5

Assertions in Separation Logic capture constraints over disjoint partitions of the program’s heap,
called heaplets. These constraints can be combined using the separating conjunction ∗: the statement
� ∗� ′ asserts that the heap can be partitioned into two disjoint sub-heaps such that � holds on the
first, and � ′ on the second. We use the standard notation 0 ↦→ 4 to describe a heaplet represented
by a single memory location with address 0 and contents 4 (pronounced “0 points to 4”); emp is an
SL assertion satisfied by an empty heap. Using these assertions, we can thus capture the semantics
of an imperative program using a Hoare triple {%} 2 {&}, which asserts the following: starting in
any heap state that satisfies % , after executing the program 2 , we must obtain a heap state satisfying
& . In this formalism, to_array can be ascribed the following SL specification:

∀B ℓ, {B ↦→ Seq ℓ} (Seq.to_array B) ∃0, {0 ↦→ Array ℓ} (1)

The precondition, {B ↦→ Seq ℓ}, states that the payload of the (universally quantified) input sequence
B is modelled by a logical list ℓ , where the predicate Seq captures the fact that B is a finite sequence
without side-effects. The postcondition, ∃0, {0 ↦→ Array ℓ}, uses CFML’s convention of using exis-
tential quantifiers to encode return values and asserts that the function will return some pointer 0
that points to an array with contents described by ℓ , where the predicate Array encodes the fact that
0 points to an array on the heap.3 In other words, the specification (1) asserts that to_array indeed
converts a sequence to an array with the same payload, and now, if proven, provides a meaningful
guarantee about the correctness of this function. Finally, note that while our post-condition does
not constrain the input sequence B , this does not affect the usability of our specification as we
have defined such sequences to be pure and effect-free, so they are immutable and thus allowed by
CFML’s affine logic to be duplicated before passing them to the function.

2.1.2 A mechanised proof for Seq.to_array. We are now ready to verify to_array in Coq. When
proving properties about these kinds of heap-manipulating programs in Coq, the corresponding
proofs follow by stepping through the code using the reasoning rules of the program logic to
symbolically evaluate how its individual statements update the symbolic state.

let to_array s =

match s () with

| Nil -> [| |]

| Cons (hd, _) ->

let sz = length s in

let a =

Array.make sz hd in

iteri

(fun i vl ->

a.(i) <- vl) s;

a

Lemma to_array_spec : ∀ s ℓ,

{B ↦→Seq ℓ } (to_array s) ∃0,{0 ↦→Array ℓ }.

Proof.

xapp.

case nxt as [ | hd _].

- xvalemptyarr.

- xapp.

xalloc a.

xapp (iteri_spec (fun t =>

a ↦→ Array (

t ++ drop (length t)

(make (length l) hd)))).

xvals. ... Qed.

Fig. 2. Proof of to_array in CFML.

Fig. 2 shows a correspondence be-
tween to_array and the Coq proof
(done using the CFML embedding of
SL) that establishes that the program
indeed satisfies the spec (1). As is
common with such SL implementa-
tions, each rule of the logic comes
with an associated Coq tactic that ap-
plies the rule, automatically determin-
ing which heaplets are affected by the
rule (i.e., its footprint). As an example,
consider the rule xapp for verifying
an application of a function 5 with a continuation 2 (ignore the highlighted premise for now):

xapp
{%} (5 E) ∃G, {& ′G} ∀G, {& ′G} 2 G {&}

{%} (let x = 5 E in 2 x) {Q} (2)

In a Coq embedding of CFML, this rule is implemented as a tactic xapp, which applies a lemma that
discharges the conclusion of the rule by emitting verification conditions as per its premise.

3We assume an OCaml-style (rather than C-style) memory model, in which locations can store arbitrary values, e.g., arrays.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



107:6 Kiran Gopinathan, Mayank Keoliya, and Ilya Sergey

{s ↦→ Seq ℓ }

let a = Array.make sz hd in

{s ↦→ Seq ℓ ∗ a ↦→ Array (repeat sz hd) }

Consider the call to Array.make in to_array and the
corresponding fragment in the proof in Fig. 2. In the
program, this expression allocates an array of size sz

initialised with the value hd in the heap and returns a pointer to the freshly allocated data. In the
corresponding proof step, reasoning about this computation is handled using a tactic xalloc, which
updates the symbolic program state (and is captured correspondingly by the Coq proof context) to
reflect the semantics of the operation, as shown in the proof snippet above.
Under the hood, the xalloc tactic itself operates by applying a reasoning rule for function

application, xapp (2), to the specification of the library function Array.make:

∀sz E, {sz > 0; emp} (Array.make sz E) ∃0, {0 ↦→ Array (repeat sz E)} (3)

In particular, the spec (3) asserts that when calling Array.make with a size sz and value E where
sz > 0, the return value of the function will be a pointer a to an array, whose contents are described
by the logical expression repeat sz E ; that is, the array has sz copies of E .
The most interesting part of the proof is reasoning about the use of the higher-order function

iteri, which takes as arguments a possibly-effectful function f and a sequence B , and iterates
through the sequence, calling f on each element. In order to characterise the state of the heap after
its invocation, the specification (4) of iteri requires an invariant � that must be maintained by f:

∀� f B ℓ, (∀C E, {� C} (f E) {� (C ++ [E])}) → {� [] ∗ B ↦→ Seq ℓ} (iteri f B) {� ℓ ∗ B ↦→ Seq ℓ} (4)

Here, invariant � characterises the heap in terms of the prefix C of the sequence that has been visited
by iteri. The premise of the specification asserts that the function call f E preserves the invariant
� after visiting E , i.e., � now holds over an extended prefix. The conclusion of the specification (in
grey) states the effect of iteri on the state. Initially, none of the elements of B have been seen, so
� must hold on the empty list [] in the precondition, constraining the corresponding part of the
heap. As per the postcondition, after executing iteri f B , every element in the sequence has now
been visited, and so the specification asserts that � now holds over all elements in the sequence, ℓ .

The proof in Fig. 2 makes use of the conclusion of the specification (4), referred to as iter_spec
in the Coq code, by providing it as the highlighted premise of the rule (2). To do so, it instantiates
iter_spec with a suitable invariant � . This invariant argument does not directly follow from the
syntax of the program like other components of the proof, but, rather, must be explicitly provided
by the user. The invariant provided in our proof states that at each iteration of iteri, the allocated
array a will always start with the sequence of elements C that have been visited by the iteration:

fun C => a ↦→ Array (C ++ drop (length C) (repeat (length ℓ) hd)) (5)

In particular, this invariant asserts that the value a, previously returned by the call to Array.make,
will point to an array with the same length as ℓ , where the contents of the array start with C , the
prefix of visited elements, and the remaining elements are all hd. At the precondition of iteri’s
specification, we instantiate this invariant with the empty list, where a points to a list whose length
is equal to that of ℓ and whose elements all have the value hd. Having executed iteri, the invariant
in its postcondition is instantiated with the full sequence ℓ , and so we learn that the final contents
of the array a must have the same length as ℓ , with its contents starting with the sequence ℓ and
followed by an empty suffix. Therefore, we can then show that the contents of a are exactly the
sequence ℓ , thereby satisfying the post-condition of to_array and concluding the proof.

2.2 A Recipe for Proof Repair

Our proof in Fig. 2 serves as a certificate of correctness for to_array, but, alas, only for one particular
version of the function: if the implementation of to_array were to later change, then our certificate
would no longer hold, and we would have to prove correctness of the program again. This definition

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



Mostly Automated Proof Repair for Verified Libraries 107:7

Old Proof

Specification

Skeleton

Invariants

Obligations

New Program

Old Program

New Proof

Specification

Skeleton

Invariants

Obligations

Skeleton Generation §3.1

Sisyphus

Alignment §3.2

Invariant Synthesis §3.3

Invariant Testing §4

(1)

(2)

(2)

(3)

Proof Term Reduction §4.2Proof Term Instantiation §4.1 Candidate Pruning §4.3

Fig. 4. Sisyphus overview. Boxes with white background represent user-provided components. Light-green

boxes represent outputs generated by the tool with the dashed border around obligations representing a

best-effort a�empt at dispatching residual goals using user_solve or otherwise leaving them as admits.

Solid arrows correspond to inputs and outputs, and the dashed arrow encodes that specifications are copied.

of to_array in the containers library was later updated to the implementation in Fig. 3, adopting a
radically different, but more efficient implementation that avoids repeated evaluation of the input
sequence. In the new implementation, the function first traverses the entire sequence in a single
pass (line 3) using the fold iterator to fold over the elements of the sequence, using a pure function
to accumulate a tuple of the length of the sequence and the elements of the sequence in reverse
(line 4). Then, having allocated a result array of a suitable length, the program simply iterates over
the reversed list of elements using List.fold_left (line 10), and assigns the elements to its result
array in reverse (lines 11-12), gradually increasing the suffix of the array that is shared with the
input. In this way, while both versions traverse the elements twice, the two implementations differ
in the number of times the lazy sequence is “forced”: in the original version the sequence is forced
twice (by length and iteri), while the updated implementation only forces it once (using foldi).
This can have significant performance benefits when the elements capture expensive computations.

1 let to_array s =

2 let sz, rls =

3 fold (fun (i,ls) x ->

4 i+1, x::ls) (0, []) s in

5 match rls with

6 | [] -> [| |]

7 | init :: rest ->

8 let a = Array.make sz init in

9 let idx = sz - 2 in

10 let _ = List.fold_left

11 (fun i x -> a.(i) <- x;

12 i - 1) idx rest in a

Fig. 3. New version of to_array

While this new version significantly differs from the orig-
inal implementation of Seq.to_array from Fig. 1, we can
notice some striking similarities in their implementations.
Most significantly, both programs follow the same high-level
steps: first (1) to calculate the length of the sequence, then
second (2) to allocate a result array with an appropriate size,
and finally (3) to populate this array with the elements of the
sequence. For example, in the old implementation, step (1)
is completed using a dedicated length function, while in the
new program, this is achieved in parallel with accumulating
a reversed list of the elements of the sequence using fold.
Can we use these similarities between the versions of the
program to thus repair the correctness proof from Fig. 2?
The remainder of this section describes our tool Sisyphus that does exactly that.

Overview of Sisyphus. The high level overview of Sisyphus is shown in Fig. 4, which highlights
the three main stages in Sisyphus’s proof repair process:

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



107:8 Kiran Gopinathan, Mayank Keoliya, and Ilya Sergey

(1) First, following the syntactic structure of the new program, Sisyphus constructs its proof skeleton,
with holes for the parts that cannot be immediately inferred (Sec. 2.2.1).

(2) Next, Sisyphus compares traces of the old and new programs on the same random inputs in
order to recover high-level relations between the individual steps in their implementations.
It uses these relations to discover relevant sections of the old proof, which are then used to
synthesise candidate expressions to fill holes in the new proof skeleton (Sec. 2.2.2).

(3) Finally, Sisyphus uses a fast dynamic test to prune the space of synthesised expressions,
instantiating the holes in the proof-skeleton and attempting to dispatch the resulting obligations
using user-provided proof automation, thereby completing the proof script (Sec. 2.2.3).

In this way, Sisyphus implements a mostly-automated proof repair procedure — the tool will
generate a proof-skeleton and invariants for the new proof, but residual obligations are handled
in a best-effort fashion. In particular, pure domain-specific logical obligations often remain in SL
proofs after symbolically reasoning about the program (e.g., proving that a particular integer is
a valid index into a list). Sisyphus allows the user to supply a tactic (which we will refer to as
user_solve), that is invoked during repair to dispatch any such obligations. In order to construct
such a tactic, one will typically use a mixture of Coq’s hint databases and proof search such as
auto/eauto. In the case the tactic fails to dispatch a goal, Sisyphus emits an admit for that particular
subgoal, which the user must then fill in to complete the proof.

1 Lemma to_array_spec : ∀ s ℓ,

2 {B ↦→ Seq ℓ } (to_array s) ∃0, {0 ↦→ Array ℓ }

3 Proof.

4 (* .. *) xapp (* .. *).

5 (* .. *) case ls as [ | init rest].

6 - (* .. *) xvalemptyarr. { user_solve. }

7 - (* .. *) xalloc a. (* .. *)

8 xapp (list_fold_left_spec

9 (fun (acc: int) (t: list A) => □)).

10 { user_solve. }

11 (* .. *) xvals. { user_solve. }

12 Qed.

Fig. 5. Proof skeleton for new to_array

2.2.1 Building a proof skeleton. As we have seen
in Sec. 2.1.2, when verifying programs using SL program
logics in Coq, the structure of the corresponding proof
scripts will often mirror the structure of the program
being verified. Applying this insight in reverse, Sisyphus
starts its repair process by constructing an initial skeleton
proof script for the new program, traversing the program
body andmapping program constructs to the relevant tac-
tics to symbolically execute them. Any obligations that
remain following this process are delegated to a user-
provided solver tactic to dispatch (here, user_solve), or
admitted and left for the user in cases when the solver fails. Using this strategy, Sisyphus can auto-
matically generate a proof skeleton for the new to_array function (Fig. 5). Each program statement
in Fig. 3 maps to a particular tactic application in the proof skeleton: function applications to xapp

(lines 4 and 8), array allocation to xalloc (line 7), creating an empty array to xvalemptyarr (line 6),
and branching in the program is mirrored by a case analysis in the proof (line 5).
While this strategy automatically handles a large component of the burden of writing the new

proof script, there may still be certain parts of the new proof which cannot be immediately filled in
and must be left as holes. In our case, such a hole must be left when reasoning about the application
of List.fold_left in the program, as its specification (6) takes an explicit invariant � to characterise
how the program state is updated through its execution.

∀� f B acc′ ℓ, (∀ acc C E, {� acc C} (f acc E) ∃res, {� res (C ++ [E])}) →

{� acc′ [] ∗ B ↦→ List ℓ} (List.fold_left f B) ∃res, {� res ℓ ∗ B ↦→ List ℓ}
(6)

The specification (6) of fold_left is fairly similar to the specification (4) of iteri; the key
difference being that the invariant used to constrain the behaviour of the user-supplied function
f now takes two parameters: an accumulator value acc, and a list C . As before, the C parameter
represents a logical variable, the prefix of the sequence of elements that have been visited so far.
The acc parameter represents a program-level value, which is the result accumulated by the fold.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



Mostly Automated Proof Repair for Verified Libraries 107:9

The invariant provided to this specification must capture the shape of the heap that evolves over
the execution of the fold at each iteration, and it does not easily follow from the program syntax,
so Sisyphus leaves a hole (□) in the proof (Fig. 5) in place of the invariant body to be filled in later.

2.2.2 Transplanting invariants across proofs. To fill the remaining holes in the proof, Sisyphus
builds on a simple observation that different versions of a program often share similar invariants
in their proofs. More precisely, statements between different versions of a program that perform
similar operations (e.g., populating an array), will often share similarities in the assertions used to
reason about the state they alter in their corresponding proofs, as in the snippets below:

(* old: populate prefix of array *)

iteri (fun i vl -> a.(i) <- vl) s

(* new: populate suffix of array *)

List.fold_left (fun i x -> a.(i) <- x; i-1) idx rest

This intuition leads to a two-step process for instantiating holes in the new proof-skeleton: first, (1)
to determine which statements in the new program perform similar operations to those from the
old program, and then (2) to use relevant invariants from the old proof to guide the generation of
invariant candidates to fill the holes in the new proof.

let to_array s =

match s () with

| Nil -> [| |]

| Cons (hd, _) ->

let sz = length s in

let a =

Array.make sz hd in

iteri

(fun i vl ->

a.(i) <- vl) s;

a

let to_array s =

let sz, rls =

fold (fun (i,ls) x ->

i+1, x::ls) (0, []) s in

match rls with

| [] -> [| |]

| init :: rest ->

let a =

Array.make sz init in

let idx = sz - 2 in

let _ =

List.fold_left

(fun i x -> a.(i) <- x;

i - 1) idx rest in a

Fig. 6. Alignment between two versions of to_array

Discovering similar computations.
In order to instantiate holes in the
proof skeleton, we require a map-
ping between the high-level steps
of old and new programs. In other
words, what we need is a program
alignment between the two programs,
which relates individual statements
of both programs that correspond to
the same high-level steps. These rela-
tions between the high-level steps in
a program capture semantic proper-
ties that might be hard to determine
statically, but, as it turns out, can be discovered dynamically using a simple strategy. Consider
the old and new versions of to_array, which adopt the same general strategy to implement the
conversion from a sequence to array (Fig. 6): (1) compute the length of the input sequence, (2)
allocate an array for the result, and (3) populate the elements of the array. While both programs use
the same steps, the implementations of these individual steps can significantly differ in execution.
For example, when populating the result array in step (3), the original implementation fills the
array from the beginning, while the new implementation does it by assigning elements from the
end. However, after executing this step in both programs, the result array will contain exactly the
elements of the input sequence—a fact that is easy to capture during executions of both programs:

{sz = 3; a ↦→ Array ( [1; 1; 1] ) }

iteri (fun i vl -> a.(i) <- vl) s
{

sz = 3; a ↦→ Array ( [1; 2; 3] )
}

{sz = 3 ∧ idx = 1; a ↦→ Array ( [3; 3; 3] ) }

List.fold_left (fun i x -> a.(i) <- x; i - 1) idx rest
{

sz = 3 ∧ idx = 1; a ↦→ Array ( [1; 2; 3] )
}

To exploit this insight for generating new invariants, Sisyphus runs both versions of the program
on the same randomly generated inputs and records observations of the runtime program states
at each program point. Observations between the traces are ranked based on their similarity by
using certain metrics to compare the values of program variables in each observation. In particular,
Sisyphus uses two such metrics: comparing exact matches in runtime values, and barring an exact
match, comparing the sizes of collections such as lists, albeit with a lower priority. That is, if many
program variables have the same runtime values, then two observations are considered to be highly

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



107:10 Kiran Gopinathan, Mayank Keoliya, and Ilya Sergey

Table 1. Mapping from Coq invariants to OCaml tests

Number Logical embedding as Coq predicate Executable embedding as OCaml function Valid?

(1)

(fun acc t => a ↦→

Array (repeat (acc + 1) init ++

drop (acc + 1) ℓ))

(fun acc t -> Array.to_list a =

(repeat (acc + 1) init ++

drop (acc + 1) ℓ))

Yes

(2)

(fun acc t => a ↦→

Array ([] ++ drop 0

(repeat (length t) init)))

(fun acc t -> Array.to_list a =

([] ++ drop 0

(repeat (length t) init)))

No

similar. A statement in one program is considered as similar to a statement in the other program
when the observations at points surrounding the respective statements are similar.

In this way, Sisyphus builds up an alignment between the statements of both programs. For
example, in Fig. 6 the call to iteri on the left is discovered to be similar to the call to fold_left

on the right as both produce arrays with the same payload, even though they do so in different
directions, hence both statements are marked as aligned.

Generating invariant candidates. When instantiating a hole in the new proof skeleton, Sisyphus
first uses the calculated alignment to find the relevant statements of the old program that plausibly
correspond to the same high-level step as the current statement of the new program that needs an
explicit invariant in its proof. Looking at the proof steps from the old proof that correspond to these
statements, Sisyphus then collects any expressions that occur in symbolic states preceding these
steps and produces a family of sketches that are likely to capture the similarities in the invariants
between the old and new proofs by replacing sub-expressions within those invariants with holes
(_). For example, when looking to synthesise an invariant for the call to fold_left in the proof of
the new program, Sisyphus discovers an aligned statement—a call to iteri—and the invariant (5)
used to verify it in the corresponding proof (Fig. 2). It then extracts from the old invariant a number
of sketches, one of them being (_ ++ drop _ _), which captures the prefix/suffix argument from
the proof of the old program and contributes the following (simplified) invariant template:

fun (acc: int) (t: list A) => a ↦→ Array (_ ++ drop _ _) (7)

Finally, Sisyphus uses this template (amongst others), along with any logical functions and constants
in state assertions in the proof of the old and new program, to bootstrap an enumerative synthesis
procedure for generating concrete invariant candidates for the current hole in the proof in Fig. 5.

2.2.3 Validating invariant candidates. The last step in Sisyphus’ repair process is to validate the
generated invariants and identify suitable candidates to instantiate the holes in the proof skeleton.
As the generation strategy can produce large numbers of candidates, validating each candidate by
trying to prove its correctness would quickly become intractable. As such, Sisyphus implements its
candidate validation step in two phases, first running a fast dynamic test to quickly prune generated
candidates, and then using the user-provided solver to actually prove the invariant. The key insight
powering Sisyphus is that while such dynamic tests for invariants may be challenging to generate
from scratch, we can actually automatically construct these tests from information hidden within
the proofs of the higher-order functions, using a novel technique we dub proof-driven testing.

Consider the invariant candidates for the call to fold_left in the new program generated from
the template (7) and listed in Tab. 1.4 The first candidate accurately describes the invariant that
holds for one iteration of fold_left’s argument function, while the second invariant is incorrect.

4We assume that the invariants are used in an environment where a and ℓ are bound, e.g., the proof in Fig. 5.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



Mostly Automated Proof Repair for Verified Libraries 107:11

let ℓ = [ 1; 2; 3 ] in

let a = [| 3; 3; 3; |] in

let f i x = a.(i) <- x; i-1 in

let len = 3 - 2 in

let inv = (* .. *) in

(* a = [ 3; 3; 3 ] *)

assert (inv len []);

let acc = f len 2 in

(* a = [ 3; 2; 3 ] *)

assert (inv acc [2]);

let acc = f acc 1 in

(* a = [ 1; 2; 3 ] *)

assert (inv acc [2;1])

Fig. 7. A concrete invariant test

Following the intuition presented in the earlier sections, the
first invariant asserts that during the execution of fold_left,
the contents of the array a will share an increasing suffix with
the contents ℓ of the original sequence. The second invari-
ant asserts that the contents of a will always be described by
repeat (length t) init—that is, all elements in the array will
always have the same value. Our goal is to test these invariants
to quickly distinguish between the invalid invariant (2) and the
correct invariant (1). To do so, we would like to convert the
logical state properties asserted by the invariant and expressed
as propositions in Coq’s logic (second column of Tab. 1), into
executable OCaml tests (third column) that check the program
values of the program via a direct syntactic translation. Com-
bining this with a suitable instantiation for the free variables in the expressions (i.e., a and ℓ), we
can construct an executable program to test the invariants.

let rec fold_left (* I *) f acc ls =

(* assert (I acc []); *)

let rec loop (* t *) acc ls =

match ls with

| [] -> acc

| hd :: tl ->

let acc' = f acc hd in

(* assert (I acc' (t ++ [hd])); *)

loop (* (t ++ [hd]) *) acc' tl in

loop (* [] *) acc ls

Fig. 8. Implementation of fold_left

Suppose we had access to the testing program pre-
sented in Fig. 7. This program encodes a particular con-
crete execution trace of List.fold_left within the new
implementation of to_array called on a sequence with
the elements [1, 2, 3], annotated with appropriate asser-
tions (inv). Specifically, after each step in the trace, the
program includes an assertion that an invariant function
inv holds with the current value of accumulator variable
acc and the prefix of the elements that have been visited
so far. If we use our first invariant candidate as the def-
inition of the inv function, then this testing function will
execute without raising an exception, as each time inv is called, the contents of the array a will
indeed match the state expected by the invariant. Conversely, if we execute this program with the
definition of inv assigned to the second invariant candidate, then the program will fail to execute
to completion, as at the second call to the inv function, the contents of the array will be [3; 2; 3]
while the invariant will expect all elements to be the same.

The challenge with constructing such a test program is that it manipulates logical variables and
performs invariant checks that do not occur in the implementation of fold_left (as given in Fig. 8).
Note however that these properties could actually be obtained if we considered the execution trace
of a suitably annotated version of fold_left (cf. the comments in Fig. 8) that was parameterised by
additional logical parameters (i.e., t) and contained explicit invariant checks.

The key insight of Sisyphus is that we do have access to these annotations: they are in fact con-
tained within the proof of correctness for fold_left with regard to the specification (6), which itself
has to manipulate and maintain these variables and checks in order to establish that the invariant
holds over the course of the entire program. Sisyphus evaluates proof terms of specifications for
higher-order functions (as well as correctness proofs for rules of a program logic) on concrete
inputs, extracting test specifications from the resulting reduced proof terms as presented in Fig. 7,
a process we dub proof-driven testing. Using these generated tests, Sisyphus can quickly prune the
generated candidates and suggest valid invariants necessary to complete the repaired proof.

2.2.4 Pu�ing it all together. Recall that our starting point was an old program, its SL specification,
and a Coq proof of its correctness (Sec. 2.1). Taking those artifacts and running them through
the sequence of steps described in Sec. 2.2.1–Sec. 2.2.3, Sisyphus produced a nearly complete

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



107:12 Kiran Gopinathan, Mayank Keoliya, and Ilya Sergey

repaired proof with explicitly-stated high-confidence invariants for calls to higher-order functions
and loops. To fully complete the proof, the user has to mechanically establish the validity of the
suggested invariants. These residual proof obligations typically boil down to proving new facts
about (a) entailment of SL assertions and (b) mathematical properties of involved data types (e.g., a
new lemma relating list reversal and concatenation)—all outside of the scope of the original proof,
and, therefore, beyond the reach of Sisyphus’s proof repair capabilities.

In the following sections we provide detailed descriptions of the outlined algorithms for recon-
structing proof skeletons, computing program alignment, and synthesising invariant candidates
(Sec. 3), formally define proof-driven testing via Coq proofs (Sec. 4), and elaborate on the utility
aspects of Sisyphus, including the proof burden for the residual verification conditions (Sec. 5).

3 PROOF RECONSTRUCTION AND SYNTHESIS OF INVARIANT CANDIDATES

3.1 Generating Proof Skeletons

E variable names

2 ::= E | fun v⇒ c | assert c

| 2 2 | let v = c in c

| if c then c else c

| match E with�8 E8 → 28

) ::= xval. | xif. {T }

| xletval v. | xmatch. {T }

| xapp. | xapp v (fun v⇒ □) .

Fig. 9. OCaml programs and Coq tactics

Fig. 9 provides a subset of OCaml terms (ranged over
by 2) and CFML proof tactics () ), which we will be us-
ing for our presentation in the remainder of the paper.
For the sake of uniform treatment, we require loops in
OCaml programs to be encoded as applications of higher-
order combinators that take a function, representing the
loop’s body, as their argument. This reduces the prob-
lem of inferring loop invariants to inferring invariants
for higher-order function applications. In practice, this
convention poses little problem: most idiomatic OCaml
programs that loop are either already implemented using higher-order combinators or can be easily
rewritten to do so. A tactic xapp that implements the CFML logic rules for function applications
has two forms—the latter tackles application of higher-order functions and requires an explicit
invariant, which is initially represented by a “blank” fun E ⇒ □ to be elaborated later.
Fig. 10 shows the rules of proof skeleton reconstruction. It is implemented as a syntax-based

translation {x from OCaml programs to Coq sequences of Coq tactics. It also takes the actual
verification goal (i.e., pre-/postcondition of the residual program to be traversed) and emits a list of
residual obligations i that should be discharged separately. For example, the obligation emitted in
the conclusion of xval, which is typically applied at the end of the proof (cf. Fig. 2), is the heap
entailment % ⊢ & E , which is derived immediately from the residual goal {%} {&}. Both rules xapp
and xapp-hof deal with function applications, using the function dictionary E to retrive function
specifications and adding their side conditions to the list of residual obligations. In addition to that,

xif
{E = true; P }{Q} ct {x Tt ;it

{E = false; P }{Q} cf {x Tf ;if

{% } {& }; if E then 2C else 2 5
{x xif. {)C }{)5 }; (iC , i5 )

xmatch
{E = �8 E8 ; P }{Q} ci {x Ti ; i8

{% } {& }; match E with�8 E8 ⇒ 28

{x xmatch. {)8 }; i8

xval

{% } {& }; E {x xval.; % ⊢ & E

xapp
E[ 5 ] = ∀ G,k → {% } 5 G ∃G {& ′ G }

{ (& ′G ) [E/G ] } {& }; 2 x {x ) ; i

{% } {& }; let x = 5 E in 2 x {x xapp. T ;

(k [E/G ], i )

xapp-hof
E[ 5 ] = (B : ∀�, G, � ,k → {% } 5 � G ∃G {& ′ G }) 3 is first-order

{ (& ′ G ) [E/G, (fun w ⇒ d )/F, (fun q⇒ □)/I] } {Q}; c x {x T ; i

{% } {& }; let x = 5 (fun w ⇒ d ) E in 2 x {x

xapp s (fun q⇒ □) . T ; (k [E/G, (fun w ⇒ d )/�, (fun q⇒ □)/� ], i )

Fig. 10. Transformation from OCaml to CFML proof scripts (sequences of tactics)

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



Mostly Automated Proof Repair for Verified Libraries 107:13

ALGORITHM 3.1: Dynamic Program Alignment

Procedure DPA(?, ?′)
Input: Old program ? , and a new program ?′

Output:Map U from program points in ?′ to ?

', '′ ← ProgramPoints(p), ProgramPoints(?′)

for input in GenRandInputs(? ) do

tr, tr′ ← Trace(p, input), Trace(?′ , input)

for ⟨d, d ′ ⟩ in ' × '′ do

ps← ProgramStateAt(tr, d )

ps′ ← ProgramStateAt(tr′, d ′ )

scores[d ′ ] [d ] ← Score(ps, ps′ )

for d ′ in '′ do

U [d ′ ] ← HighestScore(scores[d ′ ] )

return U

Procedure Score(ps, ps′)
Input: Old and new program state ps, ps′

Output: Integer score

�,� ′ ← Heap(ps), Heap(ps′)

(, ( ′ ← Stack(ps), Stack(ps′)

vals← Normalize(� ∪ ( )

vals′ ← Normalize(� ′ ∪ ( ′ )

score← 0

for val in vals do

if val ∈ vals′ then

score← score + Size(val)

return score

xapp-hof generates a “blank” invariant fun q⇒ □, whose hole □ is going to be filled up later with
candidates. Our next step is to mine the building blocks for constructing such candidates from the
old program’s proofs using the program alignment technique.

3.2 Computing Program Alignment

Program alignment is the mapping from program points in the new program to those in the old one
with similar program states—a crucial component in determining possible invariant candidates to
fill holes in the reconstructed proof script. Note that alignment is a many-to-one correspondence:
many new program points can map to one old program point (but not vice versa). Algorithm 3.1
shows the main step of computing the alignment. To measure similarity of two program states, it
uses a simple Score function that only takes into the account the sizes of the aggregate values (e.g.,
arrays and lists) present in both program states. Prior to computing the score, the Normalize function
transforms aggregate data types with known canonical projections to a unified representation.
For instance, both arrays and sequences are represented as lists; the user can supply their own
projections. This enables Sisyphus to compare program states bearing the same logical values
represented in different OCaml datatypes (e.g., seq and array in to_array).
To compute the alignment U , Sisyphus generates a series of random inputs and executes both

versions of the program on them to obtain execution traces tr and tr′ correspondingly. It records the
program state at each program point, computes the similarity to program points in the alternative
version via the Score function, and finally associates each program point in the new program with
the most similar program point in the old program.

3.3 Synthesising Invariant Candidates

Algorithm 3.2 provides an overview of the algorithm for template-based invariant synthesis. In our
approach, invariants are encoded as Coq functions that take one or more parameters and construct
a logical proposition that constrains the symbolic SL state (e.g., the invariant (5)).
Recall that, as detailed in Sec. 3.1, we generate a “blank” invariant for every application of a

higher-order function. Initially, this “blank” invariant consists of a single hole. To aid our synthesis,
in its first step (Algorithm 3.2, left), the algorithm constructs an invariant template �□ for a program
point d ′ in the new program. It does so by collecting all heaplets in the program’s symbolic state,
obtained by symbolic execution, immediately before d ′. Each heaplet has the shape E ↦→ Π 48 , where
E is a logical or program-level variable, and Π is an OCaml data type constructor (e.g., Array or ref),

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



107:14 Kiran Gopinathan, Mayank Keoliya, and Ilya Sergey

ALGORITHM 3.2: Synthesis of invariant candidates

Procedure MakeTemplate(d ′, vs)
Input: New program point d ′ , invariant parameters vs

Output: Invariant template �□
�□ ← emp

for E ↦→ Π 48 in Heaplets(d ′) do

�□ ← �□ ∗ (E ↦→ Π _ )

for E in vs do

�□ ← �□ ∧ (E = _ )

return �□

Procedure SynthesizeCandidates(�□, U, P, ?
′, d ′)

Input: Invariant template �□, DPA U , old proof P,

new program ?′ , new program point d ′

Output: List of invariant candidates matching �□
�old ← GetInvariant(U (d ′ ) )

sketches← GetExpressionSketches(�old )

atoms← CollectConsts(P) ∪ CollectFuns(P)

logvars← LogicalVars(specification of P)

return EnumSynthesis(sketches, atoms ∪ logvars, �□ )

possibly applied to arguments 48 that are being replaced by a hole _. The template heaplets are then
conjoined using the SL ∗ connective. Additionally, for every parameter to the invariant (obtained
from the type of the corresponding lemma that requires it), we generate equality propositions of
the form E = _. For example, the template that was elaborated into the form (7) is

fun acc t => (a ↦→ Array _) ∧(acc = _) ∧(t = _) (8)

After inferring the template �□ of the desired invariant, we construct concrete candidates by filling
it (Algorithm 3.2, right). To do so, the algorithm first retrieves the corresponding invariant from
the aligned location in the old program and uses it to construct a set of sketches (i.e., expressions
with holes). It then collects constants and function symbols from the old proof, as well as logical
variables from the ascribed specifications and uses those to fill the holes in the sketches, themselves
used to instantiate holes in the template, thus completing the enumerative synthesis of candidates.

4 PROOF-DRIVEN INVARIANT TESTING

In this section, we describe the technique at the heart of Sisyphus, proof-driven testing, a means to
test the validity of invariant candidates. We achieve that goal by automatically generating tests to
check computable properties of program values and states, from proofs of higher-order lemmas.

To build an intuition for this process, let us start our reasoning by considering a simple computable
property % on natural numbers, defined as % = ≜ 1 + = = = + 1. A standard way to prove that %
holds on all natural numbers is by induction, i.e., by providing proofs of the facts �0 : % 0 (i.e., the
induction base) and �8 : ∀8, % 8 → % (8 + 1) (i.e., the induction transition).
�0 and �8 are proof terms: following their types, we can compose them into the expression

�8 2 (�8 1 (�8 0 �0))) : % 3 (9)

whose type will be % 3, therefore making it a proof term for the fact that the property % holds on
the number 3. The proof of % 3 is, therefore, constructed by applying �8 , an inductive step, to two
arguments: a concrete value 2, and a sub-term constructed to have the type % 2. This sub-term
proving % 2 recursively is also constructed by applying �8 again, but this time to 1 and (�8 0 �0).
The remarkable observation supported by this example is that this proof, i.e., that % holds on the
value 3, contains within it the information that % must necessarily also hold on the values 2, 1,
and 0—from the fact that within its construction, it contains sub-terms proving % 8 for 8 ∈ {0, 1, 2}.
What does this have to do with testing invariants? Imagine that we don’t know if % holds for

all numbers. A natural (pun intended) thing to do in this case would be to first test that % holds
on some numbers, e.g., 0, 1, 2, etc., up to some large number (e.g., 3). On the other hand, assuming
that % can be proven by induction, we know that there must be witnesses (i.e., proof terms) �0 and
�8 for statements % 0 and ∀8, % 8 → % (8 + 1), correspondingly, such that for any concrete =, % =

can be derived by repeated application of �8 to smaller numbers and �0, as demonstrated by (9).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



Mostly Automated Proof Repair for Verified Libraries 107:15

red-app

(fun G : ), C ) C ′ ⇓r C [C
′/G ]

red-constr
C8 ⇓r C

′
8

� C8 ⇓r � C ′8

red-match
(match�: C 9 with�8 G 9 → C ′8 ) ⇓r C

′
: [C 9 /G 9 ]

red-fun
C ⇓r C

′

(fun G : ) ⇒ C ) ⇓r (fun G : ) ⇒ C ′ )

red-fix
C ′0 = � C ′ � = (fix 5 G8 : )8 ⇒ C )

� C ′8 ⇓r C [�/5 , C
′
8 /G8 ]

Fig. 12. Selected reduction rules for CICl

By combining these two observations, we can have our main revelation: For any concrete =, the
proof term C= for the proposition % = contains sub-terms of types % 8 for 8 < = within itself; by
traversing C= , we can identify each of those types % 8 and convert it into a dynamically checkable
assertion over a boolean expression % (8), which must not fail if % holds universally.
As it turns out, the same observation, i.e., that a proof-term for a higher-order lemma about

a property can be used for extracting tests for this property, is not specific to statements about
natural numbers! Exactly the same principle applies to testing properties of program executions, e.g.,
when % is a guessed invariant over program states parameterised by program and logical variables.
In this case, concrete values of theose variables can be supplied by subterms of the corresponding
lemma proofs that are partially evaluated on concrete inputs.

4.1 Instantiating Proof Terms with Concrete Inputs

E variable names

C ::= E | C C ′ | ∀G : C, C ′ | fun G : C ⇒ C ′

| � C | match C with �8 E8 ⇒ C8

| fix 5 E8 : C8 : C ⇒ C ′

Fig. 11. Syntax of selected CICl terms

For the rest of this section we restrict our language to a
subset of CICl , the calculus of Coq, its syntax adopted
from Timany and Jacobs (2015) and given in Fig. 11.
The first step in our process is to instantiate higher-

order lemmas with concrete arguments and reduce their
proof terms to a head-normal form using rules from
Fig. 12. Once an expression is in head-normal form, the types of its non-reducible subterms will
contain the property of interest applied to concrete values, allowing for further test extraction.
As an example, consider instantiating and reducing the induction principle nat_ind for natural

numbers. The induction principle is implemented as a higher-order lemma whose type is

∀(% : nat→ Prop), % 0→ (∀8, % 8 → % (8 + 1)) → ∀(G : nat), % G (10)

and whose proof term is a recursive function that pattern-matches over two constructors of nat:

fun % �0 �8 ⇒ fix � (= : nat) : % = ⇒ match = with | 0⇒ �0 | ( =
′ ⇒ �8 =

′ (� =′) (11)

According to its (dependent) type (10), nat_ind takes four parameters, of which the first three are
either properties or their proofs (which is indicated by their types), while the fourth one has type
nat. In the scenario of our interest, we apply lemmas to concrete (i.e., non-proposition) arguments,
as those correspond to values that can be used for testing the validity of propositions (in this case,
passed as arguments to % ). Therefore, to formally replicate the example (9), we should instantiate
nat_ind with three symbolic values % , �0, and �8 indicating proof terms or properties whose values
are irrelevant for test generation (but whose types are important), and the fourth concrete value 3.
By repeatedly applying the rules red-app, red-fix, and red-match to this expression, we reduce it
to the following partially-evaluated form:

nat_ind % �0 �8 3 ⇓
∗
r �8 2 (�8 1 (�8 0 �0)) (12)

The reduced form on the right reveals the familiar sub-terms whose types contain applications of %
to concrete values. We proceed by using this result to extract a testable specification for % .

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



107:16 Kiran Gopinathan, Mayank Keoliya, and Ilya Sergey

vanilla-app
Γ; C {v 2 Γ; C ′ {v 2

′

Γ; C C ′ {v 2 2
′

vanilla-ind
� C8 : g Γ; C8 {v 28

Γ;� C8 {v � 28

vanilla-fun
G, Γ; C {v 2

(fun G : ) ⇒ C ) {v (fun G ⇒ 2 )

vanilla-match
C {v 2 G8 , Γ; C

′
8 {v 28

Γ; match C with�8 G8 : )8 → C ′8 {v

match 2 with�8 G8 → 28

vanilla-erase
C : g g : Prop

C {v ( )

vanilla-fix
5 , G8 , Γ; C {v 2 Γ; C ′8 {v 2

′
8

Γ; (fix 5 G8 : )8 ⇒ C ) C ′8 {v

let rec 5 G8 = 2 in 5 2′8

extract-prop
Γ ⊢ C : g

g = C1 . . . C= → g ′ g ′ : Prop

Γ; C {e (fun G1 . . . G= ⇒ () )

extract-test
Γ ⊢ C : g g : Prop

Γ ⊢ g {t ? Γ; C {e 2

Γ; C {e assert ? ;2

extract-gen

Γ; E C8 {f 2

Γ; E C8 {e 2

Fig. 13. Vanilla extraction rules from CICl to OCaml (top) and new rules for test extraction (bo�om).

Highlighted premises are domain-specific and are instantiated for a particular set of properties.

4.2 Extracting Tests from Reduced Proof Terms

The top part of Fig. 13 presents a simplified form of the extraction relation ({v) from Coq to
OCaml (Letouzey 2008). The key rule that is relevant for our purposes is vanilla-erase, which
handles the removal of logical parameters for the sake of producing efficient executable OCaml
code: when a Coq expression C has type in Prop, which means that it is a proof term, then Coq’s
vanilla extraction simply returns the unit value () without even inspecting C ’s structure. As we
wish to visit the sub-terms of logical properties to generate tests, this rule must be suitably adapted.

Our extractionmechanism (Fig. 13, bottom), updates{v with the additional three rules : extract-
test, extract-prop, and extract-gen (which will be explained in Sec. 4.3). The rule extract-prop
extends the extraction making it traverse terms with type in Prop. The key addition is the rule
extract-test, which implements our earlier intuition that sub-terms witnessing a property can
encode dynamically checkable assertions for which the property must hold. In particular, whenever
we visit a sub-term inhabiting a type g that can be converted into an executable test p (via a reflection
step{t), the extraction emits an assertion that p must hold within the extracted computation. The
heavy lifting in this translation is done by the{t reflection rule, which is domain-specific and is
instantiated by the user for a particular set of decidable properties.

nat-refl-eq

Γ; C {v 2 Γ; C ′ {v 2
′

Γ; (C = C ′) {t 2 = 2′

To wrap up, let us get back to our running example. We shall instan-
tiate{t with the bespoke reflection function (on the right) tailored for
our property % = ≜ 1 + = = = + 1, and use the extraction rules to convert
the normalised proof term (12) into the test-specification (13).

�8 2 (�8 1 (�8 0 �0)) {
∗
t

assert (1 + 3 = 3 + 1); assert (1 + 2 = 2 + 1); assert (1 + 1 = 1 + 1); assert (1 + 0 = 0 + 1)
(13)

Notice that the four asserts in the OCaml program above correspond to the subterms (�8 2 . . .),
(�8 1 . . .), (�8 0 �0), and �0, as each one inhabits the type of a concrete instantiation of % .

4.3 Testing Properties in Separation Logic

Leaving the world of properties over nat, let us now tackle our original goal, using proof-driven
testing to test separation logic properties, such as invariants. In particular, we consider an embedding
of CFML in Coq, and present how our extraction rules (cf. Fig. 14) can be extended for this domain.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



Mostly Automated Proof Repair for Verified Libraries 107:17

refl-emp

Γ; emp {t true

refl-sep
Γ; C {t 2 Γ; C ′ {t 2

′

Γ; C ∗ C ′ {t 2 && 2′

refl-pts
Γ; C {t 2 R(5 ) = �

Γ; E ↦→ 5 C {t � E = 2

extract-xapp
Γ;�2 {e 2 Γ;% {t ?

Γ; xapp % & ′ & 5 E 1 �5 �2 {f assert ? ; let G = 5 E in 2 G

Fig. 14. A reflection for SL properties (top); An extraction rule for xapp (bo�om)

Consider a prototypical CFML rule xapp for function applications, first seen in Sec. 2.1.2. When
embedded as a lemma (xapp) within Coq, xapp takes the following type:

∀(% : hprop) & ′ & 5 E 1, ({%} (5 E) ∃G, {& ′ G}) → (∀G, {& ′ G} 1 G {&}) →

{%} (let G = 5 E in 1 G) {&}
(14)

That is, the xapp lemma takes eight arguments, where the first three are properties over the symbolic
heap (with type hprop), the next three take values, and the last two take SL proofs. Notice that,
from the type of xapp, for the heap properties we pass as input (i.e., % , & ′, and &) no witness is
passed to the lemma. Rather, the lemma expects proofs of Hoare triples such as {%} . . . ∃G, {& ′ G}.
We do not show the proof term of xapp here, but it does not construct proof terms inhabiting % , & ,
etc., either; instead, it composes the witnesses for the lemma’s argument Hoare triples. As such,
if we were to apply our extraction rules from cf. Fig. 14 to a concrete instantiation of xapp, the
resulting program would not include any explicit assertions about properties over the heap.

Our goal is thus to extend our test extraction to test SL properties that hold over the heap. We first
instantiate the reflection relation{t with the rules refl-emp, refl-sep, and refl-pts (cf. Fig. 14,
top) to handle terms in hprop, CFML’s encoding of heap properties. The key rule in this encoding
is refl-pts that uses a mapping R to extract heap predicates (e.g., Array) to corresponding OCaml
functions that manipulate their logical contents (e.g., of_list). Applying these rules, we can now
reflect logical assertions over the heap into executable OCaml tests similar to the program in Fig. 7.

ALGORITHM 4.1: Invariant testing

Procedure TestInvariant(?′, 5 , C5 , �)
Input: Program ?′ , HOF 5 , proof term for 5

C5 : args→ � → Spec, invariant �

Output: Passes if no assertion is violated

st, args← RunUpto(?′, 5 , GenInput(? ) )

C ← Instantiate(C5 , 0A6B, � )

Reduce(C ⇓r C
′ )

Extract(C ′ {e X )

RunFromState(st, X ( ) )

To assert these SL properties within our test, we
must tune our extraction procedure such that the test
programs appropriately maintain the heap, testing
the predicates derived from the passed heap asser-
tions at the right program points. For this purpose,
we now turn to the extract-gen rule (cf. Fig. 13), and
instantiate it for CFML, extending F to map CFML’s
reasoning rules to transformations that capture their
semantics. For example, extract-xapp (cf. Fig. 14,
bottom) presents the corresponding instantiation for
xapp. The essential part of the rule is the bespoke invocation of the{t procedure that converts the
precondition % to the assertion assert p installed right before the call to f. The rule extract-xapp
does not convert the other two argument properties of xapp, & ′ and & , which both take value
arguments, into assertions. This extension is straightforward but would require to generalise{t

to handle parameterised properties; in the interest of time we did not carry out this exercise. The
encodings for the remaining rules of CFML follow the same strategy and are not presented here,
but can be found in our implementation.

Putting it all together, Algorithm 4.1 describes how Sisyphus uses proof-driven testing to prune
candidate invariants when instantiating holes in the generated proof skeleton for a given program.
When testing an invariant candidate � for a higher-order function 5 , whose application occurs in the
code of the new program ?′, TestInvariant first executes the enclosing program ?′ on a randomly

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



107:18 Kiran Gopinathan, Mayank Keoliya, and Ilya Sergey

generated input and observes both the program state st at the call site and the concrete arguments
to 5 . The concrete arguments and the invariant are passed to C5 to construct an instantiated reduced
proof term C , which is extracted into a OCaml test program X , which is executed in the context st.
If X raises an exception during its execution, then � is invalidated and can be pruned away.

5 IMPLEMENTATION AND EVALUATION

Component LOC

Proof-skeleton generator (§3.1) 2700

Program alignment (§3.2) 1400

Enumerative synthesis (§3.3) 1600

Modified Coq reduction (§4.1) 7600

Proof-driven test extraction (§4.2) 2000

Reflection & extraction for CFML (§4.3) 1600

Miscellanea (e.g., logging, stats, etc) 1900

Total 18800

We have implemented Sisyphus in 19k lines of OCaml.
The table on the right summarises the distribution of
implementation effort, in terms of the approximate lines
of code of each component of the development.5 In order
to implement proof-driven testing, we include a lightly
modified version of Coq’s reduction algorithm to allow
reduction within proof terms. Note that our CFML in-
stantiation of proof-driven testing only requires around
1600 specific LOC, which is likely a good estimate of
the additional effort that one might expect in order to
extend Sisyphus to handle proof repair in other Coq embeddings of Separation Logic. In order to
dispatch any obligations generated during the repair process, we implemented a domain-specific
solver as a small collection of Ltac-based tactics (∼700 LOC). An initial implementation of the tool
used Z3 (de Moura and Bjørner 2008) for this purpose; however, we found that it was not effective
at reasoning about the generated obligations, taking several minutes on even simple goals.

We conducted an empirical evaluation of Sisyphus to answer the following research questions:

• RQ1: Is Sisyphus effective at repairing proofs for real world programs: can it find correct
invariants and how much manual effort is required to complete the proof?
• RQ2: How efficient is Sisyphus: does it generate invariants in a reasonable amount of time?
• RQ3: What are the classes of changes in programs that Sisyphus handles poorly or not at all?

Benchmarks. In order to answer these questions, we constructed a benchmark suite of 14 evolved
OCaml programs as summarised in Tab. 2. Of these programs, a majority, 10, were drawn from
real-world code-bases, found by mining the version control of popular OCaml libraries (e.g., Jane
Street’s base, containers, etc.—cf. the accompanying artefact for their exact provenance), with the
remaining ones constructed by us.
Programs were selected to exhibit the use of a diverse range of refactorings. In particular, we

classify the changes of programs in our benchmarks into four classes: (1) IterOrd, for changes in
iteration order (cf. the change in to_array), (2) DataStr, for changes in intermediate data structures,
(3) Mutable/Pure for the transformation of programs using loops with mutation to pure variants,
and (4) Pure/Mutable for the converse. The benchmarks we consider manipulate a range of common
OCaml data-structures: arrays, lazy sequences, mutable singly-linked-lists (SLL), stacks, queues
and trees. The main roadblock in tackling larger classes of data structures for the case studies was
in the lack of available verified implementations of these data structures. For example, though the
CFML development provides a simplified version of the OCaml Map data structure, implemented
using a balanced binary tree, it does not verify most of its associated functions.

Methodology. Our methodology to evaluate Sisyphus on these benchmark programs was as
follows: For each library function in our benchmark suite, we first extracted the function and
its dependencies into a standalone file, replacing the use of for- and while-loops with suitable
higher-order loop combinators (cf. Sec. 3.1). Then, in order to construct the initial proofs for each

5The accompanying artefacts, Sisyphus implementation and benchmarks, are available online (Gopinathan et al. 2023).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



Mostly Automated Proof Repair for Verified Libraries 107:19

Table 2. Categorisation of benchmark programs by the type of program changes and language features and

data structures they use (le�); Comparison of additional effort required to dispatch the obligations in proof

scripts produced by Sisyphus (right). † indicates when the new version of the program was constructed by

the authors, and ‡ indicates when both versions of the programs were constructed by the authors.

Example Data Structure Refactoring
Time (old)

Time (new)
# Admits /

# Obligations
Spec Proof Total

seq_to_array Array, Seq IterOrd, DataStr 1hrs 1hr 2hrs 17m 3/5

make_rev_list† Ref Mutable/Pure 5m 5m 10m - 0/2

tree_to_array† Array, Tree IterOrd, DataStr 4hrs 1hr 5hrs 18m 2/4

array_exists Array Mutable/Pure 10m 20m 30m 12m 2/4

array_find_mapi Array, Ref Pure/Mutable 30m 1hr 1.5hrs 12m 2/5

array_is_sorted Array Pure/Mutable 1hr 3hrs 4hrs 2m 2/5

array_findi Array Pure/Mutable 30m 1hr 1.5hrs 9m 3/7

array_of_rev_list Array DataStr 5m 1hr 1hr 3m 2/3

array_foldi Array Pure/Mutable 10m 5m 15m - 0/1

array_partition Array DataStr 30m 2hrs 2.5hrs 5m 3/3

stack_filter‡ Stack DataStr 1hr 30m 1.5hrs 11m 3/3

stack_reverse‡ Stack DataStr 1.5hrs 30m 2hrs 30s 1/1

sll_partition‡ SLL Mutable/Pure, IterOrd 1hr 1hr 2hrs - 0/2

sll_of_array‡ Array, SLL IterOrd 1.5hrs 30m 2hrs - 0/1

program, one of the authors manually verified the implementations of each of the benchmark
programs and recorded the time taken. Sisyphus was then invoked to construct proofs for the new
versions of each benchmark program. Finally, any residual obligations that were left as admits by
the tool were proven manually by another author and timed. Both authors were equally familiar
with Coq/CFML before writing any proofs, and the purpose of this experiment was to evaluate the
manual effort in proving the remaining obligations in relation to the initial proof effort.

RQ1: Effectiveness and Utility. Our experiments demonstrate that Sisyphus is effective at repairing
the proofs of real world programs. Sisyphus was able to automatically construct new proofs for all
programs in our benchmarks: all synthesised invariants were valid, and we were able to manually
prove any remaining proof obligations. The fourth to the sixth columns of Tab. 2 describe the
comparison of the manual effort, in terms of the time taken, to prove and specify the original
programs in comparison to using Sisyphus and manually dispatching remaining obligations. The
last column of the table (# Admits / # Obligations) describes the number of verification conditions
that Sisyphus was unable to dispatch automatically and were left as admits for the user to prove.
We were able to construct Coq proofs for all such remaining sub-goals manually.

As can be seen from the table, all obligations took fewer than 20 minutes to dispatch, while
specifying and proving the original programs took considerably longer, demonstrating the util-
ity of Sisyphus for maintaining verified code-bases. We found that most of the challenge in
completing proofs was in reasoning about properties of the involved functions that were not
considered in the original development but relied on by the generated invariants. For example,
in our case study for array_partition, the generated invariant made use of an expression of the
form filter ? (filter ? ℓ). Since filtering is idempotent, such repetition is redundant, but no such
property had been proven before, so dispatching the obligation required us to prove it manually.

RQ2: Efficiency. Our experiments were conducted on a commodity laptop (3.5 GHz Apple M2
MacBook Air with 8GB RAM). We have found Sisyphus to be efficient at repairing proofs, taking
fewer than 2 minutes to execute on most examples in our benchmarks.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



107:20 Kiran Gopinathan, Mayank Keoliya, and Ilya Sergey

Table 3. Statistics of Sisyphus when repairing proofs of verified OCaml programs. The first 3 columns list the

total number of invariant candidates that were generated and their breakdown by heap and pure parts, to

be tested independently. The last 5 columns describe the time taken by Sisyphus, with the breakdown per

individual component: generation of candidates, extraction of tests, running the tests, and the remaining

tasks, which include computing program alignment and interaction with the Coq runtime.

Example
Candidates Time (s)

Total (s)

Heap Pure Total Generation Extraction Testing Remaining

seq_to_array 3.4 × 107 1.8 × 104 6.2 × 1011 28.57 1.95 20.36 5.28 58

make_rev_list - 30 30 ≤ 10ms 3.36 ≤ 10ms 11.95 15

tree_to_array 5.0 × 106 8.2 × 103 4.0 × 1010 6.75 1.95 2.98 13.32 25

array_exists - 25 25 ≤ 10ms 3.30 ≤ 10ms 13.23 17

array_find_mapi 13 34 442 ≤ 10ms 2.13 ≤ 10ms 13.95 17

array_is_sorted 64 70 4.5 × 103 ≤ 10ms 2.04 ≤ 10ms 15.38 18

array_findi 4.9 × 103 34 1.7 × 105 ≤ 10ms 2.13 ≤ 10ms 19.07 22

array_of_rev_list 1.5 × 106 - 1.5 × 106 1.72 2.82 0.96 15.62 21

array_foldi 24 - 24 ≤ 10ms 488.89 ≤ 10ms 15.00 504

array_partition 1.6 × 106 - 1.6 × 106 3.51 69.73 2.62 17.53 95

stack_filter 71 - 71 ≤ 10ms 81.88 ≤ 10ms 21.53 104

stack_reverse 22 - 22 ≤ 10ms 88.42 ≤ 10ms 16.94 105

sll_partition 630 - 630 ≤ 10ms 426.62 ≤ 10ms 16.43 443

sll_of_array 2.4 × 104 - 2.4 × 104 0.02 55.98 0.01 13.33 69

In the two cases where Sisyphus takes longer than 2 minutes, array_foldi and sll_partition,
most of the time is spent on performing the extraction of tests itself, rather than generating and
pruning candidates. Our implementation of proof-driven testing has not been particularly optimised,
simply reusing Coq’s infrastructure to implement extraction, so further improvements could be
obtained by adopting a more specialised implementation. The second to fourth columns of Tab. 3
list the number of generated invariant candidates; Sisyphus uses a lazy generation strategy, so we
only record the number of candidates until Sisyphus finds a suitable invariant or gives up. Note
that for many of the benchmarks, Sisyphus is able to use program alignment to considerably reduce
the space of candidates, often leaving fewer than 100 candidates. Furthermore, whenever possible
Sisyphus conducts testing of pure and heap-related parts of invariant candidates independently,
rather than by taking their product, thus contributing to the efficiency of the search.

RQ3: Failure Modes. An important assumption of Sisyphus’s repair process is that components
of the old proof, such as the lemmas and functions that it uses, will be sufficient to prove the
new program correct. As we have seen, this is not always the case. In the case of array_partition,
Sisyphus was unable to fully automatically repair the proof, as the new proof required a lemma
about repeated filters that had not been present in the old proof. In cases where the new program
requires use of a function not present in the old proof, Sisyphus’s search space will not even contain
an invariant that can pass proof-driven testing, and the repair process will fail entirely.

let batches = (* .. *) in

let res =

Array.make (* .. *) in

List.iter (fun batch ->

let dst = (* .. *) in

Array.copy batch res dst)

batches

For example, consider an optimised version of to_array on the
right that uses a batching strategy: instead of collecting the elements
of the sequence into a list, it accumulates a list of batches of elements
and then separately inserts each batch into the result array as on
the right. Sisyphus will fail to repair this program as the invariants
for its loops will require an operation to reason about flattening lists
of lists; however, the old proof for to_array does not make use of
any functions that can capture this operation.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



Mostly Automated Proof Repair for Verified Libraries 107:21

6 RELATED WORK

Proof refactoring and repair. Most of the existing tools for automated proof refactoring allow
for direct manipulations of standalone proofs while preserving their validity. Levity is a tool for
the Isabelle/HOL proof assistant that simplifies the motion of lemmas between different packages
while ensuring that the automation procedures relying on those lemmas do not break (Bourke
et al. 2012). Tactitian (Adams 2015) is a tool for refactoring proof scripts in HOL Light. Refactor-
Agda (Wibergh 2019) and Chick (Robert 2018) are refactoring tools for programs in dependently-
typed languages that can serve as proof terms to some theorems. None of these tools address the
problem of adapting a proof about a program in response to changes in that program.
The work by Ringer (2021) focuses on proof repair in two particular scenarios: (8) synthesis-

by-example of patches to proofs of theorems whose statements were changed to use new data
types (Ringer et al. 2018) and (88) equivalence-preserving changes in data types used by a verified
functional program and its specification (Ringer et al. 2021, 2019b). Neither of these approaches
address arbitrary local changes in the code of a verified program; nor do they consider foundational
verification of imperative programs, via embedded program logics or otherwise.

Techniques from non-dependently typed provers. Our work draws some parallels with earlier
research in non-dependently typed proof assistants by Matichuk (2012) on automatic extraction of
function annotations for programs in Isabelle/HOL. Matichuk describes a technique that operates on
proofs about stateful programs in monadic Hoare logic to extract intermediate state assertions into
a standalone set of function annotations, that can then be re-used to verify other inter-dependent
properties. While this approach has similarities to our proof-driven-testing algorithm, there are
some constraints arising from the non-constructive setting that limit the generality of this technique.

In particular, Matichuk’s approach requires proofs to use a particular monadic Hoare logic that has
been adjusted to collect intermediate assertions, while proof-driven testing allows extracting tests
from a larger class of theorems in pre-existing logics and is able to obtain this information for free by
introspecting the proof terms “as is”. Furthermore, the machinery in the 2012 paper only considers
first-order imperative programs, while our proof-driven testing mechanism enables inferring
invariants for higher-order programs with combinators. That said, assuming that Matichuk’s
approach could be extended to proofs about higher-order combinators such that it stored annotations
describing how those proofs instantiate the invariants (as in our Fig. 8), we speculate that such
annotations could be used to generate tests similar to the one in Fig. 7.

KeYTestGen (Ahrendt et al. 2016) and StaDy (Petiot et al. 2014) take advantage of annotations
required by correctness proofs to generate tests with a high degree of coverage. On a conceptual
level, in contrast with KeYTestGen and StaDy, our approach is inherently higher-order, as it extract
tests for invariants (i.e., properties of programs) from proofs of lemmas that use those invariants,
while the mentioned tools target testing of programs themselves.

Invariant inference. Inference of loop invariants for imperative programs using static (Flanagan
and Leino 2001; Henzinger et al. 2004; Qin et al. 2013) and dynamic (Ernst et al. 1999, 2000) analysis,
as well as machine learning techniques (Si et al. 2018) is a well-studied research topic.
Magill et al. (2006) were amongst the first to describe a heuristic procedure for automatically

inferring SL invariants via static analysis relying on predicate abstraction (Das et al. 1999; Graf and
Saïdi 1997) for programsmanipulating linked lists. In contrast withMagill et al.’s work, our approach
is based on dynamic analysis techniques and does not require a predefined set of predicates, neither
heap- nor pure ones, as those are drawn from the old proofs.

The data-driven tools Locust (Brockschmidt et al. 2017) and SLING (Le et al. 2019) use dynamic
analysis to derive SL formulas describing the shape of a state manipulated by a C program as well as

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



107:22 Kiran Gopinathan, Mayank Keoliya, and Ilya Sergey

the program’s loop invariants. Both of these tools target proofs of memory safety and do not consider
full functional correctness w.r.t. arbitrary specifications, limiting the language of pure assertions to
the first-order logic with arithmetic comparisons. For the validation of inferred invariants, Locust
relies on the automated non-foundational verification tool GRASShopper (Piskac et al. 2014), while
the authors of SLING report poor experience with SMT solvers and had to resort to manual (i.e.,
non machine-assisted) invariant checking (cf. Sec. 5.3 of Le et al. (2019)).
Of the state-of-the-art deductive verification tools, only Why3 (Filliâtre and Paskevich 2013)

allows for a limited form of invariant inference using numeric abstract domains and does not
support arbitrary effectful functions or statements about shape properties of data (e.g., constraining
contents of an array). We are not aware of any approach comparable to Sisyphus in its ability
to automatically infer complex invariants which constrain both heap and data for higher-order
imperative programs, and then use these invariants to reconstruct proofs for modified programs.

Automated foundational proofs in Separation Logic. Foundational approaches to program ver-
ification encode the meta-theory and the rules of a domain-specific logic (e.g., a version of SL)
in terms of the logic of the host verifier (e.g., Coq). In this work, we considered libraries written
in a higher-order imperative language and verified in a foundational encoding of SL into Coq,
which enabled proof reconstruction and efficient pruning of invariant candidates as described in
Sec. 3 and 4. Our contributions are complementary to the efforts in automated foundational SL-
based verification of sequential (Gonthier et al. 2011; Sammler et al. 2021) and concurrent (Mulder
et al. 2022) heap-manipulating programs, as all those tools require explicit invariants.

Even though our current implementation of Sisyphus only supports a particular Coq-embedded
SL, namely, CFML (Charguéraud 2020), we believe that our approach would be applicable to many
other foundational SL implementations: HTT (Nanevski et al. 2010), Bedrock (Chlipala 2011),
VST (Appel 2011), CHL (Chen et al. 2015), FCSL (Sergey et al. 2015), and the large family of logics
based on the Iris framework (Iris Project 2022). As explained in Sec. 4.3, to support a custom SL
embedding, one would have to elaborate test extraction by implementing reflection procedures for
embedding-specific encodings of SL assertions and rules.

7 CONCLUSION

In this work we have presented Sisyphus, a tool for the mostly-automated repair of verified
libraries. Our repair procedure is implemented through two dynamic analyses: a dynamic program-
alignment for recovering relations between old and new programs, and proof-driven testing for
quickly pruning candidate invariants, with the latter being a novel construction introduced in
this work. Our experimental results show that the combination of these techniques is effective at
constraining the search space of repairs, and allows Sisyphus to produce repaired proofs in only a
few minutes for most cases; while the generated proofs are sometimes incomplete, the remaining
proof obligations are typically of a reasonable difficulty and pose significantly less challenge than
writing the initial proof. Our current implementation only supports the CFML embedding of SL;
however, our techniques have been designed where possible to be parametric over the logic, so we
expect can be generalised to other logics and programming languages. We leave these opportunities
as exciting future work in making maintainable verified software less of a Sisyphean task.

ACKNOWLEDGMENTS

We thank Andreea Costea, Leonidas Lampropoulous, Yunjeong Lee, Peter Müller, and George Pîrlea
for their feedback on drafts of this paper. We also thank the anonymous PLDI’23 PC and AEC
reviewers as well as our shepherd Adam Chlipala for their constructive and insightful comments.
This work was partially supported by a Singapore Ministry of Education (MoE) Tier 3 grant

“Automated Program Repair” MOE-MOET32021-0001 and Tier 1 grant T1 251RES2108.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.



Mostly Automated Proof Repair for Verified Libraries 107:23

DATA AVAILABILITY

The software artefact accompanying this paper is available online (Gopinathan et al. 2023). The
artefact contains the source code and build scripts for Sisyphus, a corpus of OCaml programs that
can be used to reproduce the experimental results described in Sec. 5, a self-contained Docker file
to automate setting up the development environment, and a README file in markdown that provides
detailed step-by-step instructions for running Sisyphus and the experiments.

REFERENCES

Mark Adams. 2015. Refactoring Proofs with Tactician. In SEFM (LNCS, Vol. 9509). Springer, 53–67. https://doi.org/10.1007/978-

3-662-49224-6_6

Wolfgang Ahrendt, Christoph Gladisch, and Mihai Herda. 2016. Proof-based Test Case Generation. In Deductive Software

Verification - The KeY Book - From Theory to Practice. LNCS, Vol. 10001. Springer, 415–451. https://doi.org/10.1007/978-3-

319-49812-6_12

Andrew W. Appel. 2011. Verified Software Toolchain - (Invited Talk). In ESOP (LNCS, Vol. 6602). Springer, 1–17. https:

//doi.org/10.1007/978-3-642-19718-5_1

Andrew W. Appel and David A. Naumann. 2020. Verified sequential Malloc/Free. In ISMM. ACM, 48–59. https://doi.org/10.

1145/3381898.3397211

Timothy Bourke, Matthias Daum, Gerwin Klein, and Rafal Kolanski. 2012. Challenges and Experiences in Managing

Large-Scale Proofs. In 11th International Conference Intelligent Computer Mathematics (CICM) (LNCS, Vol. 7362). Springer,

32–48. https://doi.org/10.1007/978-3-642-31374-5_3

Marc Brockschmidt, Yuxin Chen, Pushmeet Kohli, Siddharth Krishna, and Daniel Tarlow. 2017. Learning Shape Analysis. In

SAS (LNCS, Vol. 10422). Springer, 66–87. https://doi.org/10.1007/978-3-319-66706-5_4

Arthur Charguéraud. 2011. Characteristic Formulae for the Verification of Imperative Programs. In ICFP. ACM, 418–430.

https://doi.org/10.1145/2034773.2034828

Arthur Charguéraud. 2020. Separation Logic for Sequential Programs (Functional Pearl). Proc. ACM Program. Lang. 4, ICFP

(2020), 116:1–116:34. https://doi.org/10.1145/3408998

Arthur Charguéraud, Jean-Christophe Filliâtre, François Pottier, and Mário Pereira. 2017. VOCAL – A Verified OCaml

Library. In ML Family Workshop.

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2015. Using Crash

Hoare logic for certifying the FSCQ file system. In SOSP. ACM, 18–37. https://doi.org/10.1145/2815400.2815402

Adam Chlipala. 2011. Mostly-automated verification of low-level programs in computational separation logic. In PLDI.

ACM, 234–245. https://doi.org/10.1145/1993498.1993526

Satyaki Das, David L. Dill, and Seungjoon Park. 1999. Experience with Predicate Abstraction. In CAV (LNCS, Vol. 1633),

Nicolas Halbwachs and Doron A. Peled (Eds.). Springer, 160–171. https://doi.org/10.1007/3-540-48683-6_16

Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS (LNCS, Vol. 4963). Springer,

337–340. https://doi.org/10.1007/978-3-540-78800-3_24

Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis. 1977. Social Processes and Proofs of Theorems and Programs. In

POPL. ACM, 206–214. https://doi.org/10.1145/512950.512970

Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala. 2019. Simple High-Level Code for

Cryptographic Arithmetic - With Proofs, Without Compromises. In IEEE Symposium on Security and Privacy. IEEE.

https://doi.org/10.1109/SP.2019.00005

Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 1999. Dynamically Discovering Likely Program

Invariants to Support Program Evolution. In ICSE. ACM, 213–224. https://doi.org/10.1145/302405.302467

Michael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin. 2000. Quickly detecting relevant program

invariants. In ICSE. ACM, 449–458. https://doi.org/10.1145/337180.337240

Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 - Where Programs Meet Provers. In ESOP (LNCS, Vol. 7792).

Springer, 125–128. https://doi.org/10.1007/978-3-642-37036-6_8

Cormac Flanagan and K. Rustan M. Leino. 2001. Houdini, an Annotation Assistant for ESC/Java. In FME (LNCS, Vol. 2021).

Springer, 500–517. https://doi.org/10.1007/3-540-45251-6_29

Robert W. Floyd. 1967. Assigning Meanings to Programs. Proceedings of Symposium on Applied Mathematics 19 (1967),

19–32.

Georges Gonthier, Beta Ziliani, Aleksandar Nanevski, and Derek Dreyer. 2011. How to make ad hoc proof automation less

ad hoc. In ICFP. ACM, 163–175. https://doi.org/10.1145/2034773.2034798

Kiran Gopinathan, Mayank Keoliya, and Ilya Sergey. 2023. Reproduction Artefact for Article “Mostly Automated Proof Repair

for Verified Libraries". https://doi.org/10.5281/zenodo.7703886

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.

https://doi.org/10.1007/978-3-662-49224-6_6
https://doi.org/10.1007/978-3-662-49224-6_6
https://doi.org/10.1007/978-3-319-49812-6_12
https://doi.org/10.1007/978-3-319-49812-6_12
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1145/3381898.3397211
https://doi.org/10.1145/3381898.3397211
https://doi.org/10.1007/978-3-642-31374-5_3
https://doi.org/10.1007/978-3-319-66706-5_4
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/3408998
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1145/1993498.1993526
https://doi.org/10.1007/3-540-48683-6_16
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/512950.512970
https://doi.org/10.1109/SP.2019.00005
https://doi.org/10.1145/302405.302467
https://doi.org/10.1145/337180.337240
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/3-540-45251-6_29
https://doi.org/10.1145/2034773.2034798
https://doi.org/10.5281/zenodo.7703886


107:24 Kiran Gopinathan, Mayank Keoliya, and Ilya Sergey

Susanne Graf and Hassen Saïdi. 1997. Construction of Abstract State Graphs with PVS. In CAV (LNCS, Vol. 1254). Springer,

72–83. https://doi.org/10.1007/3-540-63166-6_10

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo. 2016.

CertiKOS: An Extensible Architecture for Building Certified Concurrent OS Kernels. In OSDI. USENIX Association,

653–669.

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath T. V. Setty, and

Brian Zill. 2015. IronFleet: proving practical distributed systems correct. In SOSP. ACM, 1–17. https://doi.org/10.1145/

2815400.2815428

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan. 2004. Abstractions from proofs. In POPL.

ACM, 232–244. https://doi.org/10.1145/964001.964021

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (1969), 576–580. https:

//doi.org/10.1145/363235.363259

The Iris Project. 2022. Iris: a Higher-Order Concurrent Separation Logic Framework, implemented and verified in the Coq

proof assistant. https://iris-project.org/ Online; last accessed 6 November 2022.

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A

Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA Formal Methods (LNCS, Vol. 6617). Springer, 41–55.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai

Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: formal

verification of an OS kernel. In SOSP. ACM, 207–220. https://doi.org/10.1145/1629575.1629596

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: a verified implementation of ML. In

POPL. ACM, 179–192. https://doi.org/10.1145/2535838.2535841

Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen. 2019. SLING: Using Dynamic Analysis to Infer Program Invariants

in Separation Logic. In PLDI. ACM, 788–801. https://doi.org/10.1145/3314221.3314634

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In LPAR (LNCS, Vol. 6355).

Springer, 348–370. https://doi.org/10.1007/978-3-642-17511-4_20

Xavier Leroy. 2006. Formal certification of a compiler back-end or: programming a compiler with a proof assistant. In POPL.

ACM, 42–54. https://doi.org/10.1145/1111037.1111042

Pierre Letouzey. 2008. Extraction in Coq: An Overview. In 4th Conference on Computability in Europe (CiE) (LNCS, Vol. 5028).

Springer, 359–369. https://doi.org/10.1007/978-3-540-69407-6_39

Stephen Magill, Aleksandar Nanevski, Edmund Clarke, and Peter Lee. 2006. Inferring Invariants in Separation Logic for

Imperative List-Processing Programs. The third workshop on Semantics, Program Analysis and Computing Environments

for Memory Management (SPACE) 1, 1, 5–7.

Daniel Matichuk. 2012. Automatic Function Annotations for Hoare Logic. In Proceedings Seventh Conference on Systems

Software Verification (SSV) (EPTCS, Vol. 102). 46–56. https://doi.org/10.4204/EPTCS.102.6

Ike Mulder, Robbert Krebbers, and Herman Geuvers. 2022. Diaframe: automated verification of fine-grained concurrent

programs in Iris. In PLDI. ACM, 809–824. https://doi.org/10.1145/3519939.3523432

Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verification Infrastructure for Permission-Based

Reasoning. In VMCAI (LNCS, Vol. 9583). Springer, 41–62. https://doi.org/10.1007/978-3-662-49122-5_2

Aleksandar Nanevski, Viktor Vafeiadis, and Josh Berdine. 2010. Structuring the verification of heap-manipulating programs.

In POPL. 261–274. https://doi.org/10.1145/1706299.1706331

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data Structures.

In CSL (LNCS, Vol. 2142). Springer, 1–19. https://doi.org/10.1007/3-540-44802-0_1

Guillaume Petiot, Bernard Botella, Jacques Julliand, Nikolai Kosmatov, and Julien Signoles. 2014. Instrumentation of

Annotated C Programs for Test Generation. In 14th IEEE International Working Conference on Source Code Analysis and

Manipulation (SCAM). IEEE Computer Society, 105–114. https://doi.org/10.1109/SCAM.2014.19

Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2014. GRASShopper - Complete Heap Verification with Mixed

Specifications. In TACAS (LNCS, Vol. 8413). Springer, 124–139. https://doi.org/10.1007/978-3-642-54862-8_9

Nadia Polikarpova, Julian Tschannen, and Carlo A. Furia. 2018. A fully verified container library. Formal Aspects Comput.

30, 5 (2018), 495–523. https://doi.org/10.1007/s00165-017-0435-1

Shengchao Qin, Guanhua He, Chenguang Luo, Wei-Ngan Chin, and Xin Chen. 2013. Loop invariant synthesis in a combined

abstract domain. J. Symb. Comput. 50 (2013), 386–408. https://doi.org/10.1016/j.jsc.2012.08.007

Vincent Rahli, Ivana Vukotic, Marcus Völp, and Paulo Jorge Esteves Veríssimo. 2018. Velisarios: Byzantine Fault-Tolerant

Protocols Powered by Coq. In ESOP (LNCS, Vol. 10801), Amal Ahmed (Ed.). Springer, 619–650. https://doi.org/10.1007/978-

3-319-89884-1_22

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In LICS. IEEE Computer Society,

55–74. https://doi.org/10.1109/LICS.2002.1029817

Talia Ringer. 2021. Proof Repair. Ph. D. Dissertation. University of Washington, USA.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.

https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://iris-project.org/
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/3314221.3314634
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.4204/EPTCS.102.6
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/1706299.1706331
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1109/SCAM.2014.19
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1007/s00165-017-0435-1
https://doi.org/10.1016/j.jsc.2012.08.007
https://doi.org/10.1007/978-3-319-89884-1_22
https://doi.org/10.1007/978-3-319-89884-1_22
https://doi.org/10.1109/LICS.2002.1029817


Mostly Automated Proof Repair for Verified Libraries 107:25

Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary Tatlock. 2019a. QED at Large: A Survey of Engineering

of Formally Verified Software. Found. Trends Program. Lang. 5, 2-3 (2019), 102–281. https://doi.org/10.1561/2500000045

Talia Ringer, RanDair Porter, Nathaniel Yazdani, John Leo, and Dan Grossman. 2021. Proof repair across type equivalences.

In PLDI. ACM, 112–127. https://doi.org/10.1145/3453483.3454033

Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. 2018. Adapting proof automation to adapt proofs. In CPP.

ACM, 115–129. https://doi.org/10.1145/3167094

Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. 2019b. Ornaments for Proof Reuse in Coq. In ITP (LIPIcs,

Vol. 141). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 26:1–26:19. https://doi.org/10.4230/LIPIcs.ITP.2019.26

Valentin Robert. 2018. Front-end tooling for building and maintaining dependently-typed functional programs. Ph. D.

Dissertation. University of California, San Diego, USA.

Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC:

automating the foundational verification of C code with refined ownership types. In PLDI. ACM, 158–174. https:

//doi.org/10.1145/3453483.3454036

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Mechanized verification of fine-grained concurrent programs.

In PLDI. ACM, 77–87. https://doi.org/10.1145/2737924.2737964

Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. 2018. Learning Loop Invariants for Program

Verification. In NeurIPS. 7762–7773.

Amin Timany and Bart Jacobs. 2015. First Steps Towards Cumulative Inductive Types in CIC. In ICTAC (LNCS). Springer,

608–617. https://doi.org/10.1007/978-3-319-25150-9_36

Karin Wibergh. 2019. Automatic refactoring for Agda. Master’s thesis. Chalmers University of Technology and University of

Gothenburg.

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas E. Anderson.

2015. Verdi: a framework for implementing and formally verifying distributed systems. In PLDI. ACM, 357–368. https:

//doi.org/10.1145/2737924.2737958

Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst, and Thomas E. Anderson. 2016. Planning for

change in a formal verification of the raft consensus protocol. ACM, 154–165. https://doi.org/10.1145/2854065.2854081

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 107. Publication date: June 2023.

https://doi.org/10.1561/2500000045
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.1145/3167094
https://doi.org/10.4230/LIPIcs.ITP.2019.26
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1007/978-3-319-25150-9_36
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2854065.2854081

	Abstract
	1 Introduction
	2 The labours of Sisyphus
	2.1 An Initial Verified [language=Coq,basicstyle=,mathescape=true]Seq.toarray
	2.2 A Recipe for Proof Repair

	3 Proof Reconstruction and Synthesis of Invariant Candidates
	3.1 Generating Proof Skeletons
	3.2 Computing Program Alignment
	3.3 Synthesising Invariant Candidates

	4 Proof-Driven Invariant Testing
	4.1 Instantiating Proof Terms with Concrete Inputs
	4.2 Extracting Tests from Reduced Proof Terms
	4.3 Testing Properties in Separation Logic

	5 Implementation and Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

