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Abstract. We present a surprisingly short proof that for any continuous map

f : Rn → Rm, if n > m, then there exists no bound on the diameter of fibers

of f . Moreover, we show that when m = 1, the union of small fibers of f
is bounded; when m > 1, the union of small fibers need not be bounded.

Applications to data analysis are considered.

High-dimensional data sets are often difficult to analyze directly and, conse-
quently, methods of simplifying them are important to modern data-intensive sci-
ences. Continuous mappings f : Rn → Rm are frequently used to reduce the
dimension of large data sets. Indeed, a classic result of Johnson and Lindenstrauss
[6] shows that for N points in any Euclidean space, there exists an injective Lip-
schitz function which maps these points into RO(logN) with minimal distortion in
pairwise distances. However, while continuous maps enjoy many desirable proper-
ties, the following suggests that a measure of caution should be exercised before
employing them for high-dimensional data analysis. We present a simple proof that
for any continuous map f : Rn → Rm, if n > m then there exists no bound on the
diameter of fibers of f . Therefore, points can be arbitrarily far apart in Rn, yet
map to the same point under f .

Definition. The fibers of a map f : X → Y are the preimages f−1(y) = {x ∈ X :
f(x) = y} of points in Y .

Definition. The diameter of a set A is the supremum sup{d(x, y) : x, y ∈ A},
where d(x, y) denotes the Euclidean distance between x and y.

We begin by considering real-valued functions.

Proposition. Let f : Rn → R be a continuous function where n > 1. Then for
any M > 0, there exists y ∈ R whose fiber has diameter greater than M .

Proof. Assume that some M > 0 bounds all fiber diameters. Consider three points
a, b, c ∈ Rn such that the distance between any two is 2M , as in Figure 1. As M
bounds the fiber diameters, f(a), f(b), and f(c) must be distinct; without loss of
generality, suppose f(a) < f(b) < f(c). By the intermediate value theorem, the line
segment ac contains a point x such that f(x) = f(b). As the distance from b to any
point on ac is greater than M , the fiber containing b must have diameter greater
than M , contradicting our assumption that M bounds all fiber diameters. �

The intermediate value theorem plays a central role in the proof above, and will
turn up again several times in what follows. A generalization of this proposition
can be established using the Borsuk-Ulam theorem [1], a result about continuous
mappings from an n-sphere Sn to Rn.
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Figure 1. Three points in Rn such that the distance between each
pair is 2M . If f(a) < f(b) < f(c), then by the intermediate value
theorem there exists a point x on the segment connecting a to c
such that f(a) < f(x) = f(b) < f(c), and so x and b belong to the
same fiber. Since the distance from x to b is greater than M , M
cannot bound all fiber diameters.

Theorem (Borsuk-Ulam, 1933). For every continuous map f : Sn → Rn there
exist antipodal points x,−x ∈ Sn such that f(x) = f(−x).

The Borsuk-Ulam theorem holds for n-dimensional spheres of any radius centered
at the origin, and also for spheres centered at any point in a Euclidean space of
dimension greater than n. In the latter case, the antipodal map is the symmetry
about the center of the sphere. We can now show the following.

Theorem 1. Let f : Rn → Rm be a continuous map where n > m. Then for any
M > 0, there exists y ∈ Rm whose fiber has diameter greater than M .

Proof. Consider an m-sphere Sm ⊂ Rn with radius M and centered at the origin.
By Borsuk-Ulam, there are antipodal points x,−x ∈ Sm such that f(x) = f(−x).
The points x and −x lie in the same fiber of f and d(x,−x) = 2M , so this fiber
has diameter at least 2M . �

An analogous result will hold for any domain X ⊆ Rn in which we can isomet-
rically embed m-spheres of arbitrarily large diameter and any co-domain Y ⊆ Rm,
where X and Y are endowed with the subspace topology.

Small Fibers

At this point we consider the union of all small fibers. For the remainder of the
paper, we consider an arbitrarily chosen but fixed M > 0.

Definition. We call a nonempty fiber small if its diameter is less than M .

Small fiber lemma. Let f : Rn → R be a continuous map where n > 1. Given
three points a, b, c ∈ Rn such that the distance between each pair is at least M , no
more than two belong to small fibers of f .

Proof. Assume that a, b, c ∈ Rn all belong to small fibers. If the distance between
each pair is at least M , then f(a), f(b), and f(c) must be distinct; without loss
of generality, suppose f(a) < f(b) < f(c). Since the complement in Rn of the
open ball of radius M centered at b is path-connected, being homeomorphic to the
product Sn−1 × [M,∞), a curve can be drawn from a to c such that the distance
from b to every point along the curve is at least M . However, by the intermediate
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value theorem, for some point x on the curve, f(a) < f(x) = f(b) < f(c). The
fiber containing b therefore has diameter at least M , and so cannot be small. �

We now show that the small fiber lemma places restrictions on the union of small
fibers for real-valued functions.

Theorem 2. Let f : Rn → Rm be a continuous map where n > m. When m = 1,
the union of small fibers is bounded; when m > 1 the union of small fibers can be
unbounded.

Proof. We begin with the case where m = 1. Recall that a fiber is small if its
diameter is less than M . If the union of all small fibers is contained in an open
ball of radius M , then of course the union of small fibers is bounded. If the union
of all small fibers is not contained in an open ball of radius M , then there must
exist points a, b such that both belong to small fibers and such that d(a, b) ≥ M .
It then follows from the small fiber lemma that for any point x belonging to any
small fiber, either d(x, a) < M or else d(x, b) < M . The set of all such points is of
course bounded.

When m > 1, a simple example shows that the union of small fibers of f can be
unbounded. Consider the continuous map f : Rn → Rm given by:

(1) f(x1, x2, . . . , xn) = (x1,
√

Σn
i=2x

2
i , 0, 0, . . . , 0).

Note that fibers of f are (n− 2)-spheres with centers along the x1 axis. The union
of all small fibers is the set of points whose distance to the x1 axis is less than
M/2. �

Although the union of small fibers is bounded when m = 1, two small fibers can
be located arbitrarily far apart. Consider for example the Urysohn-like function
f : Rn → R, for n > 1, given by

(2) f(x) =
d(x, a)2

d(x, a)2 + d(x, b)2
,

for distinct points a and b; an example in the case n = 2 is illustrated in Figure 2.
With one exception, all fibers of f are (n− 1)-spheres whose centers lie on the line
that passes through a and b, but not on the segment ab. An additional fiber is the
perpendicular bisector of ab, a hyperplane that becomes a sphere when the point at
infinity is adjoined. The spherical fibers are smallest when their centers are closest
to ab, and grow as their centers move away from it. The distance between the sets
of small fibers can be made arbitrarily large by moving a and b arbitrarily far apart.

Small Fibers and Boundedness

Aside from illustrating that small fibers can be located arbitrarily far apart,
Figure 2 also highlights a general property of continuous real-valued functions with
small fibers. In particular, we can use an approach similar to that used in proving
the small fiber lemma to show the following.

Theorem 3. Let f : Rn → R be a continuous function where n > 1. If f has a
small fiber, then f is bounded from above or from below. Further, if a, b ∈ Rn both
belong to small fibers and d(a, b) ≥M , then f is bounded from above and below.
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Figure 2. Circular fibers of a continuous function f : R2 → R
given by (2). All small fibers are contained in two regions centered
near a and b; these regions can be located arbitrarily far apart.

Proof. If f has a small fiber f−1(y), then this fiber is contained in some closed
ball B of radius M ; since B is closed, f is bounded on it. If f is unbounded from
above and from below, then there exist points a, b 6∈ B such that f(a) < y < f(b).
As in the proof of the small fiber lemma, since the complement of B in Rn is
path-connected, a curve can be drawn in it from a to b. By the intermediate value
theorem there exists a point x on that curve such that y = f(x), and so the fiber
over y is not small, contradicting our assumption.

The second part of the theorem can be proven in a similar manner. If a, b ∈ Rn

both belong to small fibers and d(a, b) ≥ M , then f(a) and f(b) must be distinct;
without loss of generality, suppose f(a) < f(b). Consider the closed ball B of radius
M centered at b. Since B is closed, f is bounded on it. If f is unbounded from
above, then there exists a point c 6∈ B such that f(a) < f(b) < f(c). As above, a
curve can be drawn from a to c such that the distance from b to every point along
the curve is at least M . By the intermediate value theorem, there exists a point
x along that curve such that f(x) = f(b). Since d(x, b) ≥ M , b cannot belong to
a small fiber, contradicting our assumption and showing that f must be bounded
from above. An analogous argument shows that f is bounded from below. �

Note that discontinuous functions, even those that are bounded, integrable, and
decay to zero, need not have fibers of arbitrarily large diameter. Consider, for
example, the following function f : R2 → R:

f(x, y) =


1
2

bxc 1
3

byc
x ≥ 0, y ≥ 0

1
5

−bxc 1
7

byc
x < 0, y ≥ 0

1
11

bxc 1
13

−byc
x ≥ 0, y < 0

1
17

−bxc 1
19

−byc
x < 0, y < 0.

(3)

Here f takes a unique rational value on each unit square in the plane, and so every
nonempty fiber of f has diameter

√
2. Note that f tends to 0 as x2 + y2 tends to

∞. Moreover, f is in L1 and L∞, and hence in Lp for all 1 ≤ p ≤ ∞. This example
can be generalized for arbitrary n > m, with a suitable choice of prime numbers.

Conclusions

The analysis above provides a cautionary tale for data science analysts. The
use of continuous maps to reduce the dimension of point sets in high-dimensional
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Euclidean spaces entails what we might call the “curse of continuity” – there will
exist points arbitrarily far apart that are identified under such maps. Not only
will knowledge of f(x) not allow us to recover x exactly, but we will generally be
unable to determine x to within any finite error. Under suitable restriction of the
domain this issue might be avoided, but knowledge of such restrictions is not always
available a priori.

In contrast, discontinuous mappings suffer no such inherent limitations. Equa-
tion (3), for example, can be scaled such that its fibers are n-dimensional cubes of
edge length ε. The diameter of each fiber is then precisely ε

√
n. Knowledge of f(x)

then allows us to determine x to within a maximal error ε
√
n.

An application highlighting some limitations of continuous maps in analyzing
structure in large point sets can be found in [7]. In computational materials science
research, continuous “order parameter” mappings are often constructed to summa-
rize structural information near each particle in a system of particles. This order
parameter is subsequently used to identify larger-scale structural features of the
system. The continuity of the order-parameter entails that points arbitrarily far
apart in a relevant configuration space will map to the same order-parameter value.
Consequently, continuous order-parameters regularly fail to distinguish structurally
distinct configurations of points, making automated analysis difficult or impossible.
In that paper, the authors suggest a discrete order-parameter, based on Voronoi
cell topology, which largely avoids this degeneracy.

We note that Theorem 1 can be obtained as a consequence of Corollary 0.3 in
[4], though the proof here is simpler. Also, a similar result for proper mappings can
be found as a consequence of an exercise presented at the end of Section 3.3 in [2].
Finally, Theorem 1 can also be obtained as a simple corollary of what Larry Guth
has called the “Large fiber lemma” [3, Section 7.6], [5, Section 6], itself a corollary
of the Lebesgue covering lemma which is used in topological dimension theory.

Large fiber lemma. If f : [0, 1]n → Rm is a continuous map where n > m, then
one of the fibers of f has diameter at least 1.

The technique used in the proof of Theorem 1 can also be used to strengthen
this lemma in two ways. First, we can replace the unit n-cube with the inscribed
(n − 1)-sphere of unit diameter. Second, the inequality of the conclusion becomes
an equality.

Questions

This paper is concerned with fibers in Rn equipped with the standard Euclidean
metric. It is easily shown that Theorem 1 can fail when Rn is equipped with other
metrics. For example, we can map R2 homeomorphically to the cylinder capped by
a half-sphere on one end and unbounded on the other. If the origin is mapped to
the center of the spherical cap, then fibers of the distance function to the origin are
circles whose diameters are all bounded by that of the cylinder. Thus, one might
wonder about necessary and sufficient conditions on the metric for Theorem 1 to
hold.

In this paper, we proved that the union of small fibers can have unbounded
diameter when m > 1. However, one might ask if there must exist a line through
the origin in Rn onto which the projection of this set is bounded. If so, is there a
lower bound on the number of such orthogonal lines, depending on n and m?
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