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SUMMARY
Recent advances in fluorescence imaging permit studies of Ca2+ dynamics in large numbers of
cells, in anesthetized and awake behaving animals. However, unlike for electrophysiological
signals, standardized algorithms for assigning optically recorded signals to individual cells have
not yet emerged. Here we describe an automated sorting procedure that combines independent
component analysis and image segmentation for extracting cells’ locations and their dynamics
with minimal human supervision. In validation studies using simulated data, automated sorting
significantly improved estimation of cellular signals compared to conventional analysis based on
image regions of interest. We used automated procedures to analyze data recorded by two-photon
Ca2+ imaging in the cerebellar vermis of awake behaving mice. Our analysis yielded simultaneous
Ca2+ activity traces for up to >100 Purkinje cells and Bergmann glia from single recordings. Using
this approach, we found microzones of Purkinje cells that were stable across behavioral states and
in which synchronous Ca2+-spiking rose significantly during locomotion.

INTRODUCTION
Techniques for loading Ca2+-indicators into many cells have enabled recent imaging studies
of the dynamics of hundreds of neurons and astrocytes (Gobel et al., 2007; Greenberg et al.,
2008; Mrsic-Flogel et al., 2007; Nimmerjahn et al., 2009; Ohki et al., 2005; Orger et al.,
2008; Stosiek et al., 2003). However, computational techniques for extracting cellular
signals from Ca2+ imaging data lag behind and are mainly region of interest (ROI) analyses.
These are typically manual (Dombeck et al., 2007; Gobel et al., 2007; Kerr et al., 2005;
Niell and Smith, 2005), or semi-automated (Ozden et al., 2008) means of identifying cells
and cannot be easily scaled to handle the largest data sets without undue human labor.
Moreover, ROI analyses have largely been based on heuristic definitions of the morphology
of specific cell types (Gobel et al., 2007; Ohki et al., 2005; Ozden et al., 2008), rather than
general principles for decomposing a data set into constituent signal sources. Thus, current
analyses are prone to cross talk in the signals extracted from adjacent cells and surrounding
neuropil. The present mismatch between the capabilities for Ca2+ imaging and those for
analyzing the data restricts the capacity to attain biological insights.
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This situation partly resembles that of the early 1990’s, when multi-electrode techniques
were blossoming but standardized spike sorting algorithms had yet to arise. Today,
automated spike sorting is widely used to assign spikes to individual cells (Fee et al., 1996;
Lewicki, 1998) and has enabled key advances in understanding neural coding (Batista et al.,
2007; Csicsvari et al., 1998; Meister, 1996). An automated procedure for extracting cellular
Ca2+ signals would be a similar enabler of scientific progress. However, the challenges in
devising such a procedure are distinct from those in spike sorting.

Spike sorting routines tend to rely on two basic ideas. First, the temporal waveforms for
spikes from different cells are often sufficiently dissimilar to provide a basis for spike
classification. Second, the activity of individual cells is often recorded on multiple
electrodes, aiding assignment of spikes based on their relative amplitudes on different
recording channels. Neither approach works well for imaging data. First, Ca2+ activity
waveforms are strongly dictated by intracellular Ca2+ buffering and the dye’s binding
kinetics (Helmchen et al., 1996), which do not provide strong signatures of individual cells’
identities. Second, single image pixels can contain a complex mixture of signals from
neuropil, neurons, astrocytes, and noise. It is nontrivial to disentangle these signals without
suffering cross talk and to find the shapes and locations of each cell. A guiding principle is
needed to help extract cells’ locations and activities.

We formulated such a principle by considering that intracellular [Ca2+] can transiently rise
~100-fold above background levels during cellular events such as action potentials. Brief
periods of elevated [Ca2+] are typically sparsely interspersed among many more
background-dominated time frames. Sparseness also holds in the spatial domain if each cell
occupies only a small subset of pixels. Thus, Ca2+ signals’ sparseness should be a general
attribute that is quantifiable by simple measures, such as the skewness of amplitude
distributions.

This reasoning led us to an algorithm that estimates cells’ locations and activities by parsing
data into a combination of statistically independent signals, each with a high sparseness. The
algorithm requires no preconceptions of cells’ appearances and little user supervision, and it
relies on an independent component analysis (ICA) (Bell and Sejnowski, 1995; Brown et al.,
2001; Reidl et al., 2007) (Figure 1). ICA has been used previously for analyses of
electroencephalography (EEG) (Makeig et al., 1997), magnetoencephalography (MEG)
(Guimaraes et al., 2007) and functional magnetic resonance imaging (fMRI) (Beckmann and
Smith, 2004; McKeown et al., 1998) data, but a challenge has concerned the physiological
interpretation of the identified sources, which can be mixtures of signals from different
recording channels or brain areas. We reasoned that for ICA analyses of Ca2+ imaging data,
such interpretative issues should be much reduced, since cells’ properties can be
corroborated by other experimental means, including in the same animals examined by
imaging. In studies of human brain activity, corroborative data was much harder to obtain in
living subjects.

We validated our method using simulated movies mimicking Ca2+ imaging data acquired in
cerebellar cortex. Our sorting procedure provided superior signal estimates and lower
susceptibility to cross talk than reconstructions done by ROI analysis. We also tested our
analysis on data recorded by two-photon microscopy in the cerebellar cortex of awake
behaving mice, from which we extracted Ca2+ signals of up to >100 total Purkinje cells and
Bergmann glia.

To illustrate our method’s utility, we applied it to study the spatiotemporal organization of
Purkinje cells’ Ca2+-spiking activity in behaving mice. We found that synchronously active
cells cluster into neighborhoods ~7–18 cells across in the medio-lateral dimension. We
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identify these as cerebellar microzones, small patches of Purkinje cells receiving similar
climbing fiber input (Andersson and Oscarsson, 1978). Our data revealed that microzones of
awake animals have sharply delineated medio-lateral boundaries, to a precision of about a
single cell.

We addressed the longstanding question of whether microzones have stable anatomical
boundaries (Andersson and Oscarsson, 1978), or are dynamic entities whose cellular
constituents vary across behavioral states (Lang et al., 1999; Welsh et al., 1995). We found
that during mouse locomotion microzones’ spatial organization was unchanged from that in
awake but resting animals, consistent with the idea microzones are stationary anatomical
units. These findings reveal basic features of cerebellar dynamics and highlight the impact
of automated procedures for analyzing imaging data.

RESULTS
Principles for Extracting Cellular Signals

The purpose of cell sorting is to identify spatial filters and corresponding time traces that
represent the locations and dynamics of individual cells (Figure 1A). Our procedure does
this in four stages (Figure 1B and Supplemental Software Toolbox).

Physiological signals are buried in high-dimensional data that might contain, e.g. Nx ~105

pixels and Nt ~104 time frames. A first stage of analysis should reduce this dimensionality,
since specifying cells’ spatial filters and activities would otherwise require a large set of
parameters. In principle, these parameters could be found, but tuning many parameters can
hamper signal extraction (Hastie et al., 2001). For dimensional reduction we used an
established method, principal component analysis (PCA) (Table S1), to find and discard
dimensions that mainly encoded noise (Mitra and Pesaran, 1999). Other means of
dimensional reduction might also be suitable (Discussion).

PCA identifies a linear transformation of the data yielding basis vectors, the principal
components, which are rank ordered by the variance of signals along each basis vector.
Truncation of the highest ranked components with the smallest variances often does not
interfere with an approximate reconstruction of the data. On the contrary, if ongoing
background noise has smaller variance than transient but strong signals, then removing
higher order components from the data can eliminate substantial noise. In our studies of
cerebellum, after identifying the noise floor and truncating principal components
representing noise (Figure S1) (Mitra and Pesaran, 1999), we achieved a reduced
dimensionality, K, much less than Nx or Nt. However, PCA alone cannot isolate Ca2+ signals
from individual cells.

PCA by itself is ill suited for cell sorting since it relies on differences in variance to identify
data components; in practice, time variations in different cells’ fluorescence signals tend to
be of similar amplitude. Thus, each principal component generally has a mix of signals from
multiple cells. Instead, one seeks a set of signal sources reflecting individual cells. The
expectation is that such sources should be localized, with a sparse or skewed spatial
distribution of pixel weights for each cell, such that most pixels have almost no weight but a
few are strongly weighted at the cell’s location. Skewness, a distribution’s third moment
normalized by the cube of the standard deviation, provides a means of characterizing
sparseness and searching for statistical signatures of individual cells. Similarly, if the
intervals between cells’ brief rises in [Ca2+] are greater than their durations, the distributions
of signals’ time variations will also be sparse and skewed (Discussion).
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These expectations motivated our application of ICA following PCA. ICA is suited to
extracting cellular signals since it seeks pairs of spatial filters and time traces that are sparse
and statistically independent of one another. In practice, we found cells can exhibit
significant signal correlations and ICA will still work well, even for cell pairs with
moderately high correlation coefficients. We used a version of the FastICA algorithm that
maximizes the sparseness of extracted signals (Hyvarinen and Oja, 2000), which we
expressed by a combination of spatial and temporal skewness (Supplemental Experimental
Procedures).

ICA Yields Ca2+ Signals That Are Statistically Sparse
We examined the sparseness of Ca2+ signals recorded by two-photon microscopy in the
cerebellar vermis of awake, head-restrained mice (Figure 2). We used multi-cell bolus
loading of the Ca2+-indicator Oregon Green 488 BAPTA-1-AM to label neurons and
astrocytes in the cerebellar molecular layer (Nimmerjahn et al., 2009; Ozden et al., 2008)
(Supplemental Experimental Procedures). The mice stood on an exercise ball and could
walk or run at liberty during imaging (Dombeck et al., 2007; Nimmerjahn et al., 2009). This
permitted recording of the dendritic Ca2+ spikes associated with complex (Na+ and Ca2+)
action potentials in Purkinje cells (Flusberg et al., 2008; Ozden et al., 2008). We also
observed Ca2+ activation in Bergmann glial fibers (Nimmerjahn et al., 2009). Application of
PCA to the data yielded principal components that were generally not spatially localized and
failed to isolate cells’ activities (Figures 2A and 2B, top row). Distributions of signal values
along the principal component vectors were highly symmetric and approximately Gaussian
(Figure 2C, right) and did not separate Ca2+ transients from background noise. ICA
transformed these components into new basis vectors with more distinctive properties.

A majority of independent components had spatial filters far more localized than those of
principal components and could reasonably represent individual cells (Figures 2A and 2B,
bottom row). Spatial filters found by ICA had skewed distributions (4.4 ± 2.7, mean
skewness ± s.d., n = 300 independent components in 5 mice, versus −0.009 ± 0.26 for 504
principal components), with the weights of small subsets of pixels up to 19 standard
deviations greater than background pixels (Figure 2C, left). Many filters resembled a stripe
in the rostral-caudal direction, with the long axis perpendicular to the folium of the
cerebellar cortex (Figure 2A). This is the expected optical cross-section through the
dendritic tree of a single Purkinje cell, since these cells have nearly planar dendritic trees
lying perpendicular to the field of view (Flusberg et al., 2008; Ozden et al., 2008). The
stripes’ widths (7.0 ± 2.3 µm, mean ± s.d.; n=199 dendrites in 5 mice) and lengths (90 ± 40
µm) as estimated by twice the standard deviations of Gaussian fits were consistent with
values derived anatomically (Llinas et al., 2004; Palay and Chan-Palay, 1974) or in prior in
vivo Ca2+ imaging studies of Purkinje cells (Flusberg et al., 2008; Ozden et al., 2008).

In the temporal domain, Ca2+ activity traces of the independent components also had sparse
statistics. Signal distributions were asymmetric and non-Gaussian, with sparse sets of time
frames during which fluorescence signals rose by up to eight standard deviations (Figure 2C,
right). For the striped independent components representing Purkinje cell dendritic trees, the
time traces yielded Ca2+ spike rates and waveforms similar to those from prior manual or
semi-automated analyses of cerebellar Ca2+ imaging data (Flusberg et al., 2008; Ozden et
al., 2008).

After verifying the sparseness of signals found by ICA, we examined their independence by
plotting joint distributions of signals from pairs of components, each representing one
Purkinje cell. The data of Figure 2D (bottom) is typical of 276 pairs we studied. In most time
frames signals were close to background levels. Each cell was active during a subset of time
frames, but the subsets for the two cells were distinct, unlike with pairs of principal
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components (Figure 2D, top). Only a small number of time frames had high signal
amplitudes in both cells, consistent with the cells’ activities being statistically independent.
We did encounter some cell pairs whose activity was sufficiently correlated that the pair was
extracted as a single independent component. We handled these instances in the third stage
of our analysis (see below).

Interestingly, the skewness often provided a means for distinguishing components
representing individual cells from those representing artifacts, such as due to brain motion.
Nearly all independent components in experimental data had much higher spatial skewness
than principal components (Figures 2E). Among the independent components those we
recognized by eye to be Purkinje cell or Bergmann glial signals, based on our prior studies
of these cells (Flusberg et al., 2008; Nimmerjahn et al., 2009), generally had higher temporal
skewness than those representing noise or artifacts (Figure 2E). After sorting independent
components by their temporal skewness, it was usually quick and straightforward to
segregate and reject artifactual components by inspection. Alternatively, signal components
could often be isolated via automated clustering of signals according to their skewness
(Figures 2E and S1). To be conservative we regularly examined spatial filters and time
traces visually before accepting them as cellular signals. When we inspected components
with high skewness we found several types of signals in our cerebellar recordings.

Prominent signals extracted by ICA were those from one, sometimes two, and occasionally
three or more of the striped regions that we interpreted to be cross-sections of the
corresponding number of Purkinje cell dendritic trees (Figures 2A and 5). Signals from these
stripes exhibited brief increases in fluorescence (<50 ms rise), followed by an approximately
exponential decay with time constant 124 ± 63 ms (mean ± s.d., n=150 cells in 5 mice). In
awake mice these events occurred at a spontaneous rate of 0.76 ± 0.15 Hz (n=199 cells in 5
mice) when the mice were not moving on the exercise ball. These rates were determined by
performing a temporal deconvolution on the time traces to account for the Ca2+-indicator’s
kinetics, followed by a threshold operation for spike detection (Figure 1B) (Yaksi and
Friedrich, 2006). The rates are consistent with those from physiological recordings of
complex spiking (Lang et al., 1999; Servais et al., 2004) and Ca2+ imaging studies of
Purkinje cells (Flusberg et al., 2008; Gobel and Helmchen, 2007b; Ozden et al., 2008).
Through simultaneous optical and single-unit electrophysiological recordings we verified
that Ca2+ spikes found by our procedure corresponded to complex spikes (Figures 5C and
S2). ICA also regularly yielded signals with slower dynamics consistent with Ca2+

activation in fibers of Bergmann glia (Nimmerjahn et al., 2009), the sole type of astrocyte in
the cerebellar molecular layer (Figure 5). Independent components with skewness values
lower than those for Bergmann glia or Purkinje cells generally resembled artifacts in having
diffuse spatial weighting, strong correlations with brain movement, and kinetics too fast to
be consistent with those of the Ca2+ indicator (Figure S6). We excluded such components
from further analyses (Figure 2E).

Combining Spatial and Temporal Information Can Improve Cell Sorting
After obtaining these results, we sought to fine tune ICA’s ability to isolate cells. Most prior
usages of ICA in brain imaging have maximized spatial sparseness (Reidl et al., 2007), but it
is reasonable to consider also temporal sparseness. We did this using spatio-temporal ICA,
which optimizes a linear combination of spatial and temporal skewness (Stone et al., 2002).
One parameter, µ, set the relative weight of the two. We sought µ values that improved
estimation accuracies (Figure S3). To explore, we created artificial movies that mimicked
our recordings from the cerebellum and contained signals from Purkinje cells and Bergmann
glia. We included photon shot noise, the main noise source in two-photon microscopy, and
background structures such as blood vessels to resemble those in the experiments. We
defined the fidelity of extracted signals, F, as the correlation coefficient between each cell’s
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actual dynamics and its reconstructed signal, with F = 100% implying a perfect
reconstruction.

Distributions of F as a function of µ depended on multiple parameters, including the field of
view size and thus the number of cells, the numbers of pixels and time frames, cells’ mean
spike rate relative to the frame rate, and the amplitudes of cells’ signals above background.
In nearly all situations representative of our experiments, spatial ICA (µ = 0) was superior to
temporal ICA (µ = 1), leading to higher median fidelities and components easily
recognizable as Purkinje cells. Temporal ICA often failed to yield components recognizable
as cells. Spatio-temporal ICA with µ < 0.5 nearly always led to the highest fidelities,
although the gains over a purely spatial ICA were only weakly sensitive to µ and modest,
with ~1–10% improvements in median fidelity and ~0–15% improvements in fidelities for
individual cells (Figure S3). An exception was that if the frame rate was much higher than
the spike rates, the time traces became very sparse and a temporal weighted ICA (µ ≈ 1)
yielded the highest fidelities. Tuning µ yielded the most benefit in challenging cases with
substantial mixing of cells’ signals in individual pixels. With real data we found by
exploration that spatio-temporal ICA (µ ≈ 0.1–0.2) extracted the most components
resembling Purkinje cells, so we habitually used this approach.

Comparison of Independent Component and Region of Interest Analyses
To compare ICA and ROI analyses we used a form of ROI analysis that is the best a human
analyst could do if she correctly identified sets of example movie frames during which each
cell is active. The most challenging situations in our simulations and experiments involved
cells with overlapping pixel sets (Figures 3A and 5A) or pixels with signals from cells and
neuropil (Figure S4). In such cases ROI analysis had difficulty removing cross talk (Figure
3B and S4). With spatio-temporal ICA cross talk was much reduced, since independent
components had negatively weighted surround regions in the spatial filters that subtracted
signals from overlapping cells (Figures 3C and S4).

We studied how signal amplitudes and the field of view area affected signal extraction
(Figure 3D). For each pixel photon counts obeyed Poisson statistics, with the mean intensity
set by a signal to noise ratio parameter expressing signals’ dynamic range compared to
background fluorescence levels (Supplemental Materials). In simulations with a fixed field
of view (0.09 mm2; ~100 cells) ICA used increases in signal to noise ratio to improve
reconstruction fidelities and reduce cross talk between cells (Figure 3E). ICA’s performance
approached an optimum for signal to noise ratios > 0.3, at which the median fidelity
approached 95% and >80% of extracted signals had F > 75%. This fidelity was close to the
theoretical limit set by a linear regression analysis, which defines the best achievable by any
linear combination of principal components (Figure 3D and Supplemental Material). By
comparison, ROI analysis did not improve much with increases in signal to noise ratio and
failed to separate overlapping cells (Figure 3E). Alternatively, when we distributed a fixed
number of pixels across variable field of view areas, ICA achieved high fidelities and low
cross talk across a broad range of field sizes, whereas ROI analysis steadily degraded as
increased overlap between cells led to greater cross talk (Figure 3F). With the largest fields
of view both methods failed, yielding fidelities scarcely better than the cross talk values.
Overall, ICA was superior to ROI analysis and much closer to performance limits set by
linear regression (Figure 3D).

Image Segmentation for Separating Correlated Signals
An advantage of imaging is its ability to sample dense networks of cells, since the
dynamical correlations between neighboring cells are often of prime interest. A key question
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is whether ICA, which relies on statistical independence to identify cells, is limited in its
ability to separate cells with correlated signals?

In simulations with varying degrees of pairwise Purkinje cell synchrony, we found ICA
could readily distinguish cells whose spike trains had correlation coefficients, r, as high as
0.8 at the spike (≤ 1 Hz) and frame (10 Hz) rates simulated. The correlated cells were far
from independent, but sorting performed well, yielding high fidelity estimates comparable to
those attained without correlations (r=0). This was because activity traces of individual cells
were still more skew than those from cell mixtures, consistent with prior reports ICA is
often robust to deviations from the underlying model assumptions (Hyvarinen, 1999). Still,
when r > 0.8, ICA often extracted signals from strongly correlated cells in a single
independent component.

Our sorting procedure thus augments ICA with an image segmentation step to disentangle
signals from highly correlated cells that are spatially separated (Figures 1B and 4).
Following ICA, we smoothed each component’s spatial filter and applied a binary threshold
to find local regions with strong signal contributions. If a filter contained more than one
such region, we created new filters, each of which contained only one of the image
segments. These steps separated distinct cells with strongly correlated activity (Figure 4).
After these tests on simulated data, we studied data from the cerebellar cortex of live mice.

Sorting Cerebellar Ca2+ Signals From Live Mice
To illustrate cell sorting in an experimental context, we studied data from the molecular
layer of cerebellar lobules V and VI of anesthetized and awake head-fixed mice. Using
spatio-temporal ICA with µ = 0.1–0.2 followed by image segmentation, we extracted filters
with shapes of Purkinje cell dendrites that showed spontaneous (Figures 5A and 5B) and
evoked Ca2+-spiking activity (Figures 6 and S5).

There were also filters with more isotropic profiles and slower dynamics representing Ca2+

activation of Bergmann glial fibers (Figures 5A and 5B) (Nimmerjahn et al., 2009). Since
Bergmann glial fibers entwine Purkinje cell dendrites (Grosche et al., 1999), many pixels
contained the activity of both cell types. Thus, it is challenging to separate Purkinje cell and
Bergmann glial signals cleanly by ROI analysis. Yet, by automated sorting we disentangled
Purkinje cell Ca2+ spikes (Figure 5B, top four traces) from Bergmann glial Ca2+-transients
(Figure 5B, bottom four traces) without noticeable cross talk. Spontaneous glial signals
found by cell sorting covered ellipsoidal areas and had event rates much lower than neuronal
Ca2+ spike rates in both awake and anesthetized mice. The time course of glial Ca2+

activation conformed closely (r = 0.9 ± 0.1, s.d.; n = 96 events in 11 mice) to a double
exponential function with similar time constants for the rise (1.5 ± 0.7 s) and decay (1.8 ±
1.2 s). These kinetics resembled those of Ca2+ ‘bursts’ seen previously in Bergmann glia in
cerebellar slices (Beierlein and Regehr, 2006; Piet and Jahr, 2007), anesthetized (Hoogland
et al., 2009) and awake mice (Nimmerjahn et al., 2009).

After extracting Purkinje cells’ activities, we estimated the cells’ Ca2+ spike trains in binary
format using a deconvolution and threshold approach (Yaksi and Friedrich, 2006) (Figure
1B). To quantify spike detection accuracies, we combined two-photon microscopy with
simultaneous extracellular single unit electrical recordings of Purkinje cell activity in
anesthetized mice (Figure 5C). On the assumption the electrophysiological traces yielded
perfect records of complex spiking, we tested our ability to extract complex spikes from the
optical data. (This assumption is in general false, as imperfect electrical traces could lead to
underestimates of the accuracy of optical spike detection). We used receiver operating
characteristic (ROC) analysis, which compares probabilities of correct and incorrect spike
identification (Figure S2) (Fawcett, 2006).
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These probabilities depend on the spike detection threshold, and the ROC curve summarizes
the tradeoff between sensitivity and accuracy in a two-dimensional plot (Figure S2). The
area under this curve equals the probability that an ideal classification algorithm would
correctly discriminate a randomly selected time frame with a spike from one without a spike
(Fawcett, 2006), a measure not dependent on the spike threshold. In our data, areas under the
ROC curves were 0.84 ± 0.06 (mean ± s.d.; n = 7 cells) for image segments and 0.92 ± 0.05
for raw ICA signals. This implies ~85–90% discrimination accuracy. False positive and false
negative spike detection rates (Figure S2) were comparable to those in recent imaging
studies (Ozden et al., 2008; Sasaki et al., 2008) and tetrode recordings (Harris et al., 2000).

Following these validation studies in anesthetized mice, we studied awake mice and
extracted up to ~100 Purkinje cells from fields up to ~500 µm wide (Figures 5D and 5E).
Our algorithm extracted spike trains from cells tiling the entire field of view, many of which
were closely adjacent and extremely difficult to separate by manual methods. Automated
cell sorting also separated data components that seemed to represent movement artifacts
(Figure S6), similarly to ICA’s isolation of movement artifacts in fMRI studies (Beckmann
and Smith, 2004; McKeown et al., 1998). This meant our estimates of cellular activity were
relatively uncorrupted by animal motion, showing that ICA can complement image
registration techniques for removal of motion artifacts. As a test of ICA’s robustness, we
compared cells identified across an entire data set to those identified when only periods of
the mouse running were used for analysis. The latter analysis identified ~50% (range, 20–
74%; 5 mice) of the cells from the full data set, but these cells appeared to be correctly
identified since they were found in both cases. This test is extreme, for it assumes an entire
experiment involves continuous running, and illustrates ICA’s ability to find cells despite
the presence of motion artifacts.

Locomotor Behavior Increases Purkinje Cells’ Complex Spike Rates
A longstanding goal has been to determine how activity in the olivo-cerebellar circuit is
modulated during motor behavior. By combining automated cell sorting and two-photon
imaging in behaving mice we examined relationships between Purkinje cell complex spiking
and locomotion.

Using automated sorting we extracted Ca2+ signals from Purkinje cells in cerebellar lobules
V and VI in head-restrained mice allowed to run voluntarily on an exercise ball. Mean rates
of complex spiking varied between periods of anesthesia, alert rest, and active locomotion
for each mouse (Figure 6). For individual cells studied in all three conditions, spike rates
rose from 0.48 ± 0.27 Hz (mean ± s.d., n = 199 cells in 5 mice) under isoflurane anesthesia,
to 0.76 ± 0.15 in alert but resting mice, to 1.0 ± 0.18 Hz in awake mice during active
locomotion (Figures 6C and 6D) (p<0.001 for all pairwise comparisons; Wilcoxon signed
rank test). Thus, gross rates of complex spiking depended on behavioral state, consistent
with recent optical studies (Flusberg et al., 2008). Prior electrophysiological studies of
locomotion in decerebrated cats have been ambiguous on this point (Andersson and
Armstrong, 1987).

In mice studied in both awake and isoflurane-anesthetized conditions, we occasionally saw
adjoining groups of Purkinje cell dendritic trees that were identified in the full data set but
had little or no complex spiking (rate < 0.01 Hz) during anesthesia. For example, in Figure
6B dendritic trees labeled 1–8 and 35–42 by medio-lateral position were largely silent under
anesthesia. This was not so for all cells, as shown by dendrites 9–34 that spiked at 0.38 ±
0.15 Hz (n=25 dendrites). After cessation of anesthesia all Purkinje cells (1–42) in view
resumed Ca2+ spiking (Figure 6B). This example highlights the combined utility of
automated sorting and Ca2+ imaging by revealing phenomena in dense cellular networks
inaccessible to electrical recordings.
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Cerebellar Microzones Remain Anatomically Stable Across Behavioral States
Our studies of the vermis in behaving mice allowed us to reexamine the organization of
parasagittal bands of correlated Purkinje cells noted previously by Ca2+ imaging in
anesthetized animals (Ozden et al., 2008) and electrophysiological means (Andersson and
Oscarsson, 1978; Lang et al., 1999). We examined if microzones have stable anatomical
boundaries (Andersson and Oscarsson, 1978) or represent flexible ensembles that vary
across behavioral states (Welsh et al., 1995).

By studying pairwise correlation coefficients for Ca2+-related fluorescence signals, or for
the corresponding spike trains, we repeatedly observed enhanced correlations for multiple,
closely situated pairs of Purkinje cell dendrites as compared to more distally separated pairs
(Figures 7A and 7B). We looked for the anatomical boundaries of such microzones of highly
correlated cells by clustering Ca2+-spike trains using pairwise correlation coefficients
(Figure 7C and 7D) (Ozden et al., 2008). In alert but resting mice, cluster analysis
partitioned cells into microzones with higher correlations for intra-zone pairs (r = 0.10 ±
0.08 mean ± s.d.; n=1418 pairs in 5 mice) than inter-zone pairs (0.02 ± 0.03, n = 2474;
p<0.001 Wilcoxon rank sum test). Strikingly, the boundaries between microzones were
sharply delineated, with the spatial transition between microzones generally occurring in one
cell width rather than in a gradual manner over multiple Purkinje cell dendritic trees.

Like spike rates, pairwise correlations between Ca2+ spike trains varied between
anesthetized, alert but resting, and actively moving states. The correlations we saw among
cells in each microzone grew stronger during active movement (p<0.001 Wilcoxon signed
rank test) for intra-zone cell pairs (r = 0.20 ± 0.09), and to a statistically significant but far
lesser extent for inter-zone pairs (r = 0.03 ± 0.05), as compared to alert rest. When
considered together with the rises in spike rates across the field of view, this distinction in
synchrony between intra- and inter-zone cell pairs shows there are different degrees of
correlated input to intra-zone versus inter-zone pairs and that the rise in synchrony is likely
not just due to increased spike rates in independent cells. Likewise, it would be hard to argue
the rise in measured spike rates during locomotion was due to motion artifacts, since motion
artifacts would not lead to precisely defined microzones of high pairwise synchrony.

Compared to rest or locomotion, isoflurane anesthesia reduced correlations dramatically (r =
0.03 ± 0.06 intra-zone; r = 0.001 ± 0.02 inter-zone). In each microzone nearly all dendrite
pairs were significantly correlated (p<0.01, likelihood ratio test) in resting (86% of pairs)
and actively moving mice (95%), but only 26% of intrazone pairs were significantly
correlated under anesthesia. By comparison, less than a third of dendrite pairs from different
microzones were significantly correlated in mice at rest (29%), during movement (33%) and
under isoflurane anesthesia (7%). Taken together, these results show both Ca2+ spike rates
and pairwise synchrony within microzones increased during active movement as compared
to alert rest or anesthesia.

The organization of correlated Purkinje cell complex spiking was earlier proposed to be
dynamically modulated during motor behavior (Welsh et al., 1995). We tested the temporal
stability of microzones in two ways. First, we divided each experiment into 60 s epochs and
performed cluster analysis separately for each epoch. We found each Purkinje cell was
assigned to the same microzone during 96 ± 6% of epochs (n = 44 epochs). Second, we
tested if microzones changed their organization across different behaviors. By comparing
microzones found during locomotion and during alert rest, we found 98.5 ± 0.8% (mean ±
68% confidence interval; n = 199 cells in 5 mice) of cells fell in the same microzone in the
two conditions (Figure 7D). Our results did not reveal a modulation of microzone
boundaries.

Mukamel et al. Page 9

Neuron. Author manuscript; available in PMC 2012 February 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



DISCUSSION
Large-scale Ca2+ imaging studies pose analysis challenges of three main categories:
identification of cells’ locations, extraction of Ca2+ signals, and detection of neuronal
spikes. Only the third problem has received much attention, and several methods exist for
detecting spikes in fluorescence traces using temporal deconvolution (Yaksi and Friedrich,
2006), template matching (Greenberg et al., 2008; Kerr et al., 2005), particle filters
(Vogelstein et al., 2009) or machine learning (Sasaki et al., 2008). However, these
algorithms rely on the assumption the first two challenges have already been addressed,
yielding a paired spatial filter and time trace for each cell. To attain these pairs, we
developed automated procedures based on general principles that permit a decomposition of
data into constituent independent signals.

Growing Need for Automated Cell Sorting
Ca2+ imaging data has commonly been analyzed by manual identification of cell bodies
based on their morphologies in static fluorescence images (Dombeck et al., 2007; Gobel et
al., 2007; Greenberg et al., 2008). Some studies have used semi-automated methods that rely
on morphological filters to find cellular boundaries (Ohki et al., 2005). After finding
structures with the sizes and shapes expected of cell bodies, these procedures define ROIs
over which the fluorescence is averaged to extract each cell’s dynamics. With the most
commonly used AM-ester conjugated Ca2+ indicators this approach generally fails to
identify neuronal dendrites or fine glial processes, since these do not stand out with high
contrast and cannot be readily delineated by morphological filtering. In areas such as
neocortex in which the neuropil displays Ca2+ activity (Kerr et al., 2005) that inherently
contaminates somatic Ca2+ signals (Gobel and Helmchen, 2007a; Kerr and Denk, 2008),
ROI and morphological analyses can have difficulty excluding neuropil signals from the
cellular activity traces (Figure S4). For studies of cells’ receptive fields or sensory tuning
curves, cross talk from neuropil has the potential to mask sharply tuned responses, since
neuropil can exhibit untuned or broadly tuned signals (Ohki et al., 2005). Given these
challenges, sorting approaches based on signal statistics are warranted.

A recent study extracted Ca2+ signals from Purkinje cell dendrites by a method using
temporal cross-correlations to find sets of pixels contributing to each cell’s signal (Ozden et
al., 2008). A user selects an area slightly larger than each dendrite and computes the cross-
correlations among all pixels in this region. The final ROI contains all pixels highly
correlated with many others in the selected area. This method used signal statistics to
localize cells but required 2–3 hours of manual work for each data set. As the number of
cells in Ca2+ imaging studies extends into the hundreds (Gobel et al., 2007; Ohki et al.,
2005) or beyond, human selection of pixels will become increasingly prohibitive. Our
procedure takes only a few minutes of user supervision to input the number of principal
components and screen the results. We habitually scanned the independent components by
eye, but for most data sets the selection of independent components representing cells could
be automated by cluster analyses (Figures S1 and S6), especially with anesthetized mice,
which had lower levels of brain displacement than behaving mice. To be cautious, users
should compare the results of automated cell sorting to other data, such as from
electrophysiological (Figure 5) or anatomical analyses (Nimmerjahn et al., 2009). We also
recommend an initial, systematic testing of a range of µ values, to optimize the ability of
spatio-temporal ICA to find cells.

Our use of ICA builds on its prior usage for analysis of optical data of other types, such as
for extraction of voltage signals acquired in sea slugs by a photodiode array (Brown et al.,
2001). Two studies have used PCA followed by ICA to find functional domains and
hemodynamic signatures in optical imaging data (Reidl et al., 2007; Siegel et al., 2007).
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Signals came from large regions and so often only a few (e.g. ~6) principal components
were retained (Reidl et al., 2007). ICA has been used several times to analyze human brain
activity (Beckmann and Smith, 2004; Guimaraes et al., 2007; Makeig et al., 1997;
McKeown et al., 1998).

The approach here builds on and differs from previous optical studies by combining spatial
and temporal statistics and by following ICA with image segmentation. We preceded ICA
with PCA, to reduce the dimensionality of the data and to help ICA find global optima. PCA
is not the only means of dimensional reduction, and other approaches, such as dividing the
field of view into subsets each of which is larger than individual cells, might provide viable
alternatives. Our overall procedure is grounded in three suppositions: (1) cellular signals are
mathematically separable into products of paired spatial and temporal components; (2)
signals from different cells are statistically independent; (3) cells’ spatial filters and
temporal signals have skewed distributions. Interestingly, our procedure proved effective
under conditions with modest deviations from these assumptions.

Cell Sorting Separates Data Into Spatial and Temporal Components
The supposition that cellular signals are separable into spatial filters and time courses is
based on the observation neuronal Ca2+ signals in large-scale imaging data generally arise
from fixed locations and do not convey details at the shortest physiological time scales
regarding intracellular propagation of [Ca2+] changes. For example, for Purkinje cell Ca2+

spikes any delay between Ca2+ activation in different cell parts is generally briefer than one
image frame (50–100 ms), permitting a separation of space and time in describing these
events. Astrocytic Ca2+ waves that propagate far more slowly than neuronal Ca2+ spikes
violate the assumption of separability (Fiacco and McCarthy, 2006). Still, our procedure
extracted a useful approximation of Ca2+ waves that expanded over a fraction of the field of
view (Figures 5A and 5B). This suggests ICA remains a useful tool for analyzing weakly
non-separable signals. For forms of glial Ca2+ activation that propagate across long
distances (Nimmerjahn et al., 2009) other analyses seem more suitable.

Spatio-temporal separability may also be violated due to movement artifacts. Still, ICA can
often separate components representing motion artifacts from physiological signals (Figure
S6). This agrees with analyses of fMRI data showing ICA can remove moderate levels of
subject motion (McKeown et al., 1998; Reidl et al., 2007). ICA cannot rescue data badly
corrupted by motion. When motion artifacts were present at an intermediate level, the
skewness of components representing motion were sometimes comparable to those
representing cells, but motion components could still be identified based on their having
kinetics inconsistent with those of the Ca2+-indicator (Figure S6).

Automated Cell Sorting is Robust to Correlations in Cells’ Activities
For cell pairs with modest correlations (r < 0.8), ICA was able to identify the individual
cells. Since no approach to cell sorting can separate completely synchronized cells without
considering geometric information, we used image segmentation following ICA. The result
is a robust, hybrid procedure that handled strong levels of correlation (r ~ 0.9) in simulations
and separated highly correlated dendrites in our cerebellar data that clearly belonged to
different Purkinje cells based on their anatomical separation (Figure 4). High levels of
complex spike synchrony are known to arise for distinct Purkinje cells with inputs from the
same climbing fiber (Sugihara, 2005). Overall, our method’s ability to find individual cells
in cases of weak or strong synchrony is a key aspect of the procedure’s utility.
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Cell Sorting Based on Statistical Skewness
An assumption of spatial skewness is valid when individual cells occupy only a small
fraction of the pixels in the field of view. In our studies of Purkinje cells, an assumption of
skew temporal statistics was also satisfied, since the mean time between Ca2+ spikes was
greater than the individual spikes’ durations. However, sparse activation in time is not the
only means of achieving a skewed distribution of signal amplitudes. Cells with high rates of
activity that are strongly modulated in time, such as during bursts, could also have skewed
distributions of fluorescence amplitudes. Thus, our approach should be well suited to
neurons that exhibit irregular spiking, such as high-frequency bursts interrupted by periods
of quiescence (Dombeck et al., 2007; Greenberg et al., 2008; Margrie et al., 2002; Orger et
al., 2008). Both PCA and ICA ignore cells with very low activity levels, so our method fails
to identify cells that are totally inactive in the data. This could lead to underestimation of
cell densities and overestimation of mean activity levels in areas where many cells are
largely silent (Greenberg et al., 2008). Small fields of view aided the identification of cells
with low activity levels (Figure S4), so with such cells it might be beneficial to reduce the
dimensionality of the raw data by sub-dividing the field of view, rather than by PCA.

High rates of tonic, regular Ca2+ activation will also lead to signal distributions that are not
skew, potentially leading ICA to ignore such cells. In our recordings we had difficulty
extracting cerebellar interneurons (Sullivan et al., 2005), since these cells have high
spontaneous spike rates compared to the image acquisition rate and do not show bursty Ca2+

dynamics. A purely spatial ICA combined with image segmentation might be better suited to
extract these cells. Alternatively, a morphological analysis might work at the risk of
increasing cross talk.

Cerebellar Microzones As Stable Anatomical Entities
Automated cell sorting allowed us to re-examine a debate on the organization of Purkinje
cells’ complex spiking activity. One view holds there are flexible assemblies in the
cerebellar cortex that alter their composition of Purkinje cells with synchronous complex
spikes according to changing behavioral requirements (Llinas, 1991). Microelectrode array
recordings of complex spiking in behaving rats suggested that different groups of Purkinje
cells were synchronously activated at different phases of movement (Welsh et al., 1995). An
opposing view holds cerebellar microzones provide a stable architecture for controlling
different parts of the body and are defined by the anatomical organization of the climbing
fibers that drive the complex spikes (Apps and Garwicz, 2005). Mapping studies have
shown strips of neighboring Purkinje cells receive climbing fiber inputs with similar
cutaneous receptive fields (Andersson and Oscarsson, 1978; Jorntell et al., 2000), and that
these maps are reproducible across subjects (Ekerot et al., 1991). These data did not
adjudicate whether adjacent microzones are precisely demarcated from one another or merge
smoothly.

By imaging the Ca2+ spikes that represent the Ca2+ component of Purkinje cells’ complex
(Na+ and Ca2+) spikes (Figure 5) (Flusberg et al., 2008; Ozden et al., 2008), we found
microzones’ boundaries are sharply delineated in awake animals, to about the width of one
Purkinje cell (Figure 7). Precise microzones were also seen by Ca2+ imaging in anesthetized
rodents (Ozden et al., 2008). Our results complement prior studies in awake animals using
electrode arrays, which showed complex spiking synchrony exists in bands extending
millimeter-sized distances in the rostral-caudal dimension (Lang et al., 1999; Welsh et al.,
1995). The 250-µm-spacing between electrodes used in those studies precluded fine
resolution of microzone structure in the medio-lateral direction.

Mukamel et al. Page 12

Neuron. Author manuscript; available in PMC 2012 February 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



By extracting Ca2+ spike trains from large populations of Purkinje cells during locomotion
and alert rest, we studied the stability of microzones. Microzone boundaries and cellular
compositions were stable across the two behavioral states examined. During locomotion,
Ca2+ spike rates rose and levels of synchronous activation increased within microzones but
decreased between microzones. Thus, microzones not only retained stable boundaries across
different behaviors but also increased in prominence during motor behavior. The
discrepancy in synchrony between pairs of cells within and across microzones, as well as the
sharpness of microzones’ boundaries, indicates that our results are not due to noise, which
would not lead to precisely defined regions of high pairwise synchrony. Our results are
consistent with data gathered by high-speed imaging of Purkinje cell Ca2+ spikes in freely
behaving mice, which revealed increases in spike rates and pairwise synchrony during
locomotion at the level of population statistics (Flusberg et al., 2008).

Our findings support the view that microzones are stable anatomical entities, for we
obtained no evidence of their reorganization during motor behavior. Still, we only explored
a single motor behavior and others will need to be examined. The evidence for dynamical
reconfiguration of Purkinje cell assemblies (Fukuda et al., 2001; Welsh et al., 1995) should
not be discounted, since the reported assemblies of cells were from larger brain areas than
those studied here. An attractive possibility reconciling the two viewpoints is that correlated
assemblies of different microzones, each stably defined, dynamically reconfigure in
different behaviors.

Our data showed both pairwise correlations and spike rates were higher in awake than
anesthetized animals. These results contrast with recent studies of neocortex. In rat visual
cortex, correlations between layer 2/3 neurons fell during periods of activity as compared to
rest (Greenberg et al., 2008). Further, ketamine/xylazine anesthesia reduced spike rates but
increased correlations in neocortical neurons (Greenberg et al., 2008), which contrasts with
our data on Purkinje cell correlations under isoflurane anesthesia. Ketatmine/xylazine
anesthetized rats also exhibited significant correlations in Purkinje cell Ca2+ spiking (Ozden
et al., 2008), suggesting different anesthetics might have distinct effects on Purkinje cells’
synchrony.

Technological Outlook
Refinement of automated sorting techniques should further increase the utility of optical
imaging for studying dense cellular networks and allow cell sorting to assume a comparably
important role as in electrophysiology. By introducing an automated method based on
broadly applicable principles, we have created a framework for moving beyond heuristic and
semi-automated approaches. Future refinements might incorporate a priori knowledge of
various types or sparseness measures other than skewness. Other generalizations might add
information about sensory stimuli or animal behavior to derive functional characterizations
of cellular activity in an automated way.

EXPERIMENTAL PROCEDURES
Automated Cell Sorting Procedures

We analyzed Ca2+ imaging data using ImageJ plug-ins and custom MATLAB routines.
Movies were corrected for lateral movement artifacts using TurboReg (Thevenaz et al.,
1998). We then applied our cell sorting protocol comprising: (1) PCA for dimensional
reduction; (2) spatio-temporal ICA for extraction of Ca2+ signals; (3) image segmentation to
separate highly correlated cells; and, in the case of neuronal signals, (4) temporal
deconvolution and spike detection to extract spike times. See Supplemental Toolbox.
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Artificial Data
We simulated Ca2+ imaging data by combining artificial spike trains and glial transients
with spatial filters designed to reflect the size, shape, and density of Bergmann glia and
Purkinje cell dendritic trees, as viewed in optical sections in the mouse cerebellar molecular
layer. Each simulation had 1,000 time frames at 10 Hz. We added a static image to the
dynamic Ca2+ signals to represent background fluorescence from dye-labeled interneurons,
as well as unlabeled regions representing blood vessels. The dynamic and background
signals defined a noiseless data set. We then introduced Poisson-distributed photon shot
noise. See Supplemental Material.

Animal Procedures
Animal procedures were approved by the Stanford Administrative Panel on Laboratory
Animal Care. We used 16 male C57Bl/6 wild type mice (5.5–15 weeks old). Each
experiment had two surgeries. Several days before recordings a custom metal head plate was
attached to the skull with dental acrylic. This allowed habituation of the mice to head
restraint while walking on the exercise ball and stable imaging under anesthetized or awake
conditions. On the recording day, a craniotomy was opened over the cerebellar vermis or
neocortex. Two-photon imaging in head-restrained mice was performed as in (Nimmerjahn
et al., 2009) (Supplemental Experimental Procedures).

Two-photon Imaging
We loaded cortical tissue with the fluorescent Ca2+-indicator Oregon Green 488 BAPTA-1-
AM (OGB-1-AM; Molecular Probes) as described (Nimmerjahn et al., 2009). We used a
custom two-photon microscope equipped with an ultra-short pulsed Ti:sapphire laser tuned
to 800 nm. See Supplemental Material for details.

Analysis of Cerebellar Microzones
We analyzed spiking correlations among all Purkinje cells during anesthetized, awake but
resting, and actively moving conditions. We used the Pearson correlation coefficient to
compare the binary Ca2+ spike trains for each pair of cells. We grouped cells with similar
spike trains using k-means clustering (MacKay, 2003).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Analytical Stages of Automated Cell Sorting
(A) The goal of cell sorting is to extract cellular signals from imaging data (left) by
estimating spatial filters (middle) and activity traces (right) for each cell. The example
depicts typical fluorescence transients in the cerebellar cortex as observed in optical cross-
section. Transients in Purkinje cell dendrites arise across elongated areas seen as stripes in
the movie data. Transients in Bergmann glial fibers tend to be more localized, appearing
ellipsoidal.
(B) Automated cell sorting has four stages that address specific analysis challenges.
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Figure 2. Independent Component Analysis Identifies Sparse, Intracellular Ca2+ Signals
(A) Example spatial filters of individual principal (top) and neuronal independent (bottom)
components identified in two-photon Ca2+-imaging data from cerebellar cortex of a live
mouse. The independent component more accurately captures the form of a single Purkinje
cell’s dendritic tree (orange region).
(B) Signal time traces for the principal (blue) and independent (red) components in A. The
latter trace yields a superior representation of the Purkinje cell’s Ca2+ spiking activity.
(C) Distributions of pixel intensity values in spatial filters for the principal (blue) and
independent (red) components in A (left). Distributions of the two components’ time
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courses, across all movie frames (right). Gaussian distributions (black) shown for
comparison, revealing the independent components’ skewness.
(D) Joint distribution of time course values for two example principal (blue) and
independent (red) components in data from mouse cerebellar cortex. Extended tails in the
latter distribution reflect times at which Ca2+-dependent signals transiently increased.
(E) Temporal vs. spatial skewness for 50 principal (closed blue squares) and 50 independent
(open symbols) components in data from the mouse cerebellar cortex. Using a k-means
cluster analysis (k=2) of skewness values, the independent components were divided into
those representing cells (open red triangles) or other, non-cellular independent components
(open black circles), such as motion artifacts. These assignments made automatically match
those done manually by visual inspection.
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Figure 3. Automated Cell Sorting Outperforms Region of Interest (ROI) Analysis
(A) Three spatially overlapping sources of cellular signals in an artificial data set mimicking
Ca2+ imaging data from cerebellar cortex. Background grayscale image shows simulated
field of view containing dark blood vessels and brightly labeled interneuron somata. Signals
from two Purkinje cell dendritic trees (blue, green) and a set of Bergmann glial fibers (red)
show independent time courses and distinct temporal dynamics. Ca2+ spikes in the Purkinje
cell dendrites (gray tick marks) cause the fast fluorescence transients.
(B) Spatial filters (left) and signals (right colored traces) identified by ROI analysis. The
spike-triggered average fluorescence change for each cell is smoothed and thresholded to
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define the corresponding spatial filter. True spike times (gray ticks) match some, but not all,
of the spikes estimated from the ROI signals (blue and green ticks).
(C) Spatial filters, signals and spike times estimated by spatio-temporal ICA (µ=0.5). The
high fidelity signal estimate allows correct identification of all dendritic Ca2+ spikes.
(D) Diagram on logarithmic axes of how median signal fidelity depends on signal/noise ratio
and field of view size. Shaded regions show parameter ranges in which the true signals are
estimated with >75% median fidelity by ROI and ICA (blue); by ICA but not ROI (red); or
by neither method (white). An estimator derived by linear regression achieved >75% fidelity
in the gray region in cross-validation with distinct testing and training data sets. Black
circles mark parameter values used in (E); black triangles mark values used in (F).
(E,F) Median fidelity (solid symbols) and crosstalk (open symbols) of signals extracted by
ICA (red), ROI (blue) and linear regression analysis (black), as a function of the signal/noise
ratio (E) and the field of view (F). Shaded areas indicate ± 1 s.d. across 10 simulation
batches. Field of view is fixed at 0.09 mm2 for (E); signal/noise ratio is 0.31 for (F).
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Figure 4. Image Segmentation Improves Extraction of Signals from Correlated Cells
(A) Example of a spatial filter found by ICA in an experimental data set recorded in an
awake, head-restrained mouse. This component has two well-separated groups of pixels.
These groups likely represent the dendritic trees of two distinct Purkinje cells that receive
input from the same olivo-cerebellar climbing fiber.
(B) The first stage of segmentation smoothes the spatial filter by convolving with a Gaussian
blurring function and applying a threshold to the result, to create a binary mask that marks
the regions contributing strongly to the signal. Each contiguous image segment is assigned
to its own filter (red and blue regions).
(C) New spatial filters are created from the independent component by setting all pixel
weights to zero, except for those in one of the image segments. These pixels are assigned the
same weight they had in the original ICA spatial filter.
(D) By applying the segmented spatial filters to the movie data, the ICA time course (black)
is broken into distinct contributions from each cell (red and blue). Segmentation reveals that
the activities of the two cells are strongly correlated, as expected for cells found together by
ICA. In this case, the spike trains from the two image segments are identical except for one
spike (asterisk).

Mukamel et al. Page 23

Neuron. Author manuscript; available in PMC 2012 February 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5. Automated Cell Sorting Identifies Neuronal and Glial Ca2+ Dynamics from Large-
Scale Two-photon Imaging Data
(A) Contours of four spatial filters corresponding to Purkinje cell dendrites identified by
automated cell sorting, as well as four independent components characteristic of Bergmann
glial cells’ activity. Contours are superimposed on an image of the background fluorescence.
The spatial filters partially overlap, with many pixels sharing signals from both neurons and
glia.
(B) Neuronal (top) and glial (bottom) signals corresponding to the spatial filters of (A) show
that ICA suppresses crosstalk between the signals of nearby, intermingled cells.
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(C) Single unit electrical recording from a Purkinje cell (black traces), and the
corresponding signal extracted by cell sorting (red traces) from simultaneously recorded
Ca2+-imaging data. Dashed lines mark the interval in the top two traces over which the data
is re-plotted in the bottom two traces. Red tick marks indicate the times of estimated Ca2+

spikes, each identified as the occurrence of a positive-going threshold crossing in the
activity traces, following a temporal deconvolution to correct for the dye’s Ca2+ binding
kinetics.
(D) Contours of 102 spatial filters corresponding to Purkinje cell dendrites, as identified by
automated cell sorting. Data were recorded in the superficial molecular layer of an alert,
restrained mouse.
(E) Example time courses of 16 of the independent component signals identified in the
outlined region in (D) containing cells 22–43. Tick marks represent the times of Ca2+ spikes,
estimated as in (C).
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Figure 6. Ca2+ Spiking in Purkinje Cells of the Cerebellar Vermis Depends on Behavioral State
(A) Average Ca2+ spike rate (red; median ± s.d.) in 42 Purkinje cell dendrites identified by
cell sorting from one mouse under different physiological conditions. Left, isoflurane-
anesthetized. Center, alert but resting. Right shaded period, actively moving. Black trace
shows the mouse's running speed on the ball.
(B) Ca2+ spike rasters for each of the cells in the data set of (A). Under anesthesia only a
subset of Purkinje cells found in the analysis of the complete data set shows Ca2+ spiking.
(C) Cumulative distribution of the spike rates across isoflurane anesthetized (dashed), alert
but resting (solid) and actively moving (dotted) conditions.
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(D) Comparison showing each cell’s spike rate during movement (solid squares) or during
isoflurane anesthesia (open circles) on the ordinate, plotted versus resting spike rate on the
abscissa. The diagonal line delineates equal spike rates under both conditions. As in (C),
spike rates are generally higher in awake than in anesthetized animals, and rise further
during locomotion.
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Figure 7. Cerebellar Microzones Exhibit Changes in Correlated Activity but Stable Anatomical
Organization Across Different Behavioral States
(A) Matrices of correlation coefficients of the spike trains recorded from each pair of cells in
a population of 41 Purkinje cell dendritic trees. Cells are arranged by location in the medio-
lateral dimension. Correlation matrices are computed separately for three conditions. Red
and blue outlines indicate local microzones identified by a clustering analysis of the
correlation coefficients obtained during locomotion.
(B) Correlation coefficients for cell pairs within the two microzones (blue, red) marked in
(A) and in different (black) microzones as a function of the cells’ medio-lateral separation
for each behavioral state.
(C) Outlines of Purkinje cell dendrites identified by automated cell sorting superimposed on
the average fluorescence image in five example mice from our set of >50 experiments.
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Colors show the microzones identified by cluster analysis respect the medio-lateral ordering
of cells and have sharp boundaries. The example of (A) and (B) is at far right.
(D) Schematics of microzone structure for the same five mice as in (C), comparing periods
of active locomotion (top) to when the animal was awake but resting (bottom). The diagrams
are based on results of automated cell sorting and cluster analysis as in (C), and reveal a
stable anatomical organization of microzones across both behavioral states.

Mukamel et al. Page 29

Neuron. Author manuscript; available in PMC 2012 February 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


