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Vogelstein JT, Packer AM, Machado TA, Sippy T, Babadi B, Yuste
R, Paninski L. Fast nonnegative deconvolution for spike train inference
from population calcium imaging. J Neurophysiol 104: 3691–3704, 2010.
First published June 16, 2010; doi:10.1152/jn.01073.2009. Fluorescent
calcium indicators are becoming increasingly popular as a means
for observing the spiking activity of large neuronal populations.
Unfortunately, extracting the spike train of each neuron from a raw
fluorescence movie is a nontrivial problem. This work presents a
fast nonnegative deconvolution filter to infer the approximately
most likely spike train of each neuron, given the fluorescence
observations. This algorithm outperforms optimal linear deconvo-
lution (Wiener filtering) on both simulated and biological data. The
performance gains come from restricting the inferred spike trains
to be positive (using an interior-point method), unlike the Wiener
filter. The algorithm runs in linear time, and is fast enough that
even when simultaneously imaging �100 neurons, inference can
be performed on the set of all observed traces faster than real time.
Performing optimal spatial filtering on the images further refines
the inferred spike train estimates. Importantly, all the parameters
required to perform the inference can be estimated using only the
fluorescence data, obviating the need to perform joint electrophys-
iological and imaging calibration experiments.

I N T R O D U C T I O N

Simultaneously imaging large populations of neurons using
calcium sensors is becoming increasingly popular (Yuste and
Katz 1991; Yuste and Konnerth 2005), both in vitro (Ikegaya et al.
2004; Smetters et al. 1999) and in vivo (Göbel and Helmchen
2007; Luo et al. 2008; Nagayama et al. 2007), and will likely
continue to improve as the signal-to-noise ratio (SNR) of genetic
sensors continues to improve (Garaschuk et al. 2007; Mank et al.
2008; Wallace et al. 2008). Whereas the data from these experi-
ments are movies of time-varying fluorescence intensities, the
desired signal consists of spike trains of the observable neurons.
Unfortunately, finding the most likely spike train is a challenging
computational task, due to limitations on the SNR and temporal
resolution, unknown parameters, and analytical intractability.

A number of groups have therefore proposed algorithms to
infer spike trains from calcium fluorescence data using very
different approaches. Early approaches simply thresholded dF/F
[typically defined as (F � Fb)/Fb, where Fb is baseline fluores-
cence; e.g., Mao et al. 2001; Schwartz et al. 1998] to obtain “event
onset times.” More recently, Greenberg et al. (2008) developed a
dynamic programming algorithm to identify individual spikes.
Holekamp et al. (2008) then applied an optimal linear deconvo-

lution (i.e., the Wiener filter) to the fluorescence data. This
approach is natural from a signal processing standpoint, but
does not realize the knowledge that spikes are always
positive. Sasaki et al. (2008) proposed using machine learn-
ing techniques to build a nonlinear supervised classifier,
requiring many hundreds of examples of joint electrophys-
iological and imaging data to “train” the algorithm to learn
what effect spikes have on fluorescence. Vogelstein and
colleagues (2009) proposed a biophysical model-based se-
quential Monte Carlo (SMC) method to efficiently estimate
the probability of a spike in each image frame, given the
entire fluorescence time series. Although effective, that
approach is not suitable for on-line analyses of populations
of neurons because the computations run in about real time
per neuron (i.e., analyzing 1 min of data requires about 1
min of computational time on a standard laptop computer).

In the present work, a simple model is proposed relating
spiking activity to fluorescence traces. Unfortunately, inferring
the most likely spike train, given this model, is computationally
intractable. Making some reasonable approximations leads to
an algorithm that infers the approximately most likely spike
train, given the fluorescence data. This algorithm has a few
particularly noteworthy features, relative to other approaches.
First, spikes are assumed to be positive. This assumption often
improves filtering results when the underlying signal has this
property (Cunningham et al. 2008; Huys et al. 2006; Lee and
Seung 1999; Lin et al. 2004; Markham and Conchello 1999;
O’Grady and Pearlmutter 2006; Paninski et al. 2009; Portugal
et al. 1994). Second, the algorithm is fast: it can process a
calcium trace from 50,000 images in about 1 s on a standard
laptop computer. In fact, filtering the signals for an entire
population of �100 neurons runs faster than real time. This
speed facilitates using this filter on-line, as observations are
being collected. In addition to these two features, the model
may be generalized in a number of ways, including incorporating
spatial filtering of the raw movie, which can improve effective
SNR. The utility of the proposed filter is demonstrated on several
biological data sets, suggesting that this algorithm is a powerful
and robust tool for on-line spike train inference. The code (which
is a simple Matlab script) is available for free download from
http://www.optophysiology.org.

M E T H O D S

Data-driven generative model

Figure 1 shows data from a typical in vitro epifluorescence
experiment (for data collection details see Experimental methods
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later in this section). The top panel shows the mean frame of this
movie, including four neurons, three of which are patched. To
build the model, the pixels within a region of interest (ROI) are
selected (white circle). Given the ROI, all the pixel intensities of
each frame can be averaged, to get a one-dimensional fluorescence
time series, as shown in the bottom left panel (black line). By
patching onto this neuron, the spike train can also be directly
observed (black bars; bottom left). Previous work suggests that this
fluorescence signal might be well characterized by convolving the
spike train with an exponential and adding noise (Yuste and
Konnerth 2005). This model is confirmed by convolving the true
spike train with an exponential (gray line; bottom left) and then
looking at the distribution of the residuals. The bottom right panel
shows a histogram of the residuals (dashed line) and the best-fit
Gaussian distribution (solid line).

The preceding observations may be formalized as follows. Assume
there is a one-dimensional fluorescence trace F from a neuron
[throughout this text X indicates the vector (X1, . . . , XT), where T is
the index of the final frame]. At time t, the fluorescence measurement
Ft is a linear-Gaussian function of the intracellular calcium concen-
tration at that time [Ca2�]t:

Ft � �[Ca2�]t � � � �t, �t�
iid

� (0, �2). (1)

The parameter � absorbs all experimental variables influencing the
scale of the signal, including the number of sensors within the cell,
photons per calcium ion, amplification of the imaging system, and so
on. Similarly, the offset � absorbs, for example, the baseline calcium
concentration of the cell, background fluorescence of the fluorophore,
and imaging system offset. The noise at each time �t is independently
and identically distributed according to a normal distribution with zero
mean and �2 variance, as indicated by the notation �iid �(0, 1). This noise
results from calcium fluctuations independent of spiking activity,
fluorescence fluctuations independent of calcium, and other sources of
imaging noise.

Then, assuming that the intracellular calcium concentration [Ca2�]t

jumps by A �M after each spike and subsequently decays back down
to baseline Cb �M, with time constant � s, one can write:

[Ca2�]t�1 � (1 	 
 ⁄ �)[Ca2�]t � (
 ⁄ �)Cb � Ant (2)

where � is the time step size—which is the frame duration, or
1/(frame rate)—and nt indicates the number of times the neuron
spiked in frame t. Note that because [Ca2�]t and Ft are linearly related
to one another, the fluorescence scale � and calcium scale A are not
identifiable. In other words, either can be set to unity without loss of
generality because the other can absorb the scale entirely. Similarly,
the fluorescence offset � and calcium baseline Cb are not identifiable,
so either can be set to zero without loss of generality. Finally, letting
� � (1 � �/�), Eq. 2 can be rewritten by replacing [Ca2�]t with its
nondimensionalized counterpart Ct:

Ct � �Ct	1 � nt . (3)

Note that Ct does not refer to absolute intracellular concentration of
calcium, but rather, a relative measure (for a more general model see
Vogelstein et al. 2009). The gray line in the bottom left panel of Fig.
1 corresponds to the putative C of the observed neuron.

To complete the “generative model” (i.e., a model from which
simulations can be generated), the distribution from which spikes are
sampled must be defined. Perhaps the simplest first-order description
of spike trains is that at each time, spikes are sampled according to a
Poisson distribution with some rate:

nt�
iidPoisson (�
) (4)

where �� is the expected firing rate per bin and � is included to
ensure that the expected firing rate is independent of the frame rate.
Thus Eqs. 1, 3, and 4 complete the generative model.

Goal

Given the above model, the goal is to find the maximum a posteriori
(MAP) spike train, i.e., the most likely spike train n̂, given the
fluorescence measurements, F:

n̂ � argmax
nt��0∀t

P[n
F], (5)

where P[n|F] is the posterior probability of a spike train n, given the
fluorescent trace F, and nt is constrained to be an integer �0 � {0, 1,

mean frame
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FIG. 1. Typical in vitro data suggest that a reasonable
first-order model may be constructed by convolving the spike
train with an exponential and adding Gaussian noise. Top panel:
the average (over frames) of a field of view. Bottom left: true
spike train recorded via a patch electrode (black bars), con-
volved with an exponential (gray line), superimposed on the
Oregon Green BAPTA 1 (OGB-1) fluorescence trace (black
line). Whereas the spike train and fluorescence trace are mea-
sured data, the calcium is not directly measured, but rather,
inferred. Bottom right: a histogram of the residual error between
the gray and black lines from the bottom left panel (dashed line)
and the best-fit Gaussian (solid line). Note that the Gaussian
model provides a good fit for the residuals here.
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2, . . . } because of the above assumed Poisson distribution. From
Bayes’ rule, the posterior can be rewritten:

P[n
F] �
P[n, F]

P[F]
�

1

P[F]
P[F
n]P[n], (6)

where P[F] is the evidence of the data, P[F|n] is the likelihood of
observing a particular fluorescence trace F, given the spike train n,
and P[n] is the prior probability of a spike train. Plugging the far
right-hand side of Eq. 6 into Eq. 5, yields:

n̂ � argmax
nt��0∀t

1

P[F]
P[F
n]P[n] � argmax

nt��0∀t
P[F
n]P[n], (7)

where the second equality follows because P[F] merely scales the
results, but does not change the relative quality of any particular spike
train. Note that the prior P[n] acts as a regularizing term, potentially
imposing sparseness or smoothness, depending on the assumed dis-
tribution (Seeger 2008; Wu et al. 2006). Both P[F|n] and P[n] are
available from the preceding model:

P[F
n] � P[F
C] � �
t�1

T

P[Ft
Ct], (8a)

P[n] � �
t�1

T

P[nt], (8b)

where the first equality in Eq. 8a follows because C is deterministic
given n, and the second equality follows from Eq. 1. Further, Eq. 8b
follows from the Poisson process assumption, Eq. 4. Both P[Ft|Ct] and
P[nt] can be written explicitly:

P[Ft
Ct] � �(�Ct � �, �2), (9a)

P[nt] � Poisson (�
), (9b)

where both equations follow from the preceding model and the
Poisson distribution acts as a sparse prior. Now, plugging Eq. 9 back
into Eq. 8, and plugging that result into Eq. 7, yields:

n̂ � argmax
nt��0∀t

�
t�1

T 1

�2��2

exp�	
1

2

(Ft 	 �Ct 	 �)2

�2 � exp�	�
�(�
)nt

nt ! (10a)

�argmax
nt��0∀t

�
t �1

T �	
1

2�2 (Ft 	 �Ct 	 �)2 � nt ln �
 	 ln nt !� ,

(10b)

where the second equality follows from taking the logarithm of the
right-hand side and dropping terms that do not depend on n.
Unfortunately, solving Eq. 10b exactly is analytically intractable
because it requires a nonlinear search over an infinite number of
possible spike trains. The search space could be restricted by
imposing an upper bound k on the number of spikes within a frame.
However, in that case, the computational complexity scales expo-
nentially with the number of image frames—i.e., the number of
computations required would scale with kT—which for pragmatic
reasons is intractable.

Inferring the approximately most likely spike train, given a
fluorescence trace

The goal here is to develop an algorithm to efficiently approx-
imate n̂, the most likely spike train given the fluorescence trace.
Because of the intractability described earlier, one can approximate
Eq. 4 by replacing the Poisson distribution with an exponential
distribution of the same mean (note that potentially more accurate
approximations are possible, as described in the DISCUSSION). Mod-
ifying Eq. 10 to incorporate this approximation yields:

n̂ 	 argmax
nt�0∀t

�
t�1

T 
 1

�2��2

exp�	
1

2

(Ft 	 �Ct 	 �)2

�2 �(�
)exp�	nt�
�� (11a)

�argmax
nt�0∀t

�
t�1

T

	
1

2�2 (Ft 	 �Ct 	 �)2 	 nt�
 (11b)

where the second equality follows from taking the log of the right-
hand side (logarithm is a monotone function and therefore does not
change the relative likelihood of particular spike trains) and dropping
terms constant in nt. Note that the constraint on nt has been relaxed
from nt � �0 to nt � 0 (since the exponential distribution can yield
any nonnegative number). The exponential prior, much like the
Poisson prior, imposes a sparsening effect, by penalizing the objective
function for large values of nt. Further, the exponential approximation
makes the optimization problem concave in C, meaning that any
gradient ascent method guarantees achieving the global maximum
(because there are no local maxima, other than the single global
maximum). To see that Eq. 11b is concave in C, rearrange Eq. 3 to
obtain nt � Ct � �Ct�1, so Eq. 11b can be rewritten:

Ĉ � argmax
Ct	�Ct	1�0∀t

�
t�1

T

	
1

2�2 (Ft 	 �Ct 	 �)2 	 (Ct 	 �Ct	1)�


(12)

which is a sum of terms that are concave in C, so the whole right-hand
side is concave in C. Unfortunately, the integer constraint has been
lost, i.e., the answer could include “partial” spikes. This disadvantage
can be remedied by thresholding (i.e., setting nt � 1 for all nt greater
than some threshold and the rest setting to zero) or by considering the
magnitude of a partial spike at time t as a rough indication of the
probability of a spike occurring during frame t. Note the relaxation of
a difficult discrete optimization problem into an easier continuous
problem is a common approximation technique in the machine learn-
ing literature (Boyd and Vandenberghe 2004; Paninski et al. 2009). In
particular, the exponential distribution is a convenient nonnegative
log-concave approximation of the Poisson (see the DISCUSSION for
more details).

Although this convex relaxation makes the problem tractable, the
“sharp” threshold imposed by the nonnegativity constraint prohibits
the use of standard gradient ascent techniques. This may be rectified
by using an “interior-point” method (Boyd and Vandenberghe 2004).
Interior-point methods solve nondifferentiable problems indirectly by
instead solving a series of differentiable subproblems that converge to
the solution of the original nondifferentiable problem. In particular,
each subproblem within the series drops the sharp threshold and adds
a weighted barrier term that approaches �� as nt approaches zero.
Iteratively reducing the weight of the barrier term guarantees conver-
gence to the correct solution. Thus the goal is to efficiently solve:

Ĉz � argmax
C

�
t�1

T 
	
1

2�2 (Ft 	 �Ct 	 �)2

	 (Ct 	 �Ct	1)�
 � z ln (Ct 	 �Ct	1)� , (13)

where ln (·) is the “barrier term” and z is the weight of the barrier term
(note that the constraint has been dropped). Iteratively solving for Ĉz

for z going down to nearly zero guarantees convergence to Ĉ (Boyd and
Vendenberghe 2004). The concavity of Eq. 13 facilitates using any
number of techniques guaranteed to find the global maximum. Be-
cause the argument of Eq. 13 is twice analytically differentiable, one
can use the Newton–Raphson technique (Press et al. 1992). The
special tridiagonal structure of the Hessian enables each Newton–
Raphson step to be very efficient (as described below). To proceed,
Eq. 13 is first rewritten in more compact matrix notation. Note that:
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MC ��
	� 1 0 0 · · · 0

0 	� 1 0 · · · 0

É Ì Ì Ì Ì É

0 · · · 0 	� 1 0

0 · · · 0 0 	� 1

�

C1

C2

É

CT	1

CT


 ��
n1

n2

É

nT	1


 ,

(14)

where M � �(T�1)�T is a bidiagonal matrix. Then, letting 1 be a (T �
1)-dimensional column vector, � a T-dimensional column vector of �
values, and � � ��1 yields the objective function (Eq. 13) in more
compact matrix notation (note that throughout we will use the sub-
script J to indicate element-wise operations):

Ĉz � argmax
MC � �0

	
1

2�2 � F 	 �C 	 ��2
2 	 (MC)T� � z ln� (MC)T1 ,

(15)

where MC �J0 indicates an element-wise greater than or equal to
zero, lnJ(·) indicates an element-wise logarithm, and �x�2 is the
standard L2 norm, i.e., �x�2

2 � �i xi
2. When using Newton–Raphson to

ascend a surface, one iteratively computes both the gradient g (first
derivative) and Hessian H (second derivative) of the argument to be
maximized, with respect to the variables of interest (C here). Then, the
estimate is updated using Cz ¢ Cz � sd, where s is the step size and
d is the step direction obtained by solving Hd � g. The gradient and
Hessian for this model, with respect to C, are given by:

g � 	
�

�2 (F 	 �C 	 �) � MT� 	 zMT(MC)�
	1 (16a)

H �
�2

�2I � zMT(MC)�
	2M (16b)

where the exponents on the vector MC indicate element-wise opera-
tions. The step size s is found using “backtracking linesearches,”
which finds the maximal s that increases the posterior and is between
0 and 1 (Press et al. 1992).

Standard implementations of the Newton–Raphson algorithm re-
quire inverting the Hessian, i.e., solving d � H�1g, a computation that
scales cubically with T (requires on the order of T3 operations).
Already, this would be a drastic improvement over the most efficient
algorithm assuming Poisson spikes, which would require kT opera-
tions (where k is the maximum number of spikes per frame). Here,
because M is bidiagonal, the Hessian is tridiagonal, so the solution
may be found in about T operations, via standard banded Gaussian
elimination techniques (which can be implemented efficiently in
Matlab using H\g, assuming H is represented as a sparse matrix)
(Paninski et al. 2009). In other words, the above approximation and
inference algorithm reduces computations from exponential to linear
time. APPENDIX A contains pseudocode for this algorithm, including
learning the parameters, as described in the next section. Note that
once Ĉ is obtained, it is a simple linear transformation to obtain n̂, the
approximate MAP spike train.

Learning the parameters

In practice, the model parameters � � {�, �, �, �, �} tend to be
unknown. An algorithm to estimate the most likely parameters �̂ could
proceed as follows: 1) initialize some estimate of the parameters �̂,
then 2) recursively compute n̂ using those parameters and update �̂
given the new n̂ until some convergence criterion is met. This
approach may be thought of as a pseudoexpectation-maximization
algorithm (Dempster et al. 1977; Vogelstein et al. 2009). In the
following text, details are provided for each step.

INITIALIZING THE PARAMETERS. Because the model introduced ear-
lier is linear, the scale of F relative to n is arbitrary. Therefore before

filtering, F is linearly mapped between zero and one, i.e., F ¢ (F �
Fmin)/(Fmax � Fmin), where Fmin and Fmax are the observed minimum
and maximum of F, respectively. Given this normalization, � is set to
one. Because spiking is sparse in many experimental settings, F tends
to be around baseline, so � is initialized to be the median of F and �
is initialized as the median absolute deviation of F, i.e., � �
mediant (|Ft � medians (Fs)|)/K, where mediani (Xi) indicates the
median of X with respect to index i and K � 1.4785 is the correction
factor when using the median absolute deviation as a robust estimator
of the SD of a normal distribution. Because in these data the posterior
tends to be relatively flat along the � dimension (i.e., large changes in
� result in relatively small changes in the posterior), estimating � is
difficult. Further, previous work has shown that results are somewhat
robust to minor variations in the time constant (Yaksi and Friedrich
2006); therefore � is initialized at 1 � �/(1 s), which is fairly standard
(Pologruto et al. 2004). Finally, � is initialized at 1 Hz, which is
between average baseline and evoked spike rate for data of interest.

ESTIMATING THE PARAMETERS GIVEN n̂. Ideally, one could integrate
out the hidden variables, to find the most likely parameters:

�̂ � argmax
�

� P[F, C
�]dC � argmax
�

� P[F
C;�]P[C
�]dC .

(17)

However, evaluating those integrals is not currently tractable. There-
fore Eq. 17 is approximated by simply maximizing the parameters
given the MAP estimate of the hidden variables:

�̂ 	 argmax
�

P[F, Ĉ
�] � argmax
�

P[F
Ĉ;�]P[n̂
�]

� argmax
�

ln P[F
Ĉ;�] � ln P[n̂
�], (18)

where Ĉ and n̂ are determined using the above-described inference
algorithm. The approximation in Eq. 18 is good whenever most of the
mass in the integral in Eq. 18 is around the MAP sequence Ĉ.1 The
argument from the right-hand side of Eq. 18 may be expanded:

ln P[F
Ĉ;�] � ln P[n̂
�] � �
t�1

T

ln P[Ft
Ĉt; �, �, �]��
t�1

T

ln P[n̂t
�].

(19)

Note that the right-hand side of Eq. 19 decouples � from the other
parameters. The maximum likelihood estimate (MLE) for the obser-
vation parameters {�, �, �} is therefore given by:

��̂, �̂, �̂� � argmax
�,�,� � 0

�
t�1

T

ln P[Ft
Ĉt;�, �]

� argmax
�,�,��0

	
1

2
(2��2) 	

1

2
�Ft 	 �Ĉt 	 �

�
�2

. (20)

Note that a rescaling of � may be offset by a complementary rescaling
of Ĉ. Therefore because the scale of Ĉ is arbitrary (see Eqs. 2 and 3),
� can be set to one without loss of generality. Plugging � � 1 into Eq.
20 and maximizing with respect to � yields:

�̂ � argmax
� � 0

�
t�1

T

	(Ft 	 Ĉt 	 �)2. (21)

Computing the gradient with respect to �, setting the answer to zero,
and solving for �̂ yields �̂ � (1/T) �t (Ft � Ĉt). Similarly, computing
the gradient of Eq. 20 with respect to �, setting it to zero, and solving
for �̂ yields:

1 Equation 18 may be considered a crude Laplace approximation (Kass and
Raftery 1995).
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�̂ ��1

T�
t

(Ft 	 Ĉt 	 �̂)2, (22)

which is simply the root-mean-square of the residual error. Finally,
the MLE of �̂ is given by solving:

�̂ � argmax
� � 0

�
t

[ln (�
) 	 n̂t�
], (23)

which, again, computing the gradient with respect to �, setting it to
zero, and solving for �̂, yields �̂ � T/(� �t n̂t), which is the inverse of
the inferred average firing rate.

Iterations stop whenever 1) the iteration number exceeds some
upper bound or 2) the relative change in likelihood does not exceed
some lower bound. In practice, parameter estimates tend to con-
verge after several iterations, given the above initializations.

Spatial filtering

In the preceding text, we assumed that the raw movie of fluo-
rescence measurements collected by the experimenter had under-
gone two stages of preprocessing before filtering. First, the movie
was segmented, to determine ROIs, yielding a vector �Ft �
(F1,t, . . . , FNp,t

), which corresponded to the fluorescence intensity
at time t for each of the Np pixels in the ROI (note that we use the
�X throughout to indicate row vectors in space vs. X to indicate
column vectors in time). Second, at each time t, that vector was
projected into a scalar, yielding Ft, the assumed input to the filter.
In this section, the optimal projection is determined by considering
a more general model:

Fx,t � �xCt � �x � ��x,t, �x,t�
iid

�(0, 1), (24)

where �x corresponds to the number of photons that are contributed
due to calcium fluctuations Ct, and �x corresponds to the static photon
emission at pixel x. Further, the noise is assumed to be both spatially
and temporally white, with standard deviation (SD) �, in each pixel
(this assumption can always be approximately accurate by prewhit-
ening; alternately, one could relax the spatial independence by repre-
senting joint noise over all pixels with a covariance matrix �t, with
arbitrary structure). Performing inference in this more general model
proceeds in a nearly identical manner as before. In particular, the
maximization, gradient, and Hessian become:

Ĉz � argmax
MC � �0

	
1

2�2 � F
→

	 C�→ 	 1T�
→

�F
2 	 (MC)T� � z ln� (MC)T1

(25)

g � (F
→

	 C�→ 	 1T�
→

)T
�→T

�2 	 MT� � zMT(MC)�
	1 (26)

H � 	
�→�→T

�2 I 	 zMT(MC)�
	2M , (27)

where �F is an Np � T element matrix, 1T is a column vector of ones
with length T, I is an Np � Np identity matrix, and �x�F indicates the
Frobenius norm, i.e., �x�F

2 � �i,j xi,j
2 , and the exponents and log

operator on the vector MC again indicate element-wise operations.
Note that to speed up computation, one can first project the back-
ground subtracted (Nc � T)-dimensional movie onto the spatial filter
�� , yielding a one-dimensional time series F, reducing the problem to
evaluating a T � 1 vector norm, as in Eq. 15.

The parameters �� and �� tend to be unknown and thus must be
estimated from the data. Following the strategy developed in the
previous section, we first initialize the parameters. Because each voxel
contains some number of fluorophores, which sets both the baseline
fluorescence and the fluorescence due to calcium fluctuations, let both

the initial spatial filter and initial background be the median image
frame, i.e., �̂x � �̂x � mediant (Fx,t). Given these robust initial-
izations, the maximum likelihood estimator for each �x and �x is
given by:

��̂x, �̂x� � argmax
�x,�x

P[Fx
Ĉ] (28a)

� argmax
�x,�x

�
t

lnP[Fx,t
Ĉt] (28b)

� argmax
�x,�x

�
t
�	

1

2
ln (2��2) 	

1

2�2 (Fx,t 	 �xĈt 	 �x)
2�

(28c)

� argmax
�x,�x

	 �
t

(Fx,t 	 �xĈt 	 �x)
2, (28d)

where the first equalities follow from Eq. 1 and the last equality
follows from dropping irrelevant constants. Because this is a standard
linear regression problem, let A � [Ĉ, 1T]T be a 2 � T element matrix
and Yx � [�x, �x]

T be a 2 � 1 element column vector. Substituting A
and Yx into Eq. 28d yields:

Ŷx � argmax
Yx

	 � Fx 	 ATYx�2
2, (29)

which can be solved by computing the derivative of Eq. 29 with
respect to Yx and setting to zero, or using Matlab notation: Ŷx �
A\Fx. Note that solving Np two-dimensional quadratic problems is
more efficient than solving a single (2 � Np)-dimensional qua-
dratic problem. Also note that this approach does not regularize the
parameters at all, by smoothing or sparsening, for instance. In the
DISCUSSION we propose several avenues for further development,
including the elastic net (Zou and Hastie 2005) and simple para-
metric models of the neuron. As in the scalar Ft case, we iterate
estimating the parameters of this model � � {�� , ��, �, �, �} and the
spike train n. Because of the free scale term discussed earlier, the
absolute magnitude of �� is not identifiable. Thus convergence is
defined here by the “shape” of the spike train converging, i.e., the
norm of the difference between the inferred spike trains from
subsequent iterations, both normalized such that max(n̂t) � 1. In
practice, this procedure converged after several iterations.

Overlapping spatial filters

It is not always possible to segment the movie into pixels contain-
ing only fluorescence from a single neuron. Therefore the above-cited
model can be generalized to incorporate multiple neurons within an
ROI. Specifically, letting the superscript i index the Nc neurons in this
ROI yields:

F
→

t � �
i�1

Nc

�→iCi
i � �

→
� �→t, �→t�

iid
�(0, �2I) (30)

Ct
i � �iCt	1

i � nt
i, nt

i�
iid

Poisson�nt
i;�i
� (31)

where each neuron is implicitly assumed to be independent and each
pixel is conditionally independent and identically distributed with
variance �2, given the underlying calcium signals. To perform infer-
ence in this more general model, let nt � [nt

1, . . . , nt
Nc] and Ct �

[Ct
1, . . . , Ct

Nc] be Nc-dimensional column vectors. Then, let 	 �
diag (�1, . . . , �Nc) be an Nc � Nc diagonal matrix and let I and 0
be an identity and zero matrix of the same size, respectively, yield-
ing:
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MC ��
	� I 0 0 · · · 0

0 	� I 0 · · · 0

É Ì Ì Ì Ì É

0 · · · 0 	� I 0

0 · · · 0 0 	� I

�

C1

C2

É

CT	1

CT


 ��
n1

n2

É

nT	1



(32)

and proceed as before. Note that Eq. 32 is very similar to Eq. 14,
except that M is no longer bidiagonal, but rather, block bidiagonal
(and Ct and nt are vectors instead of scalars), making the Hessian
block-tridiagonal. Importantly, the Thomas algorithm, which is a
simplified form of Gaussian elimination, finds the solution to lin-
ear equations with block-tridiagonal matrices in linear time, so the
efficiency gained from using the tridiagonal structure is maintained
for this block-tridiagonal structure (Press et al. 1992). Performing
inference in this more general model proceeds similarly as before,
letting �� � [�� 1, . . . , �� Nc]:

Ĉz � argmax
MC��0

	
1

2�2
� F

→
	 C�→ 	 1T�

→
�F

2 	 (MC)T� � z ln� (MC)T1 ,

(33)

g � (F
→

	 C�→ 	 1T�
→

)T
�→T

�2 	 MT� � zMT(MC)�
	1 (34)

H � 	
�→�→T

�2 I 	 zMT(MC)�
	2M . (35)

If the parameters are unknown, they must be estimated. Initialize �� as
above. Then, define �x � [�x

1, . . . , �x
Nc]T and initialize manually by

assigning some pixels to each neuron (of course, more sophisticated
algorithms could be used, as described in the DISCUSSION). Given this
initialization, iterations and stopping criteria proceed as before, with
the minor modification of incorporating multiple spatial filters, yield-
ing:

���̂x, �̂x� � argmax
�x,�x

	
1

2�
t

(Fx,t 	 �
i�1

Nc

�x
i Ĉt

i 	 �x)
2, (36)

Now, generalizing the above single spatial filter case, let A � [Ĉ, 1T]T

be an (Nc � 1) � T element matrix and Yx � [�x, �x]
T be an (Nc �

1)-dimensional column vector. Then, one can again use Eq. 29 to
solve to for �̂x and �̂x for all x.

Experimental methods

SLICE PREPARATION AND IMAGING. All animal handling and exper-
imentation were done according to the National Institutes of Health
and local Institutional Animal Care and Use Committee guidelines.
Somatosensory thalamocortical or coronal slices 350–400 �m thick
were prepared from C57BL/6 mice at age P14 as described (MacLean
et al. 2005). Pyramidal neurons from layer V somatosensory cortex
were filled with 50 �M Oregon Green BAPTA 1 hexapotassium salt
(OGB-1; Invitrogen, Carlsbad, CA) through the recording pipette or
bulk loaded with an acetoxymethyl ester of Fura-2 (Fura-2 AM;
Invitrogen). The pipette solution contained 130 mM K-methylsulfate,
2 mM MgCl2, 0.6 mM EGTA, 10 mM HEPES, 4 mM ATP-Mg, and
0.3 mM GTP-Tris (pH 7.2, 295 mOsm). After cells were fully loaded
with dye, imaging was performed in one of two ways. First, when
using Fura-2, images were collected using a modified BX50-WI
upright microscope (Olympus, Melville, NY) with a confocal spin-
ning disk (Solamere Technology Group, Salt Lake City, UT) and an
Orca charge-coupled device (CCD) camera from Hamamatsu Photon-
ics (Shizuoka, Japan), at 33 Hz. Second, when using Oregon Green,
images were collected using epifluorescence with the C9100-12 CCD
camera from Hamamatsu Photonics, with arc-lamp illumination with

excitation and emission band-pass filters at 480–500 and 510–550
nm, respectively (Chroma, Rockingham, VT). Images were saved and
analyzed using custom software written in Matlab (The MathWorks,
Natick, MA).

ELECTROPHYSIOLOGY. All recordings were made using the Multi-
clamp 700B amplifier (Molecular Devices, Sunnyvale, CA), digitized
with National Instruments 6259 multichannel cards and recorded
using custom software written using the LabVIEW platform (National
Instruments, Austin, TX). Square pulses of sufficient amplitude to
yield the desired number of action potentials were given as current
commands to the amplifier using the LabVIEW and National Instru-
ments system.

FLUORESCENCE PREPROCESSING. Traces were extracted using cus-
tom Matlab scripts to segment the mean image into ROIs. The Fura-2
fluorescence traces were inverted. Because some slow drift was
sometimes present in the traces, each trace was Fourier transformed,
and all frequencies 
0.5 Hz were set to zero (0.5 Hz was chosen by
eye); the resulting fluorescence trace was then normalized to be
between zero and one.

R E S U L T S

Main result

The main result of this study is that the fast filter can find the
approximately most likely spike train n̂, very efficiently, and
that this approach yields more accurate spike train estimates than
optimal linear deconvolution. Figure 2 depicts a simulation
showing this result. Clearly, the fast filter’s inferred “spike
train” (third panel) more closely resembles the true spike train
(second panel) than the optimal linear deconvolution’s inferred
spike train (bottom panel; Wiener filter). Note that neither filter
results in an integer sequence, but rather, each infers a real
number at each time.
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FIG. 2. A simulation showing that the fast filter’s inferred spike train is
significantly more accurate than the output of the optimal linear deconvolution
(Wiener filter). Note that neither filter constrains the inference to be a sequence
of integers; rather, the fast filter relaxes the constraint to allow all nonnegative
numbers and the Wiener filter allows for all real numbers. The restriction of the fast
filter to exclude negative numbers eliminates the ringing effect seen in the
Wiener filter output, resulting in a much cleaner inference. Note that the magni-
tude of the inferred spikes in the fast filter output is proportional to the inferred
calcium jump size. Top panel: fluorescence trace. Second panel: spike train. Third
panel: fast filter inference. Bottom panel: Wiener filter inference. Note that the
gray bars in the bottom panel indicate negative spikes. Gray � symbols indicate
true spike times. Simulation details: T � 400 time steps, � � 33.3 ms, � � 1, � �
0, � � 0.2, � � 1 s, � � 1 Hz. Parameters and conventions are consistent across
figures, unless indicated otherwise.
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The Wiener filter implicitly approximates the Poisson spike
rate with a Gaussian spike rate (see APPENDIX B for details). A
Poisson spike rate indicates that in each frame, the number of
possible spikes is an integer, e.g., 0, 1, 2, . . . . The Gaussian
approximation, however, allows any real number of spikes in
each frame, including both partial spikes (e.g., 1.4) and nega-
tive spikes (e.g., �0.8). Although a Gaussian well approxi-
mates a Poisson distribution when rates are about 10 spikes per
frame, this example is very far from that regime, so the
Gaussian approximation performs relatively poorly. Further,
the Wiener filter exhibits a “ringing” effect. Whenever fluo-
rescence drops rapidly, the most likely underlying spiking
signal is a proportional drop. Because the Wiener filter does not
impose a nonnegative constraint on the underlying spiking signal,
it infers such a drop, even when it causes nt to go below zero.
After such a drop has been inferred, since no corresponding drop
occurred in the true underlying signal here, a complementary
jump is often then inferred, to realign the inferred signal with the
observations. This oscillatory behavior results in poor inference
quality. The nonnegative constraint imposed by the fast filter
prevents this because the underlying signal never drops below
zero, so the complementary jump never occurs either.

The inferred “spikes,” however, are still not binary events
when using the fast filter. This is a by-product of approximat-
ing the Poisson distribution on spikes with an exponential (cf.
Eq. 11a) because the exponential is a continuous distribution,

versus the Poisson, which is discrete. The height of each spike
is therefore proportional to the inferred calcium jump size and
can be thought of as a proxy for the confidence with which the
algorithm believes a spike occurred. Importantly, by using the
Gaussian elimination and interior-point methods, as described
in METHODS, the computational complexity of the fast filter is
the same as an efficient implementation of the Wiener filter.
Note that whereas the Gaussian approximation imposes a
shrinkage prior on the inferred spike trains (Wu et al. 2006),
the exponential approximation imposes a sparse prior on the
inferred spike trains (Seeger 2008).

Figure 3 quantifies the relative performance of the fast and
Wiener filters. The top left panel shows a typical simulated
spike train (bottom), a corresponding relatively low SNR
fluorescence trace (middle), and a relatively high SNR fluores-
cence trace (top), as examples. The top right panel compares
the mean-squared-error (MSE) of the inferred spike trains
using the fast (solid) and Wiener (dashed) filters, as a function
of expected firing rate. Clearly, the fast filter has a better
(lower) MSE for all rates. The bottom left panel shows a
receiver-operator-characteristic (ROC) curve (Green and Swets
1966) for another simulation. Again, the fast filter dominates
the Wiener filter, having a higher true positive rate for every
false negative rate. Finally, the bottom right panel shows that
the area under the curve (AUC) of the fast filter is better
(higher) than that of the Wiener filter until the noise is very
large. Collectively, these analyses suggest that for a wide range
of firing rates and signal quality, the fast filter outperforms the
Wiener filter.

Although in Fig. 2 the model parameters were provided, in
the general case, the parameters are unknown and must there-
fore be estimated from the observations (as described in Learn-
ing the parameters in METHODS). Importantly, this algorithm
does not require labeled training data, i.e., there is no need for
joint imaging and electrophysiological experiments to estimate
the parameters governing the relationship between the two.
Figure 4 shows another simulated example; in this example,
however, the parameters are estimated from the observed
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FIG. 3. In simulations, the fast filter quantitatively and significantly
achieves higher accuracy than that of the Wiener filter. Top left: a spike train
(bottom) and 2 simulated fluorescence traces, using the same spike train, one
with low signal-to-noise ratio (SNR) (middle) and one with high SNR (top).
Simulation parameters: � � 0.5 s, � � 3 Hz, � � 1/30 s, � � 0.6 (low SNR)
and 0.1 (high SNR). Simulation parameters in other panels are the same, except
where explicitly noted. Top right: mean-squared-error (MSE) for the fast (solid
line) and Wiener (dashed-dotted line) filter, for varying the expected firing rate
�. Note that both axes are on a log-scale. Further note that the fast filter has a
better (lower) MSE for all expected firing rates. Error bars show SD over 10
repeats. Simulation parameters: � � 0.2, T � 1,000 time steps. Bottom left:
receiver-operator-characteristic (ROC) curve comparing the fast (solid line)
and Wiener (dashed-dotted line) filter. Note that for any given threshold, the
Wiener filter has a better (higher) ratio of true positive rate to false positive
rate. Simulation parameters as in top right panel, except � � 0.35 and T �
10,000 time steps. Bottom right: area under the curve (AUC) for fast (solid
line) and Wiener (dashed-dotted line) filter as a function of SD (�). Note that
the fast filter has a better (higher) AUC for all � values until noise gets very
high. The 2 simulated fluorescence traces in the top left panel show the bounds
for SD here. Error bars show SD over 10 repeats.
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FIG. 4. A simulation showing that the fast filter achieves significantly more
accurate inference than that of the Wiener filter, even when the parameters are
unknown. For both filters, the appropriate parameters were estimated using
only the data shown above, unlike Fig. 2, in which the true parameters were
provided to the filters. Simulation details different from those in Fig. 2: T �
1,000 time steps, � � 16.7 ms, � � 0.4.
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fluorescence trace. Again, it is clear that the fast filter far
outperforms the Wiener filter.

Given the preceding two results, the fast filter was applied to
biological data. More specifically, by jointly recording electro-
physiologically and imaging, the true spike times are known
and the accuracy of the two filters can be compared. Figure 5
shows a result typical of the 12 joint electrophysiological and
imaging experiments conducted (see METHODS for details). As
in the simulated data, the fast filter output is much “cleaner”
than the Wiener filter: spikes are more well defined, and not
spread out, due to the sparse prior imposed by the exponential
approximation. Note that this trace is typical of epifluorescence
techniques, which makes resolving individual spikes quite
difficult, as evidenced by a few false positives in the fast filter.
Regardless, the fast filter output is still more accurate than the
Wiener filter, both as determined qualitatively by eye and as
quantified (described in the following text). Furthermore, although
it is difficult to see in this figure, the first four events are actually
pairs of spikes, reflected by the width and height of the corre-
sponding inferred spikes when using the fast filter. This suggests
that although the scale of n is arbitrary, the fast filter can correctly
ascertain the number of spikes within spike events.

Figure 6 further evaluates this claim. While recording and
imaging, the cell was forced to spike once, twice, or thrice for
each spiking event. The fast filter infers the correct number of
spikes in each event. On the contrary, there is no obvious way
to count the number of spikes within each event when using the
Wiener filter. We confirm this impression by computing the
correlation coefficient, r2, between the sum of each filter’s
output and the true number of spikes, for all 12 joint electro-
physiological and imaging traces. Indeed, whereas the fast
filter’s r2 was 0.47, the Wiener filter’s r2 was �0.01 (after
thresholding all negative spikes), confirming that the Wiener
filter output cannot reliably convey the number of spikes in a
fluorescence trace, whereas the fast filter can. Furthermore,
varying the magnitude of the threshold for the Wiener filter to
discard more “low-amplitude noise” could increase the mag-
nitude of r2 (�0.24), still significantly lower than the fast
filter’s r2 value. On the other hand, no amount of thresholding

the fast filter yielded an improved r2, indicating that thresh-
olding the output of the fast filter is unlikely to improve spike
inference quality.

On-line analysis of spike trains using the fast filter

A central aim for this work was the development of an
algorithm that infers spikes fast enough to use on-line while
imaging a large population of neurons (e.g., �100). Figure 7
shows a segment of the results of running the fast filter on 136
neurons, recorded simultaneously, as described earlier in Ex-
perimental methods. Note that the filtered fluorescence signals
show fluctuations in spiking much more clearly than the
unfiltered fluorescence trace. These spike trains were inferred
in less than imaging time, meaning that one could infer spike
trains for the past experiment while conducting the subsequent
experiment. More specifically, a movie with 5,000 frames of
100 neurons can be analyzed in about 10 s on a standard
desktop computer. Thus if that movie was recorded at 50 Hz,
whereas collecting the data would require 100 s, inferring
spikes would require only 10 s, a 10-fold improvement over
real time.

Extensions

Earlier in METHODS, Data-driven generative model describes a sim-
ple principled first-order model relating the spike trains to the
fluorescence trace. A number of the simplifying assumptions can
be straightforwardly relaxed, as described next.

Replacing Gaussian observations with poisson. In the pre-
ceding text, observations were assumed to have a Gaussian
distribution. The statistics of photon emission and counting,
however, suggest that a Poisson distribution would be more
natural in some conditions, especially for two-photon data
(Sjulson and Miesenböck 2007), yielding:

Ft�
iid

Poisson (�Ct � �), (37)

where �Ct � � � 0. One additional advantage to this model
over the Gaussian model is that the variance parameter �2 no
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FIG. 5. In vitro data showing that the fast filter significantly outperforms
the Wiener filter, using OGB-1. Note that all the parameters for both filters
were estimated only from the fluorescence data in the top panel (i.e., not
considering the voltage data at all). � symbols denote true spike times
extracted from the patch data, not inferred spike times from F.
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FIG. 6. In vitro data with multispike events, showing that the fast filter can
often resolve the correct number of spikes within each spiking event, while
imaging using OGB-1, given sufficiently high SNR. It is difficult, if not
impossible, to count the number of spikes given the Wiener filter output.
Recording and fitting parameters as in Fig. 5. Note that the parameters were
estimated using a 60-s-long recording, of which only a fraction is shown here,
to more clearly depict the number of spikes per event.
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longer exists, which might make learning the parameters sim-
pler. Importantly, the log-posterior is still concave in C, as the
prior remains unchanged, and the new log-likelihood term is a
sum of terms concave in C:

ln P[F
C] � �
t�1

T

ln P[Ft
Ct] � �
t�1

T

�Ft ln (�Ct � �)

	 (�Ct � �) 	 ln (Ft!)� . (38)

The gradient and Hessian of the log-posterior can therefore be
computed analytically by substituting the above likelihood
terms for those implied by Eq. 1. In practice, however,
modifying the filter for this model extension did not seem to
significantly improve inference results in any simulations or
data available at this time (not shown).

Allowing for a time-varying prior. In Eq. 4, the rate of
spiking is a constant. Often, additional knowledge about the
experiment, including external stimuli or other neurons spik-
ing, can provide strong time-varying prior information (Vo-
gelstein et al. 2009). A simple model modification can incor-
porate that feature:

nt�
iid

Poisson (�t
), (39)

where �t is now a function of time. Approximating this time-
varying Poisson with a time-varying exponential with the same
time-varying mean (similar to Eq. 11a) and letting � �
[�1, . . . , �T]T�, yields an objective function very similar to Eq.
15, so log-concavity is maintained and the same techniques
may be applied. However, as before, this model extension did
not yield any significantly improved filtering results (not
shown).

Saturating fluorescence. Although all the abovemen-
tioned models assumed a linear relationship between Ft and
Ct, the relationship between fluorescence and calcium is
often better approximated by the nonlinear Hill equation
(Pologruto et al. 2004). Modifying Eq. 1 to reflect this
change yields:

Ft � �
Ct

Ct � kd
� � � �t �t�

iid
�(0, �2). (40)

Importantly, log-concavity of the posterior is no longer guar-
anteed in this nonlinear model, meaning that converging to the

global maximum is no longer guaranteed. Assuming a good
initialization can be found, however, and Eq. 40 is more
accurate than Eq. 1, then ascending the gradient for this model
is likely to yield improved inference results. In practice, ini-
tializing with the inference from the fast filter assuming a linear
model (e.g., Eq. 30) often resulted in nearly equally accurate
inference, but inference assuming the above nonlinearity was
far less robust than the inference assuming the linear model
(not shown).

Using the fast filter to initialize the SMC filter. A sequential
Monte Carlo (SMC) method to infer spike trains can incorpo-
rate this saturating nonlinearity, as well as other model exten-
sions discussed earlier (Vogelstein et al. 2009). However, this
SMC filter is not nearly as computationally efficient as the fast
filter proposed here. Like the fast filter, the SMC filter esti-
mates the model parameters in a completely unsupervised
fashion, i.e., from the fluorescence observations, using an
expectation-maximization algorithm (which requires iterating
between computing the expected value of the hidden vari-
ables—C and n—and updating the parameters). In Vogelstein
and colleagues (2009), parameters for the SMC filter were
initialized based on other data. Although effective, this initial-
ization was often far from the final estimates and thus required
a relatively large number of iterations (e.g., 20–25) before
converging. Thus it seemed that the fast filter could be used to
obtain an improvement to the initial parameter estimates, given
an appropriate rescaling to account for the nonlinearity,
thereby reducing the required number of iterations to conver-
gence. Indeed, Fig. 8 shows how the SMC filter outperforms
the fast filter on biological data and required only three to five
iterations to converge on these data, given the initialization
from the fast filter (which was typical). Note that the first few
events of the spike train are individual spikes, resulting in
relatively small fluorescence fluctuations, whereas the next
events are actually spike doublets or triplets, causing a much
larger fluorescence fluctuation. Only the SMC filter correctly
infers the presence of isolated spikes in this trace, a frequently
occurring result when the SNR is poor. Thus these two infer-
ence algorithms are complementary: the fast filter can be used
for rapid, on-line inference, and for initializing the SMC filter,
which can then be used to further refine the spike train
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FIG. 7. The fast filter infers spike trains from a large population of neurons imaged simultaneously in vitro, faster than real time. Specifically, inferring
the spike trains from this 400-s-long movie including 136 neurons required only about 40 s on a standard laptop computer. The inferred spike trains much
more clearly convey neural activity than the raw fluorescence traces. Although no intracellular “ground truth” is available from these population data, the
noise seems to be reduced, consistent with the other examples with ground truth. Left: mean image field, automatically segmented into regions of interest
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described in METHODS.
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estimate. Importantly, although the SMC filter often outper-
forms the fast filter, the fast filter is more robust, meaning that
it more often works “out of the box.” This follows because the
SMC filter operates on a highly nonlinear model that is not
log-concave. Thus although the expectation-maximization al-
gorithm used often converges to reasonable local maxima, it is
not guaranteed to converge to global maxima and its perfor-
mance in general will depend on the quality of the initial
parameter estimates.

Spatial filter

In the preceding text, the filters operated on one-dimensional
fluorescence traces. The raw data are in fact a time series of
images that are first segmented into regions of interest (ROIs)
and then (usually) spatially averaged to obtain a one-dimen-
sional time series F. In theory, one could improve the effective
SNR of the fluorescence trace by scaling each pixel according
to its SNR. In particular, pixels not containing any information
about calcium fluctuations can be ignored and pixels that are
partially anticorrelated with one another could have weights
with opposing signs.

Figure 9 demonstrates the potential utility of this approach.
The top row shows different depictions of an ROI containing a
single neuron. On the far left panel is the true spatial filter for
this neuron. This particular spatial filter was chosen based on
experience analyzing both in vitro and in vivo movies; often, it
seems that the pixels immediately around the soma are anti-
correlated with those in the soma (MacLean et al. 2005;
Watson et al. 2008). This effect is possibly due to the influx of
calcium from the extracellular space immediately around the
soma. The standard approach, given such a noisy movie, would
be to first segment the movie to find an ROI corresponding to
the soma of this cell and then spatially average all the pixels
found to be within this ROI. The second panel shows this
standard “boxcar spatial filter.” The third panel shows the
mean frame. The fourth panel shows the learned filter, using
Eq. 29 to estimate the spatial filter and background. Clearly,
the learned filter is very similar to the mean filter and the true
filter.

The middle panels of Figure 9 show the fluorescence traces
obtained by background subtracting and then projecting each
frame onto the corresponding spatial filter (black line) and true
spike train (gray � symbols). The bottom panels show the
inferred spike trains (black bars) using these various spatial filters
and, again, the true spike train (gray � symbols). Although the
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FIG. 9. A simulation demonstrating that using a better spatial filter can significantly enhance the effective SNR. The true spatial filter was a difference of
Gaussians: a positively weighted Gaussian of small width and a negatively weighted Gaussian with larger width (both with the same center). Each column shows
the spatial filter (top), one-dimensional fluorescence projection using that spatial filter (middle), and inferred spike train (bottom). From left to right, columns use
the true, boxcar, mean, and learned spatial filter obtained using Eq. 29. Note that the learned filter’s inferred spike train has fewer false positives and negatives
than the boxcar and mean filters. Simulation parameters: �� � �(0, 2I) � 0.5�(0, 2.5I), where �(�, �) indicates a 2-dimensional Gaussian with mean � and
covariance matrix �, �� � 0, � � 0.2, � � 0.85 s, � � 5 Hz, � � 5 ms, T � 1,200 time steps.
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performance is very similar for all of them, the boxcar filter’s
inferred spike train is not as clean.

Overlapping spatial filters

The preceding text shows that if the ROI contains only a
single neuron, the effective SNR can be enhanced by spatially
filtering. However, this analysis assumes that only a single
neuron is in the ROI. Often, ROIs are overlapping, or nearly
overlapping, making the segmentation problem more difficult.
Therefore it is desirable to have an ability to crudely segment,
yielding only a few neurons in each ROI, and then spatially
filter within each ROI to pick out the spike trains of each
neuron. This may be achieved in a principled manner by
generalizing the model as described in Overlapping spatial
filters in METHODS. The true spatial filters of the neurons in the
ROI are often unknown and thus must be estimated from the
data. This problem may be considered a special case of blind
source separation (Bell and Sejnowski 1995; Mukamel et al.
2009). Figure 10 shows that given reasonable assumptions of
spiking correlations and SNR, multiple signals can be sepa-
rated. Note that separation occurs even though the signal is
significantly overlapping (top panels). To estimate the spatial
filters, they are initialized using the boxcar filters (middle
panels). After a few iterations, the spatial filters converge to
very close approximation to the true spatial filters [compare
true (left) and learned (right) spatial filters for the two neu-
rons]. Note that both the true and learned spatial filters yield
much improved spike inference relative to the boxcar filter.
This suggests that even when spatial filters of multiple neurons

are significantly overlapping, each spike train is potentially
independently recoverable.

D I S C U S S I O N

Summary

This work describes an algorithm that finds the approximate
maximum a posteriori (MAP) spike train, given a calcium
fluorescence movie. The approximation is required because
finding the actual MAP estimate is not currently computation-
ally tractable. Replacing the assumed Poisson distribution on
spikes with an exponential distribution yields a log-concave
optimization problem, which can be solved using standard
gradient ascent techniques (such as Newton–Raphson). This
exponential distribution has an advantage over a Gaussian
distribution by restricting spikes to be positive, which im-
proves inference quality (cf. Fig. 2), is a better approximation
to a Poisson distribution with low rate, and imposes a sparse
constraint on spiking. Furthermore, all the parameters can be
estimated from only the fluorescence observations, obviating
the need for joint electrophysiology and imaging (cf. Fig. 4).
This approach is robust, in that it works “out of the box” on all
the in vitro data analyzed (cf. Figs. 5 and 6). By using the
special banded structure of the Hessian matrix of the log-
posterior, this approximate MAP spike train can be inferred
fast enough on standard computers to use it for on-line analyses
of over 100 neurons simultaneously (cf. Fig. 7).

Finally, the fast filter is based on a biophysical model
capturing key features of the data and may therefore be
straightforwardly generalized in several ways to improve ac-
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curacy. Unfortunately, some of these generalizations do not
improve inference accuracy, perhaps because of the exponen-
tial approximation. Instead, the fast filter output can be used to
initialize the more general SMC filter (Vogelstein et al. 2009),
to further improve inference quality (cf. Fig. 8). Another model
generalization allows incorporation of spatial filtering of the
raw movie into this approach (cf. Fig. 9). Even when multiple
neurons are overlapping, spatial filters may be estimated to
obtain improved spike inference results (cf. Fig. 10).

Alternate algorithms

This work describes but one specific approach to solving a
problem that does not admit an exact solution that is compu-
tationally feasible. Several other approaches warrant consider-
ation, including 1) a Bayesian approach, 2) a greedy approach,
and 3) different analytical approximations.

First, a Bayesian approach could use Markov Chain Monte
Carlo methods to recursively sample spikes to estimate the full
joint posterior distribution of the entire spike train, conditioned
on the fluorescence data (Andrieu et al. 2001; Joucla et al.
2010; Mishchenko et al. 2010). Although enjoying several
desirable statistical properties that are lacking in the current
approach (such as consistency), the computational complexity
of such an approach renders it inappropriate for the aims of this
work.

Second, a common relatively expedient approximation to
Bayesian sampling is a so-called greedy approach. Greedy
algorithms are iterative, with each iteration adding another
spike to the putative spike train. Each spike that is added is the
most likely spike (thus the greedy term) or the one that most
increases the likelihood of the fluorescence trace. Template
matching, projection pursuit regression (Friedman and Stuetzle
1981), and matching pursuit (Mallat and Zhang 1993) are
examples of such a greedy approach (the algorithm proposed
by Grewe et al. (2010) could also be considered a special case
of such a greedy approach).

Third, approximations other than the exponential distribu-
tion are possible. For instance, the Gaussian approximation is
more appropriate for high firing rates, although in simulations,
this more accurate approximation did not improve the Wiener
filter output relative to the fast filter output (cf. Fig. 3). Perhaps
the best approximation would use the closest log-concave
relaxation to the Poisson model (Koenker and Mizera 2010).
More formally, let P(i) represent the Poisson mass at i and let
ln Q be some concave density. Then, one could find the
log-density Q such that Q maximizes �i P(i)Q(i) � � �
exp{Q(x)}dx over the space of all concave Q. The first term
corresponds to the log-likelihood, equivalent to the
Kullback–Leibler divergence (Cover and Thomas 1991), and
the second is a Lagrange multiplier to ensure that the density
exp{Q(x)} integrates to unity. This is a convex problem be-
cause the space of all concave Q is convex and the objective
function is concave in Q. In addition, it is easy to show that the
optimal Q has to be piecewise linear; this means that one need
not search over all possible densities, but rather, simply vary
Q(i) at the integers. Note that � exp{Q(x)}dx can be computed
explicitly for any piecewise linear Q. This optimization prob-
lem can be solved using simple interior point methods and, in
fact, the Hessian of the inner loop of the interior point method
will be banded (because enforcing concavity of Q is a local

constraint). This approximation could potentially be more
accurate than our exponential approximation. Further, this
approximation encourages integer solutions for nt and is there-
fore of interest for future work.

The abovementioned three approaches may be thought of as
complementary because each has unique advantages relative to
the others. Both the greedy methods and the analytic approx-
imations could potentially be used to initialize a Bayesian
approach, possibly limiting the burn-in period, which can be
computationally prohibitive in certain contexts. A greedy ap-
proach has the advantage of providing actual spike trains (i.e.,
binary sequences), unlike the analytic approximations. How-
ever, the actual spike trains could be quite far from the MAP
spike train because greedy approaches, in general, have no
guarantee of consistency. The analytic approximations, on the
other hand, are guaranteed to converge to solutions close to the
MAP spike train, where closeness is determined by the accu-
racy of the above approximation. Thus developing these dis-
tinct approaches and combining them is a potential avenue for
further research.

Spatial filtering

Spatial filtering could be improved in a number of ways. For
instance, pairing this approach with a crude but automatic
segmentation tool to obtain ROIs would create a completely
automatic algorithm that converts raw movies of populations of
neurons into populations of spike trains. Furthermore, this filter
could be coupled with more sophisticated algorithms to initial-
ize the spatial filters when they are overlapping [for instance,
principal component analysis (Horn and Johnson 1990) or
independent component analysis (Mukamel et al. 2009)]. One
could also use a more sophisticated model to estimate the
spatial filters. One option would be to assume a simple para-
metric form of the spatial filter for each neuron (e.g., a basis
set) and then merely estimate the parameters of that model.
Alternately, one could regularize the spatial filters, using an
elastic net type approach (Grosenick et al. 2009; Zou and
Hastie 2005), to enforce both sparseness and smoothness.

Model generalizations

In this work, we made two simplifying assumptions that can
easily be relaxed: 1) instantaneous rise time of the fluorescence
transient after a spike and 2) constant background. In practice,
often either or both of these assumptions are inaccurate. Spe-
cifically, genetic sensors tend to have a much slower rise time
than that of organic dyes (Reiff et al. 2005). Further, the
background often exhibits slow baseline drift due to move-
ment, temperature fluctuations, laser power, and so forth, not to
mention bleaching, which is ubiquitous for long imaging ex-
periments. Both slow rise and baseline drift can be incorpo-
rated into our forward model using a straightforward general-
ization.

Consider the following illustrative example: the fluorescence
rise time in a particular data set is quite slow, much slower than
that of a single image frame. Thus fluorescence might be well
modeled as the difference of two different calcium extrusion
mechanisms, with different time constants. To model this
scenario, one might proceed as follows: posit the existence of
a two-dimensional time-varying signal, each like the calcium
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signal assumed in the simpler models described earlier. There-
fore each signal has a time constant and each signal is depen-
dent on spiking. Finally, the fluorescence could be a weighted
difference of the two signals. To formalize this model and to
generalize it, let 1) X � (X1, . . . , Xd) be a d-dimensional
time-varying signal; 2) � be a d � d dynamics matrix, where
diagonal elements correspond to time constants of individual
variables, and off-diagonal elements correspond to dependen-
cies across variables; 3) A be a d-dimensional binary column
vector encoding whether each variable depends on spiking; and
4) � be a d-dimensional column vector of weights, determining
the relative impact of each dimension on the total fluorescence
signal. Given these conventions, we have the following gen-
eralized model:

Ft � ��TXt � � � �, ��iid�(0, �2) (41)

Xt � ��Xt	1 � Ant, nt�
iid

Poisson (�
) (42)

Note that this model simplifies to the model proposed earlier when
d � 1. Because X is still Markov, all the theory developed above
still applies directly for this model. There are, however, additional
complexities with regard to identifiability. Specifically, the param-
eters �� and A are closely related. Thus we enforce that A is a
known binary vector, simply encoding whether a particular ele-
ment responds to spiking. The matrix � will not be uniquely
identifiable, for the same reason that � was not identifiable, as
described in Learning the parameters in METHODS. Thus we would
assume � was known, a priori. Note that other approaches to
dealing with baseline drift are also possible, such as letting � be
a time-varying state: �t � �t�1 � �t, where �t is a normal random
variable with variance ��

2 that sets the effective drift rate. Both
these models are the subjects of further development.

Concluding thoughts

In summary, the model and algorithm proposed in this work
potentially provide a useful tool to aid in the analysis of
calcium-dependent fluorescence imaging and establish the
groundwork for significant further development.

A P P E N D I X B : W I E N E R F I L T E R

The Poisson distribution in Eq. 4 can be replaced with a Gaussian
instead of an exponential distribution, i.e., nt�

iid
���
, �
� that, when

plugged into Eq. 7, yields:

n̂ � argmax
nt

�
t �1

T 
 1

2�2 (Ft 	 �Ct 	 �)2 �
1

2�

(nt 	 �
)2�.

(B1)

Note that since fluorescence integrates over �, it makes sense that the
mean scales with �. Further, since the Gaussian here is approximating
a Poisson with high rate (Sjulson and Miesenböck 2007), the variance
should scale with the mean. Using the same tridiagonal trick as before,
Eq. 11b can be solved using Newton–Raphson once (because this
expression is quadratic in n). Writing the above in matrix notation,
substituting Ct � 	Ct�1 for nt, and letting � � 1 yields:

Ĉ � argmax
C

	
1

2�2 � F 	 C 	 �1T�2 	
1

2�

� MC 	 �
1�2,

(B2)

which is quadratic in C. The gradient and Hessian are given by:

g � 	
1

�2 (C 	 F 	 �1T) 	
1

�

[(MĈ)TM � �
MT1] (B3)

H �
1

�2I �
1

�

MTM. (B4)

Note that this solution is the optimal linear solution, under the
assumption that spikes follow a Gaussian distribution, and is often
referred to as the Wiener filter, regression with a smoothing prior, or
ridge regression (Boyd and Vandenberghe 2004). Estimating the
parameters for this model follows a pattern similar to that described in
Learning the parameters in METHODS.
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APPENDIX A: PSEUDOCODE

Algorithm 1 Pseudocode for inferring the approximately most likely spike train, given fluorescence data. Note that the algorithm is robust to small
variations �z, �n. The equations listed below refer to the most general equations in the text (simpler equations could be substituted when appropriate).
Curly brackets, {·}, indicate comments.

1: initialize parameters, � (see Initializing the parameters in METHODS)
2: while convergence criteria not met do
3: for z � 1,0.1,0.01, . . . , �z do {interior point method to find Ĉ}
4: Initialize nt � �n for all t � 1, . . . , T, C1 � 0 and Ct � 	Ct�1 � nt for all t � 2, . . . , T
5: let Cz be the initialized calcium, and P̂z, be the posterior given this initialization
6: while P̂z= 
 P̂z do {Newton–Raphson with backtracking line searches}
7: compute g using Eq. 34
8: compute H using Eq. 35
9: compute d using H\g {block-tridiagonal Gaussian elimination}

10: let Cz= � Cz � sd, where s is between 0 and 1, and P̂z= � P̂z {backtracking line search}
11: end while
12: end for
13: check convergence criteria
14: update �� and �� using Eq. 36 {only if spatial filtering}
15: let � be the root-mean square of the residual
16: let � � T/(��tn̂t)
17: end while

Innovative Methodology

3703FAST NONNEGATIVE DECONVOLUTION OF CALCIUM IMAGING

J Neurophysiol • VOL 104 • DECEMBER 2010 • www.jn.org

on January 26, 2015
D

ow
nloaded from

 



Paninski; National Eye Institute Grant EY-11787 and the Kavli Institute for
Brain Studies award to R. Yuste and the Yuste laboratory; and an NSF
Collaborative Research in Computational Neuroscience award IIS-0904353,
awarded jointly to L. Paninski and R. Yuste.

D I S C L O S U R E S

No conflicts of interest, financial or otherwise, are declared by the author(s).

R E F E R E N C E S

Andrieu C, Barat É, Doucet A. Bayesian deconvolution of noisy filtered
point processes. IEEE Trans Signal Process 49: 134–146, 2001.

Bell AJ, Sejnowski TJ. An information-maximisation approach to blind
separation and blind deconvolution. Neural Comput 7: 1129–1159, 1995.

Boyd S, Vandenberghe L. Convex Optimization. Cambridge, UK: Cambridge
Univ. Press, 2004.

Cover TM, Thomas JA. Elements of Information Theory: New York: Wiley–
Interscience, 1991.

Cunningham JP, Shenoy KV, Sahani M. Fast Gaussian process methods for
point process intensity estimation. In: Proceedings of the 25th International
Conference on Machine Learning (ICML 2008). New York: IEEE Press,
2008, p. 192–199.

Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete
data via the EM algorithm. J R Stat Soc B Methodol 39: 1–38, 1977.

Friedman JH, Stuetzle W. Projection pursuit regression. J Am Stat Assoc 76:
817–823, 1981.

Garaschuk O, Griesbeck O, Konnerth A. Troponin c-based biosensors: a
new family of genetically encoded indicators for in vivo calcium imaging in
the nervous system. Cell Calcium 42: 351–361, 2007.

Göbel W, Helmchen F. In vivo calcium imaging of neural network function.
Physiology (Bethesda) 22: 358–365, 2007.

Green DM, Swets JA. Signal Detection Theory and Psychophysics. New
York: Wiley, 1966.

Greenberg DS, Houweling AR, Kerr JND. Population imaging of ongoing
neuronal activity in the visual cortex of awake rats. Nat Neurosci 11:
749–751, 2008.

Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F. High-speed in
vivo calcium imaging reveals neuronal network activity with near-millisec-
ond precision. Nat Methods 7: 399–405, 2010.

Grosenick L, Anderson T, Smith SJ. Elastic source selection for in vivo
imaging of neuronal ensembles. In: Proceedings of the Sixth IEEE Interna-
tional Conference on Symposium on Biomedical Imaging: From Nano to
Macro (ISBI ’09). New York: IEEE Press, 2009, p. 1263–1266.

Holekamp TF, Turaga D, Holy TE. Fast three-dimensional fluorescence
imaging of activity in neural populations by objective-coupled planar
illumination microscopy. Neuron 57: 661–672, 2008.

Horn R, Johnson C. Matrix Analysis. Cambridge, UK: Cambridge Univ.
Press, 1990.

Huys QJM, Ahrens MB, Paninski L. Efficient estimation of detailed single-
neuron models. J Neurophysiol 96: 872–890, 2006.

Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R.
Synfire chains and cortical songs: temporal modules of cortical activity.
Science 304: 559–564, 2004.

Joucla S, Pippow A, Kloppenburg P, Pouzat C. Quantitative estimation of
calcium dynamics from radiometric measurements: a direct, nonratioing
method. J Neurophysiol 103: 1130–1144, 2010.

Kass R, Raftery A. Bayes factors. J Am Stat Assoc 90: 773–795, 1995.
Koenker R, Mizera I. Quasi-concave density estimation. Ann Stat 38: 2998–

3027, 2010.
Lee DD, Seung HS. Learning the parts of objects by non-negative matrix

factorization. Nature 401: 788–791, 1999.
Lin Y, Lee DD, Saul LK. Nonnegative deconvolution for time of arrival

estimation. In: Proceedings of the 2004 International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP 2004). New York: IEEE Press,
2004, p. 377–380.

Luo L, Callaway EM, Svoboda K. Genetic dissection of neural circuits.
Neuron 57: 634–660, 2008.

MacLean J, Watson B, Aaron G, Yuste R. Internal dynamics determine the
cortical response to thalamic stimulation. Neuron 48: 811–823, 2005.

Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries. IEEE
Trans Signal Process 41: 3397–3415, 1993.

Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V,
Hendel T, Reiff DF, Levelt C, Borst A, Bonhoeffer T, Hbener M,
Griesbeck O. A genetically encoded calcium indicator for chronic in vivo
two-photon imaging. Nat Methods 5: 805–811, 2008.

Mao B, Hamzei-Sichani F, Aronov D, Froemke R, Yuste R. Dynamics of
spontaneous activity in neocortical slices. Neuron 32: 883–898, 2001.

Markham J, Conchello J-A. Parametric blind deconvolution: a robust method
for the simultaneous estimation of image and blur. J Opt Soc Am A Opt
Image Sci Vis 16: 2377–2391, 1999.

Mishchenko Y, Vogelstein J, Paninski L. A Bayesian approach for inferring
neuronal connectivity from calcium fluorescent imaging data. Ann Appl Stat
http://www.imstat.org/aoas/nextissue.html.

Mukamel EA, Nimmerjahn A, Schnitzer MJ. Automated analysis of cellular
signals from large-scale calcium imaging data. Neuron 63: 747–760, 2009.

Nagayama S, Zeng S, Xiong W, Fletcher ML, Masurkar AV, Davis DJ,
Pieribone VA, Chen WR. In vivo simultaneous tracing and Ca2� imaging
of local neuronal circuits. Neuron 53: 789–803, 2007.

O’Grady PD, Pearlmutter BA. Convolutive non-negative matrix factorisa-
tion with a sparseness constraint. In: Proceedings of the International
Workshop on Machine Learning for Signal Processing, 2006. New York:
IEEE Press, 2006, p. 427–432.

Paninski L, Ahmadian Y, Ferreira D, Koyama S, Rad KR, Vidne M,
Vogenstein J, Wu W. A new look at state-space models for neural data. J
Comput Neurosci. doi: 10.1007/s10827-009-0179-x, 1–20, 2009.

Pologruto TA, Yasuda R, Svoboda K. Monitoring neural activity and [Ca2�]
with genetically encoded Ca2� indicators. J Neurosci 24: 9572–9579, 2004.

Portugal LF, Judice JJ, Vicente LN. A comparison of block pivoting and
interior-point algorithms for linear least squares problems with nonnegative
variables. Math Comput 63: 625–643, 1994.

Press W, Teukolsky S, Vetterling W, Flannery B. Numerical Recipes in C.
Cambridge, UK: Cambridge Univ. Press, 1992.

Reiff DF, Ihring A, Guerrero G, Isacoff EY, Joesch M, Nakai J, Borst A.
In vivo performance of genetically encoded indictors of neural activity in
flies. J Neurosci 25: 4766–4778, 2005.

Sasaki T, Takahashi N, Matsuki N, Ikegaya Y. Fast and accurate detection
of action potentials from somatic calcium fluctuations. J Neurophysiol 100:
1668–1676, 2008.

Schwartz T, Rabinowitz D, Unni VK, Kumar VS, Smetters DK, Tsiola A,
Yuste R. Networks of coactive neurons in developing layer 1. Neuron 20:
1271–1283, 1998.

Seeger M. Bayesian inference and optimal design for the sparse linear model.
J Machine Learn Res 9: 759–813, 2008.

Sjulson L, Miesenböck G. Optical recording of action potentials and other
discrete physiological events: a perspective from signal detection theory.
Physiology (Bethesda) 22: 47–55, 2007.

Smetters D, Majewska A, Yuste R. Detecting action potentials in neuronal
populations with calcium imaging. Methods 18: 215–221, 1999.

Vogelstein JT, Watson BO, Packer AM, Yuste R, Jedynak B, Paninski L.
Spike inference from calcium imaging using sequential Monte Carlo meth-
ods. Biophys J 97: 636–655, 2009.

Wallace DJ, zum Alten Borgloh SM, Astori S, Yang Y, Bausen M, Kgler
S, Palmer AE, Tsien RY, Sprengel R, Kerr JND, Denk W, Hasan MT.
Single-spike detection in vitro and in vivo with a genetic Ca2� sensor. Nat
Methods 5: 797–804, 2008.

Watson BO, MacLean JN, Yuste R. Up states protect ongoing cortical
activity from thalamic inputs. PLoS ONE 3: e3971, 2008.

Wu MC-K, David SV, Gallant JL. Complete functional characterization of
sensory neurons by system identification. Annu Rev Neurosci 29: 477–505,
2006.

Yaksi E, Friedrich RW. Reconstruction of firing rate changes across neuronal
populations by temporally deconvolved Ca2� imaging. Nat Methods 3:
377–383, 2006.

Yuste R, Konnerth A. Editors. Imaging in Neuroscience and Development: A
Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Labo-
ratory Press, 2005.

Yuste R, Katz LC. Control of postsynaptic Ca2� influx in developing
neocortex by excitatory and inhibitory neurotransmitters. Neuron 6: 333–
344, 1991.

Zou H, Hastie T. Regularization and variable selection via the elastic net. J R
Statist Soc B Stat Methodol 67: 301–320, 2005.

Innovative Methodology

3704 VOGELSTEIN ET AL.

J Neurophysiol • VOL 104 • DECEMBER 2010 • www.jn.org

on January 26, 2015
D

ow
nloaded from

 


