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Abstract

Traumatic brain injury (TBI) alters function and behavior, which can be characterized by
changes in electrophysiological function in vitro. A common cognitive deficit after mild to
moderate TBI is disruption of persistent working memory of which the in vitro correlate is long-
lasting, neuronal network synchronization that can be induced pharmacologically by the GABAAa
antagonist bicuculline. We utilized a novel in vitro platform for TBI research, the stretchable
microelectrode array (SMEA), to investigate the effects of TBI on bicuculline-induced, long-

lasting network synchronization in the hippocampus. Mechanical stimulation significantly
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disrupted bicuculline-induced, long-lasting network synchronization 24 hours after injury,
despite the continued ability of the injured neurons to fire as revealed by a significant increase in
the normalized spontaneous event rate in the dentate gyrus (DG) and CAl. A second challenge
with bicuculline 24h after the first significantly decreased the normalized spontaneous event rate
in the DG. In addition, we illustrate the utility of the SMEA for TBI research by combining
multiple experimental paradigms in one platform, which has the potential to enable novel
investigations into the mechanisms responsible for functional consequences of TBI and to speed

the rate of drug discovery.

Introduction

Traumatic brain injury (TBI) continues to be a leading cause of death and disability," ? affecting
nearly 10 million people annually worldwide and an estimated 1.7 million people annually in the
United States.® The devastating behavioral and functional consequences of TBI include
cognitive impairment,* memory loss or impairment,” loss or decreased consciousness,® motor

deficits,” coma,® seizure and epilepsy,” and death.®

Disruption of persistent working memory is a prominent cognitive deficit experienced by
individuals with TBI.*! In adults, the neural correlate for working memory and information
storage may be recurrent network activity,'” which is also involved in neuronal network
maturation in the developing brain.®* In many cases, working memory deficits arise in the
absence of cell death or overt structural damage to brain tissue especially in cases of mild or

moderate TBI.24Y
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TBI is caused by deformation of brain tissue, with tissue strain and strain rate identified as
significant predictors of injury.’®** However, very few studies have characterized in vivo tissue
strain and strain rate during TBI due to the challenges of directly measuring tissue deformation
in vivo.”*** An in vitro approach to these mechanistic studies allows for precise control of the
mechanical stimulus and the extracellular environment to examine the response of the brain
parenchyma in the absence of systemic influences, while recapitulating much of the in vivo

25,26

pathology.

One way to record in vitro neural activity is through the use of microelectrode arrays (MEAs).*"
27.28 Compared to single electrode electrophysiological recordings, MEAs enable the
investigation of higher order behaviors of neuronal networks comprised of up to many thousands
of neurons, due to the ability to record simultaneously from multiple sites.?>* One limitation of
available MEAs is their rigid nature, which prevents direct testing of hypotheses relating changes
in electrophysiological function to mechanisms of mechanotransduction. Previously, we
demonstrated the ability to monitor electrophysiological function in hippocampal slice cultures
after mechanical stretch injury using an earlier generation of SMEAs (stretchable microelectrode
arrays).>! In the present study, we leveraged the advantages of the latest generation of SMEA,
with more recording electrodes and smaller feature-size, to test our hypothesis that long-lasting,

hippocampal network synchronization is disrupted by TBI.

Recurrent network activity or synchronization is regulated by the inhibitory neurotransmitter y-
aminobutyric acid (GABA).** Disinhibition, caused by disruptions in GABAergic signaling,
may be a leading cause of pathologically persistent activity.* Acutely, the GABAA antagonist
bicuculline is used to induce epileptiform bursting activity in brain slice cultures by blocking

GABAergic inhibition** and to induce long-lasting, recurrent synchronous bursting, hours and
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days after washout.”® * By utilizing the unique capabilities of the SMEA to combine long-term
electrophysiological recording with mechanical stimulation, we investigated the effect of mild to
moderate mechanical stretch injury on bicuculline-induced, long-lasting network

synchronization.

Our SMEA system has the potential to engender novel experimental strategies to investigate the
mechanisms of mechanotransduction underlying the functional consequences of TBl. Compared
to more labor intensive in vivo approaches, the ability to test TBI hypotheses within a single
organotypic slice culture over extended durations could increase the speed of drug discovery

through high-content screening.*®

Materials and Methods

Stretchable microelectrode arrays

Design, fabrication, and packaging of SMEAs have been described previously in detail .*"*

Briefly, thin-film conductors (3 nm chromium, followed by 75 nm gold, finished with 3 nm
chromium) were sequentially deposited on a 280 um thick layer of polydimethylsiloxane
(PDMS, Sylgard 184, Dow Corning, Midland, MI, USA) by electron beam evaporation.*® The
gold thin-film was patterned into recording electrodes and encapsulated with a 15 um thick layer
of either PDMS or photo-patternable silicone (PPS, WL5150, Dow Corning). Vias were opened
in the encapsulation layer to expose the recording electrodes and peripheral contacts. Platinum
black was electroplated on the surfaces of the recording electrodes. The SMEA was sandwiched

between two printed circuit boards with circular openings for the culture well and to allow
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incorporation into our in vitro TBI model.** The SMEA featured 28 recording electrodes

(feature size < 100 um), 2 reference electrodes, and 30 peripheral contacts (Figure 1).%

Organotypic slice cultures of the rat hippocampus

All animal procedures were approved by the Columbia University Institutional Animal Care and
Use Committee (IACUC). Prior to plating organotypic hippocampal slice cultures, SMEASs were
made hydrophilic with air gas plasma treatment (Harrick PDC-32G, Harrick Scientific,
Pleasantville, NY, USA) for 90 s.*> SMEAs were pre-coated overnight with 80 pug/mL laminin
(Life Technologies, Carlsbad, CA, USA) and 320 pg/mL poly-L-lysine (Sigma-Aldrich, St.
Louis, MO, USA), and then incubated overnight with Neurobasal medium (Life Technologies;
supplemented with 1 mM Glutamax, 50X B27, 4.5 mg/mL D-glucose, and 10 mM HEPES) in a
standard cell-culture incubator (37 <C, 5% CO,). The brains of post-natal day 8-11 Sprague-
Dawley rat pups were aseptically removed, and the hippocampus cut into 375 um thick slices
using a Mcllwain tissue chopper (Harvard Apparatus, Holliston, MA, USA) according to
published methods.** Hippocampal slice cultures were then plated onto pre-coated SMEAs and
fed every 2-3 days with conditioned full-serum medium (Sigma-Aldrich; 50% minimum
essential media, 25% Hank’s balanced salt solution, 25% heat inactivated horse serum, 1 mM
Glutamax, 4.5 mg/mL D-glucose, and 10 mM HEPES) for 8-18 days total. To verify slice
culture health prior to injury, the fluorescent dye propidium iodide (Life Technologies) was used
to stain for dead or injured cells. Unhealthy slice cultures were not included in the study,

according to published methods.*®
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Mechanical stretch injury of hippocampal slice cultures

The in vitro model of mechanical stretch injury has been characterized previously in detail.*"*

Briefly, after 8-18 days in vitro, media was removed from the SMEA well, and the hippocampal
slice cultures were mechanically stretched by pulling the SMEA over a rigid, tubular indenter.
Slice culture electrophysiological function was then assessed as described below. The induced
tissue strain and strain rate were verified with high-speed video analysis of the dynamic stretch
injury event. Lagrangian strain was determined by calculating the deformation gradient tensor

by locating fiducial markers on the tissue slice image before and at maximal stretch.**

Assessment of electrophysiological function

At the indicated time point after stretch injury and while still adhered to the SMEA, slice cultures
were perfused with artificial cerebrospinal fluid (aCSF, Sigma-Aldrich; 125 mM NaCl, 3.5 mM
KCI, 26 mM NaHCOg3, 1.2 mM KH,PO,, 1.3 mM MgCl,, 2.4 mM CaCl,, 10 mM D-glucose, pH
= 7.4) at 37<C and aerated with 95% O,/5% CO, as previously described.!” For experiments
involving GABA inhibition, slice cultures were perfused for a minimum of 3 minutes with
bicuculline methiodide 50 uM (Sigma-Aldrich) in aCSF before recording electrical activity,
within one hour post-injury. Bicuculline was then washed from the slice cultures for at least 20
minutes before returning them to the incubator for follow-up recordings at the indicated time

points.

Spontaneous neural activity was measured by recording continuously for 3 minutes at a sampling
rate of 20 kHz from all electrodes within the hippocampus prior to injury and at the indicated

time point. Raw data was low pass filtered with a 6 kHz analog, anti-aliasing filter and passed
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through a 60 Hz comb filter using a custom MATLAB script (version R2012a, MathWorks,
Natick, MA, USA). Consistent with other MEA studies with acute slices, the electrodes of the
SMEAs recorded the local field potentials produced by populations of neuronal cell bodies,
dendrites, and axons within the local vicinity of individual electrodes.* Neural event activity
was detected based on the multiresolution Teager energy operator (m-TEO), which identifies
epochs of data that contain high energy in specific frequency bands that are indicative of the
feature being detected.* In this case, the feature was the local field potential of neuronal
ensembles recorded by the planar electrodes of the SMEA. The m-TEO was calculated for k =
(600, 900, 1200), and neural events were identified as the onset of those epochs with an m-TEO
greater than 0.5 root-mean-square-error above the baseline m-TEO and with a raw signal greater

than 1.5 root-mean-square-error above the baseline of the raw signal.*’

Using the results from the previous analysis above, which identified the onset time of each neural
event on each electrode, the degree of correlation for event trains across electrode pairs was
investigated. Spontaneous network synchronization was quantified using previously published
methods based on correlation matrix analysis and surrogate resampling for significance testing.*®
% Correlation of neural events was computed to determine an event synchronization measure,
the synchronization index, for each electrode pair.*® Correlated neural events across electrodes
were defined as detected neural events that occurred within 1.5 ms of each other.”” For two

electrodes x and y, and neural event-timing t; and tjy i=1,...,mygj=1,..., my), the event
correlation matrix was calculated by:
— : X y
]}j—llf0<ti—thT (1)

m m 1 .
c(xly) =X 252,215 Ji=siftf =t

Ji; = 0 otherwise
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where t was the time interval in which two events were considered synchronous (1.5 ms), my and
my were the total number of events to be compared, and J;; was a measure of correlation of two

particular electrodes.

The event synchronization index for each electrode comparison, ranging in value from 0

(completely uncorrelated) to 1 (perfectly correlated), was calculated by:

_ ) + o

Jmamy, (2)

Qr

To identify clusters of synchronized electrodes, first, the participation index (PI) was calculated

for each electrode a that contributed to a cluster b:

Pl = Abvéb (3)

where va, was the a™ element of eigenvector v, and 4, was the corresponding eigenvalue of the
event correlation matrix [c*(x|y)]. Plap indicated the contribution of electrode a to the
synchronized cluster b, with vZ, defined as the weight with which electrode a contributed to
cluster b. Clusters were defined as groups of electrodes with statistically similar patterns of

activity, defined by PI>0.01.%

Next, randomized surrogate time-series data without correlated electrode pairs were
mathematically generated with an event rate equal to the instantaneous event rate of the
experimental recordings by generating an inhomogeneous Poisson-distributed, ‘event train.’

These uncorrelated, synthetic ‘event trains’ were analyzed identically to the experimental data to
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produce a correlation matrix, eigenvalues, eigenvectors, and PI to bootstrap hypothesis testing of
the experimental data.*® Essentially, the uncorrelated Poisson-distributed ‘event trains’ served as
the null hypothesis against which to test experimental data. The surrogate randomization was
repeated 50 times, and the mean (1},) and standard deviation (SDx) of surrogate eigenvalues were
calculated (k =1, ..., M, where M was the number of electrodes). We identified the number of
synchronized clusters that were significantly different from the randomized, asynchronous
surrogates by:

Number of Clusters = Z sgn|[Ax > (A + K x SD )] (4)
X

where sgn was a sign function, Ax was the eigenvalue of each electrode of the experimental data,
and K was a constant (K = 3, for 99% confidence level, was used for this study). The detection
of synchronized clusters represented the presence of neuronal assemblies functioning in an
organized network. It is believed that neuron assemblies play a critical role in higher-order
hippocampal function including spatial navigation and memory processes,>* which may be

disrupted after TBI and axonal injury.>

The degree of synchronization can be quantified and compared across slice cultures by
calculating the global synchronization index (GSI), ranging from 0 (completely random,
uncorrelated activity) to 1 (perfectly synchronous, correlated activity), for the cluster with the

highest degree of synchronization within each slice culture:

du =X Ay > X
GSI =3 — 7 Y Am (5)
0 otherwise
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where A’ was the mean of the highest eigenvalues calculated across all surrogates, 1,, was the
maximal eigenvalue of the correlation matrix from the experimental data, and M was the number
of electrodes. Lower synchronization (i.e. lower GSI) has been associated with dysfunctional or
damaged neural networks.”® Lastly, the GSI was apportioned to each region (DG, CA3, CA1)
based on the fraction of regional electrodes participating in the cluster to obtain a normalized

GSI for each region.

Statistical Analysis

To account for variability in the density and excitability of neuronal populations at each
electrode, spontaneous activity data was normalized to pre-injury levels for neural event rate on
an electrode-by-electrode basis. Spontaneous activity and network synchronization data were
analyzed by ANOVA, followed by Bonferroni post hoc tests with statistical significance set as p

<0.05.

Results
Mechanical injury alone did not alter spontaneous network activity

For all injured slice cultures, the average Lagrangian strain was 0.22 £0.02 and the average
strain rate was 2.37 £0.39 s (n = 12 slice cultures, mean =SD), which constituted a mild to
moderate injury as previously reported.X”*° Cell death was consistent with previously reported
cell death in hippocampal slice cultures caused by mild to moderate injury.’® Immediately post-

injury and 24 hours after injury, no significant change in the normalized GSI was observed in



) o ~_Journal of Neurotrauma o )
Alterationsin H Pocampal Network Activity after In Vitro Traumatic Brain Injury (doi: 10.1089/neu.2014.3667)

i
This article has been peer-reviewed and acceptecP or publication, but has yet'to undergo copyediting and proof correction. The final published version may differ from this proof.

Page 15 of 47

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

15

any region (Figure 2A). In addition, no significant alterations in the normalized spontaneous
event rate were observed in any region either acutely or 24 hours after injury (Figure 2B). These
results are consistent with the mild to moderate severity of the injury and the recording time

point.” 3

Mechanical injury disrupted bicuculline-induced, long-lasting network synchronization

In both uninjured and injured slice cultures, bicuculline induced highly synchronized, correlated
neural activity (Figure 3A, B). Prior to injury or bicuculline treatment, the hippocampal network
was not synchronized as denoted by low (blue) correlation coefficients (Figure 4A, D). During
bicuculline treatment, network synchronization increased in both uninjured and injured slice
cultures (Figure 4B, E). 24 hours after bicuculline treatment, the hippocampal network remained
highly synchronized in uninjured slice cultures (Figure 4C), whereas in injured cultures

synchrony was significantly decreased (Figure 4F).

Before injury or bicuculline treatment, the normalized GSI was very low in all regions of both
uninjured and injured slice cultures (Figure 5, normalized GSI < 0.01). During bicuculline
treatment, the normalized GSI significantly increased in all regions in both uninjured and injured
cultures. 24 hours after bicuculline treatment, the normalized GSI was significantly higher in
uninjured cultures compared to pre-bicuculline levels and compared to injured cultures. In
contrast, in all regions of injured cultures, the normalized GSI was significantly decreased

compared to during bicuculline treatment.
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Mechanical injury increased the rate of bicuculline-induced spontaneous activity

In all regions of uninjured slice cultures, no significant alteration in the normalized spontaneous
event rate was observed 24 hours after bicuculline exposure (Figure 6A, B, C). However, 24
hours after bicuculline exposure of injured slice cultures, the normalized spontaneous event rate
was significantly increased in the DG and CA1 compared to pre-injury, pre-treatment levels, as
well as when compared to uninjured cultures at the same time point (Figure 6A, C). No
significant changes were observed in CA3 (Figure 6B). These results suggest that mild to
moderate injury affected the ability of the surviving neuronal network to synchronize activity

and not simply the ability of neurons to generate activity.

Effects of bicuculline re-exposure differed by hippocampal region

24 hours after the initial bicuculline treatment, injured slice cultures were exposed to bicuculline
a second time to probe for potential mechanisms of the disruption in bicuculline-induced, long-
lasting network synchronization. Re-exposure to bicuculline significantly increased the
normalized GSI in all hippocampal regions compared to pre-injury, pre-treatment baseline levels
and compared to 24 hours after the initial post-injury bicuculline exposure (Figure 7A). In
contrast, the effect of re-exposure to bicuculline on event rate was region-dependent,
significantly decreasing spontaneous activity in the DG but significantly increasing it in CA3 and

CALl (Figure 7B).

Discussion
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In the present study, bicuculline exposure almost immediately transformed the network activity
of both uninjured and injured hippocampal slice cultures from random, asynchronous activity to
highly synchronized, correlated neural activity (Figure 3). In uninjured cultures, this coordinated
activity persisted for at least 24 hours after the removal of bicuculline (Figure 4). In contrast,
this long-lasting network synchronization was not evident in cultures that were mechanically
injured (Figure 5A-C), despite increased network synchronization during bicuculline exposure

and despite increased asynchronous activity 24h after bicuculline exposure (Figure 6A-C).

The injury severity for this study was chosen to be characteristic of mild to moderate TBI, which
causes neuronal network dysfunction without appreciable cell death.'” We observed that
mechanical injury disrupted bicuculline-induced, long-lasting network synchronization, but did
not abolish neuronal network activity (Figures 4-6). In fact, the normalized spontaneous event
rate was higher in the DG and CA1 24 hours after injury (Figure 6A, 6C). Despite the
hippocampal neuronal network being even more active after injury, it was unable to maintain
synchronized, correlated activity, a deficit that could explain learning and memory impairments
after TBI because the neural process underlying information storage in working memory is
persistent neural activity.*> During memory encoding and recognition, optimally functional
neuronal networks are highly organized and exhibit synchronization between interconnected
neuronal regions.>* Brain dysfunction after injury, such as mild TBI,> or as a result of
neurological disorders, such as Alzheimer’s disease,” alters the functional structure of neuronal
networks, transforming synchronized networks into less ordered and more random networks. In
patients tested within days of suffering a mild TBI, global synchronization and network
organization of rhythmic brain activity hypothesized to underlie episodic memory, was reduced,

as measured by electroencephalography (EEG) recordings.>® These patients also exhibited
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reduced performance in visual recognition tasks that were dependent on short-term episodic
memory. It is an interesting observation that, in the current study, stretch disrupted the

development of long-lasting network synchronization in vitro, as well.>®

Exposing injured slice cultures to a second bicuculline challenge 24 hours after the initial
exposure resulted in region-dependent changes in the normalized event rate (Figure 7). We
speculate that the underlying mechanism behind this region-dependent observation may involve
the interplay between the K-CI co-transporter (KCC2) and the Na-K-2Cl co-transporter
(NKCC1) in regulating the concentration of intracellular chloride. KCC2 has been implicated to
play a key role in the impairment of GABAergic inhibition after mechanical injury.
Bonislawski et al. observed significantly reduced KCC2 expression after TBI and a concomitant
depolarized shift of the normally hyperpolarizing GABAA reversal potential in DG, but not CA1.
Additionally, in a separate study, significant enhancement of spontaneous circuit activity in
cultured hippocampal neurons was observed after pharmacological inhibition of KCC2.>" With
the depolarizing shift in the GABAA, reversal potential due to post-injury alterations in KCC2
expression, GABA neurotransmission may become depolarizing/excitatory rather than
hyperpolarizing/inhibitory, thereby increasing spontaneous activity after injury. In this case,
inhibition of GABA by bicuculline would then be hypothesized to decrease spontaneous activity,
which may help explain our observations in the DG after injury (Figure 7). In general, however,
chloride gradients shift by changing the expression of NKCC1 and KCC2 in the 2" week of
development in rodents.>® The hippocampal slice cultures used in our experiments were
generated from P8-11 rat pups and were further cultured for an additional 18 days. Future
experiments will be necessary to directly test whether changes in expression or activity of KCC2

and NKCC1 are responsible for these post-traumatic changes in network function. Quantifying



) o ~_Journal of Neurotrauma o )
Alterationsin H Pocampal Network Activity after In Vitro Traumatic Brain Injury (doi: 10.1089/neu.2014.3667)

i
This article has been peer-reviewed and acceptecP or publication, but has yet'to undergo copyediting and proof correction. The final published version may differ from this proof.

Page 19 of 47

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

19

the changes in NKCC1 and KCC2 protein expression before and after injury may uncover

region-dependent roles of the chloride transporters within the hippocampus.

Significant progress has been made in improving the fabrication process of the SMEA and
reducing the size of the recording contacts from 300 pm x 300 pum to 100 um x 100 um, nearly
90% smaller compared to earlier generations.*® The reduced feature size has allowed for an
increase in the number of recording electrodes from 11 to 28 (12 to 30 electrodes total, including
reference electrodes) over the same surface area. However, a continuing limitation of the SMEA
is the relatively large feature size of the recording electrodes compared to individual neurons.
Commercially available rigid MEAs feature electrodes as small as 8 pm in diameter
(256MEA30/8iR-1TO, Multichannel Systems). Currently, multiple neurons and neuronal
ensembles may contribute to the summed signal measured from a single electrode. Smaller
electrodes could potentially allow for stimulation and recording of individual neurons, increasing
the spatial resolution of SMEA-based studies. Although the fabrication process remains difficult
and expensive, efforts are underway to improve it and reduce overall manufacturing costs. In
addition, in vitro slice cultures do not precisely recapitulate important factors of the in vivo
extracellular environment, such as oxygenation and interplay with systemic blood supply.®®
Components of these systemic factors can be added to an in vitro slice culture model, but would

require further characterization in order to limit any confounding effects.
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Figure 1. Images of an SMEA. (A) The SMEA featured 28 electrodes and 2 reference
electrodes in a 49 mm x 49 mm package. (B) Image of a hippocampal slice culture on an SMEA
before stretch injury. (C) Image of a hippocampal slice culture on an SMEA after stretch injury
of approximately 0.2 strain and 2 s strain rate. (D) Image of the 28-electrode array in the center
of the SMEA. The tips of the patterned conductors were exposed through 100 pm x 100 um vias
photopatterned in the encapsulation layer. The four small squares in the center are registration
marks for aligning photolithographic masks. Individual electrode ID assignments are indicated

in white.



Page 32 of 47

32

"1004d S1y1 Wody JoJ4ip Aew uosiBA paysiignd eulyay] uonss.Iod jood pue BunipaAdoo obsepun 01 BA sey ng ‘uoiealignd Jo %oaooum pue pamdInaJ-Jaad usag sey apne siyl
(£99€'#T0¢ MeU/630T 0T :10p) AIn[U| uteld d1ewWriel | o)A Ul JBie ANARDY HompN ededoddiH ulsuoieR) Y
ewnenoineN Jo feusnor



Page 33 of 47

33

- <
< Q
O
o 2
S O
> S .-
= S 3
£ = =
& _...__Du % ) H .._"w = D
SR e £ ¢ 3 :
Oms n
T'p] (- (T'p] (- Tp] = (Kp) o Lo o Ty} (]
N N - - =, o N ™ ~ ~
o o o o o o 9j)ey JUSAT pPazZI|ewlIoON
< ISO PIZI|EULION o

"1004d S1y1 Wody JoJ4ip Aew uosiBA paysiignd eulyay] uonss.Iod jood pue BunipaAdoo obsepun 01 BA sey ng ‘uoiealignd Jo
(299€ #7102 'MeU/680T 0T :10p) AInlU| uteig d1fewlnel | oaIA Ul el ALIANOY YJoMBN ediedo
ewnenoineN Jo feusnor

1de0Je pue pemsInai-Jaad usag sey ap e siyl

IH Ul SUo IR



) o ~_Journal of Neurotrauma o )
Alterationsin H Pocampal Network Activity after In Vitro Traumatic Brain Injury (doi: 10.1089/neu.2014.3667)

i
This article has been peer-reviewed and acceptecP or publication, but has yet'to undergo copyediting and proof correction. The final published version may differ from this proof.

Page 34 of 47

34

Figure 2. Neither network synchronization of spontaneous activity nor the normalized
spontaneous event rate was significantly affected by injury. (A) Network synchronization, as
measured by the normalized global synchronization index (GSI), was not significantly affected
by injury either acutely or 24 hours after injury in DG, CA3, or CA1. (B) The normalized
spontaneous event rate was not significantly altered by injury in DG, CA3, or CAL, either
acutely after injury or 24 hours after injury. All data was normalized to pre-injury, pre-treatment

levels (mean £SEM).
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Figure 3. Representative traces of temporally aligned raw electrophysiology data from 4
electrodes in CA1 before bicuculline treatment and during bicuculline treatment from uninjured

(A) and injured (B) slice cultures.
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activity in uninjured and injured slice cultures. Representative raster plots of spontaneous

Figure 4. Changes in bicuculline-induced, long-lasting network synchronization of spontaneous
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activity and heat maps of pair-wise synchronization c'(x|y) for every electrode pair are shown for
uninjured and injured slice cultures at the indicated time points: before injury (or sham exposure)
and before bicuculline treatment (A, D), during bicuculline treatment (B, E), and 24 hours after
bicuculline treatment (C, F). Each line in the raster plots represent a distinct, identified neural
event. Heat maps of pair-wise synchronization depict the event synchronization index for each
electrode pair, ranging in value from 0 (completely uncorrelated, blue) to 1 (perfectly correlated,

red).
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Figure 5. Changes in bicuculline-induced, long-lasting network synchronization of spontaneous
activity in uninjured and injured slice cultures, quantified by the normalized GSI. Before injury
(or sham exposure) and bicuculline treatment, network activity was not synchronized in any
region (DG, CA3, or CAl), with the normalized GSI below 0.01 (A, B, C). Acutely during
bicuculline exposure, the normalized GSI increased significantly in all hippocampal regions in
both uninjured and injured slice cultures, compared to their respective baseline recordings,
indicating significantly higher network synchronization. 24 hours after bicuculline exposure, the
normalized GSI remained significantly higher in all hippocampal regions in uninjured slice
cultures compared to pre-treatment baseline levels. In all regions of injured slice cultures, the
normalized GSI was significantly diminished 24 hours after bicuculline exposure when
compared to the normalized GSI during bicuculline treatment, and when compared to uninjured

slice cultures 24 hours after bicuculline treatment. Data is presented as mean £=SEM.
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Figure 6. The normalized spontaneous event rate before and after bicuculline treatment in
uninjured and injured slice cultures. 24 hours after bicuculline exposure, the normalized
spontaneous event rate was significantly increased in injured DG (A) and CA1 (C) compared to
pre-treatment, pre-injury baseline levels and compared to uninjured DG and CA1 at the same
time point. No significant changes in the normalized spontaneous event rate were observed in

CA3 (B). All data was normalized to pre-injury, pre-treatment levels (mean £SEM).

44
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Figure 7. Changes in network synchronization of spontaneous activity and the normalized
spontaneous event rate in injured slice cultures. (A) A second exposure to bicuculline 24 hours
after the initial bicuculline exposure significantly increased the normalized GSI compared to pre-
injury, pre-treatment baseline levels and compared to 24 hours after injury and the initial
bicuculline exposure in DG, CA3, and CAl. The normalized GSI was not significantly different
between hippocampal regions after the second bicuculline exposure. (B) A second exposure to
bicuculline 24 hours after the initial bicuculline exposure produced different effects on the
normalized spontaneous event rate depending on hippocampal region. Compared to 24h, re-
exposure to bicuculline significantly decreased the normalized spontaneous event rate in DG,
while significantly increasing the normalized spontaneous event rate in CA3 and CA1. All data

was normalized to pre-injury, pre-treatment levels (mean =SEM).
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