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Mild traumatic brain injury does not currently have a clear molecular diagnostic panel to either confirm the injury or to guide its

treatment. Current biomarkers for traumatic brain injury rely mainly on detecting circulating proteins in blood that are associated

with degenerating neurons, which are less common in mild traumatic brain injury, or with broad inflammatory cascades which are

produced in multiple tissues and are thus not brain specific. To address this issue, we conducted an observational cohort study

designed to measure a protein panel in two compartments—plasma and brain-derived extracellular vesicles—with the following

hypotheses: (i) each compartment provides independent diagnostic information and (ii) algorithmically combining these compart-

ments accurately classifies clinical mild traumatic brain injury. We evaluated this hypothesis using plasma samples from mild

(Glasgow coma scale scores 13–15) traumatic brain injury patients (n¼ 47) and healthy and orthopaedic control subjects (n¼46)

to evaluate biomarkers in brain-derived extracellular vesicles and plasma. We used our Track Etched Magnetic Nanopore technol-

ogy to isolate brain-derived extracellular vesicles from plasma based on their expression of GluR2, combined with the ultrasensitive

digital enzyme-linked immunosorbent assay technique, Single-Molecule Array. We quantified extracellular vesicle-packaged and

plasma levels of biomarkers associated with two categories of traumatic brain injury pathology: neurodegeneration and neuronal/

glial damage (ubiquitin C-terminal hydrolase L1, glial fibrillary acid protein, neurofilament light and Tau) and inflammation (inter-

leukin-6, interleukin-10 and tumour necrosis factor alpha). We found that GluR2þ extracellular vesicles have distinct biomarker

distributions than those present in the plasma. As a proof of concept, we showed that using a panel of biomarkers comprised of

both plasma and GluR2þ extracellular vesicles, injured patients could be accurately classified versus non-injured patients.
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Introduction
Although most individuals who experience a mild trau-

matic brain injury (mTBI) recover within weeks after the

injury, a significant number of patients suffer from per-

sistent symptoms that include headaches, cognitive

changes and mood disturbances for months afterward.1–3

Conventional approaches to evaluate mTBI have focussed

on currently known hallmarks of moderate-to-severe

brain damage, such as clinical assessment using the

Glasgow Coma Scale, macroscale lesions visualized with

CT imaging and circulating neurodegenerative markers.4

Unfortunately, these methods lack the sensitivity and spe-

cificity needed to clinically characterize milder injuries, to

identify patients who are likely to have persistent symp-

toms in the time following mTBI, and to guide each pa-

tient to a personalized, effective therapy.5 Because

adequate biomarkers are lacking, the identification of

mTBI patients in need of intervention remains mainly

limited to monitoring for and treating post-concussive

symptoms as they arise rather than treating the underly-

ing pathology much earlier in the course of the disease,

when therapies are more likely to be effective.

Biomarker discovery to accurately diagnose and classify

an individual’s TBI into categories for improving

individual patient outcomes and developing new treat-

ments has generated great interest in recent years.

However, identifying sufficiently sensitive and specific

biomarkers has been confounded by the particularly dy-

namic and heterogeneous nature of TBI. Each TBI results

in a unique combination of initial tissue damage and sec-

ondary pathology including vascular dysfunction,6,7 axon-

al injury8,9 and inflammation10 that evolve following the

injury.11–13 These distinct aspects of an individual’s

TBI—each of which maps to multiple potential bio-

markers in the blood—is considered key to a patient’s

possible recovery or progression to behavioural and cog-

nitive deficits.14,15 Moreover, profiles of biomarkers in

the blood are dynamic, originating from both the initial

tissue damage and the multiple secondary pathologies

that develop over time after the injury.14,16,17 The com-

plexity of biomarker expression following an injury

results in diagnostics measurements that can be challeng-

ing to interpret.

To gain a more comprehensive assessment of mTBI,

many researchers have shifted their attention away from

measurements of single biomarkers to measurements of

biomarker panels, where each constituent biomarker can

be chosen to assess a different aspect of the patient’s

TBI.18 For example, combined analysis of circulating glial
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fibrillary acidic protein (GFAP), an astrocyte-derived

intermediate filament protein, and ubiquitin C-terminal

hydrolase L1 (UCHL1), a neuronal cytosolic protein, ac-

curately identifies injury severity and CT scan lesions in

clinical TBI. While this assay—the Banyan Brain trauma

indicator test—has demonstrated promise as a TBI diag-

nostic for more severe injuries, such biomarkers have not

yet been identified that reliably classify underlying TBI

endophenotypes or predict patient outcomes after

mTBI.19 Other proposed TBI biomarkers have potential

to directly assess specific underlying TBI pathologies.

These include neurofilaments,20,21 a major cytoskeletal

component of neuronal axons, and Tau, a cytoskeletal

protein whose phosphorylation and aggregation are hall-

marks of neurodegenerative conditions.22,23 Dysregulated

central and peripheral immune cell function following

TBI results in the release of cytokines, chemokines and

complement components that may provide an assessment

of inflammation, a key driver of neurologic deficit post-

TBI.24,25

Extracellular vesicles (EVs) have generated particular

interest for multiplexed TBI diagnostics. EVs are nano-

scale vesicles ranging from 100 to 1000 nm26 formed

through a variety of mechanisms including plasma mem-

brane budding or the fusion of multivesicular bodies

(MVBs) to the cellular membrane for release into the

extracellular space.27 EVs possess surface proteins derived

from the parent cell, and cargo (proteins, mRNA,

miRNAs) within the vesicle lumen that reflect the status

of their cells of origin, and that, when transferred to re-

cipient cells, can act as agents of cell–cell communica-

tion.28–30 EVs are emerging as a promising complement

to plasma-derived biomarkers, as they contain cargo that

may play direct roles in TBI pathology, and contain sur-

face proteins that allow brain-derived EVs to be isolated

from the blood. EVs and their cargo also provide a

work-around to the impracticality of brain tissue biopsy

by crossing the blood–brain barrier into CSF,31 peripheral

circulation,32 and other bodily fluids making them easily

accessible CNS biomarkers for monitoring TBI progres-

sion.33,34 Moreover, EVs are shed by both healthy and

degenerating cells, providing a broader view into the mo-

lecular processes that occur within a tissue or organ. The

combination of information extracted from the EVs of

injured, but not necessarily degenerating, neurons with

neuronal biomarkers and inflammatory mediators could

lead to accurate classifications and prognoses of patients

with mTBI.

On their own, the diagnostic potential of EVs has been

shown in military personnel, where circulating exosome-

packaged Tau and IL10 levels are elevated with mTBI

and correlate with post-concussive and post-traumatic

stress disorder symptoms.35 Other studies have found

variations in EV microRNA concentration after TBI.36 In

previous work, we showed that by enriching brain associ-

ated EVs from plasma, which expressed the glutamate

ionotropic receptor AMPA type subunit 2 (GluR2)

surface marker, from plasma using a nanomagnetic chip,

and analysing RNA cargo we could identify RNA signa-

tures that accurately classified the injury, including its

presence, severity, history of previous injuries and tim-

ing.37–39 However, this work was limited to the RNA

cargo of EVs, and did not incorporate known biomarkers

of neuronal and glial cell damage or inflammation pack-

aged in EVs.35

In this study, we combined conventional assessment of

TBI-associated biomarkers in plasma with our approach

of acquiring molecular information from brain-derived

EVs. Our main purpose was 2-fold: to determine if EVs

and plasma biomarker proteins represented independent

information for mTBI diagnostic use, and to evaluate the

relative effectiveness of applying this approach on a set

of mTBI patients. We used our TENPO technology to en-

rich for brain-derived EVs and leveraged an existing

ultrasensitive digital enzyme-linked immunosorbent assay

(ELISA) technique, Single-Molecule Array (SIMOA), to

accurately determine common protein biomarker levels in

these two compartments. We demonstrate that the inde-

pendence of molecular information stored in the GluR2þ
EVs and in plasma allows for the development of a mul-

tianalyte approach to mTBI diagnosis. In this work, we

use a machine learning algorithm developed using bio-

markers from both compartments as a proof-of-concept

of this approach, and illustrate its ability to successfully

discriminate mTBI patients from control subjects.

Materials and methods

Study design, participants and
sample collection

Owing to the subtle nature of the physical injury in

mTBI, we hypothesized that algorithmically combining

biomarkers from both brain-derived EVs and plasma

could result in more sensitive and specific discrimination

of mTBI patients from controls than that of any individ-

ual biomarker, or any one biomarker compartment. To

test this hypothesis, we obtained human plasma samples

from TBI subjects admitted to an urban, academic Level

1 trauma centre (University of Pennsylvania’s Penn

Presbyterian Medical Center) following a head impact—

representing the diversity of injury types encountered in

the clinic, including assault, road traffic incidents, and

falls—as well as healthy control and orthopedically

injured participants yielding a study size consistent with

previous experiments (Fig. 1A).38 Our blood-based assess-

ment of mTBI included a panel of neuronal and glial cell

damage biomarkers [UCHL1, neurofilament light (NFL),

Tau and GFAP] and key drivers of inflammation [inter-

leukin-6 (IL6), interleukin-10 (IL10) and tumour necrosis

factor alpha (TNFa)] quantified in both plasma and with-

in brain-derived EVs expressing GluR2 (Fig. 1B). We

then used these data to investigate protein distribution
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across the two compartments and to evaluate mTBI-asso-

ciated changes in biomarker concentration and signatures

(Fig. 1C).

The protocol to obtain participant samples was

approved by the University of Pennsylvania Institutional

Review Board. Enrolment began in 2017, and enrolled

TBI participants had (i) high clinical suspicion of non-

penetrating acute TBI, determined by the treating physi-

cians for which a head CT scan was performed; (ii) age

�18 years; (iii) interval between time of injury and enrol-

ment <24 h; (iv) admission to the hospital; and (v) the

ability to obtain informed consent from the subject or a

legally authorized representative. All TBI subjects sus-

tained mild TBIs, as defined by a Glasgow Coma Scale

score of 13–15. Healthy control participants (n¼ 39) had

no history of concussion/TBI. Orthopedically injured par-

ticipants (n¼ 7) were screened for head impact at the

time of their injury and were excluded if they had a head

impact or prior history of concussion/TBI. Participants

were excluded if they had a history of pre-existing ser-

ious neurologic or psychiatric disease that would interfere

with outcome assessment, penetrating traumatic brain in-

jury, positive pregnancy test or known pregnancy, or

were incarcerated. For this study, we analysed plasma

samples collected <24 h from injury prepared from whole

blood by centrifugation (1000 rpm for 10 min). Plasma

was processed within 1 h of collection, aliquoted at

500 ml, and frozen at �80�C until further analyses.

TENPO device assembly and vesicle

capture and lysis

Isolation of brain-derived EVs was done using our previ-

ously reported nanofluidic platform, TENPO.37–39

Conventional methods for EV isolation from clinical sam-

ples rely on a two-step process: size-based capture fol-

lowed by immunoprecipitation. Size-based isolation is

time consuming, results in impure samples contaminated

with cellular debris and loss of the targeted EVs, and

must be combined with downstream immunoprecipitation

to isolate EVs of specific cellular origins. TENPO over-

comes these limitations through its nanoscale immuno-

magnetic sorting of individual EVs, which renders each

labelled EV distinct from background non-specifically

labelled EVs.37–39 TENPO eliminates the need for a size-

based isolation step, vastly reduces the time required to

Figure 1 Project workflow. (A) Samples were obtained from subjects sustaining TBIs through a variety of mechanisms and from a

combination of orthopaedic injured and healthy controls. One 500 ml aliquot of plasma from each subject was used to isolate brain-derived

EVs based on their expression of GluR2 using our nanofluidic platform, TENPO. Lysate from GluR2þ EVs and a second 500ml aliquot of

plasma were subjected to digital ELISA assessment. (B) Biomarkers were selected based on known or emerging role in neuronal (UCHL1,

NFL, Tau) or astrocyte (GFAP) pathology, or on their roles in the spectrum of inflammatory function (TNFa, IL6, IL10). (C) Analyses served

two purposes: comparison of biomarker distribution in plasma and in GluR2þ EVs, and the discrimination of TBI and control subjects. A

machine learning approach was used to combine the multiplexed data into biomarker panels for comparison with the performance of

individual biomarker ROC curves and panels of biomarkers from each compartment alone.

4 | BRAIN COMMUNICATIONS 2021: Page 4 of 14 K. Beard et al.



process samples, and results in higher EV recovery from

each sample than other isolation methods.37 EVs isolated

with the same GluR2þ TENPO assay we use in this

work were visualized with scanning electron microscopy

(repeated for this study in Supplementary Fig. 1), probed

for canonical EV markers, and validated with isotype

control antibody in accordance with standards devised by

the International Society of Extracellular Vesicles40 during

the assay’s initial development.37–39

In previous work, we successfully used TENPO to iso-

late brain-derived EVs based on their expression of

GluR2 from plasma obtained from mouse models of TBI

and human clinical TBI patients.38 The device consists of

track-etched polycarbonate membranes with 600 nm

pores (Whatman, Millipore Sigma) coated with a 200 nm

layer of permalloy (Ni80Fe20) and 30 nm layer of gold

(Kurt Lesker PVD-75; Singh Nanofabrication Facility,

University of Pennsylvania) embedded in layers of mois-

ture-resistant polyester film (McMaster-Carr, 0.00400

thick, Elmhurst, Illinois) and solvent-resistant tape

(McMaster-Carr, Elmhurst, Illinois). The reservoir for

inputting the sample was laser cut from a cast acrylic

sheet (McMaster-Carr), and TENPO’s polydimethylsilox-

ane output was connected to a negative pressure supply

(Programmable Syringe Pump; Braintree Scientific,

Braintree, Massachusetts). To isolate brain-derived EVs

from plasma, we incubated 500 ml of subject plasma, first

with biotin anti-human, mouse GluR1/GluR2 antibody

(Bioss, Woburn, Massachusetts) and then with anti-biotin

ultrapure microbeads (Miltenyi Biotec, Germany) at room

temperature with shaking, each for 20 min. After incuba-

tion, we loaded each sample into the reservoir of a

TENPO device and ran it through the chip using a pro-

grammable syringe pump (Braintree). Captured EVs were

lysed using 500ml 1% SDS in PBS as this completely sol-

ubilizes even membrane-bound proteins,41 inactivates

most cellular proteases,42 and is more concentrated than

the 0.025% minimum shown to achieve vesicle lysis.43

We also found this lysis condition yielded higher protein

levels than lysis with RIPA buffer containing 1% SDS

(Supplementary Fig. 2). We diluted the lysate 1:10 to re-

duce the SDS concentration to 0.1% before running the

assay. Lysates were stored at �80�C until dilution and

further analysis. To avoid measurement biases, a combin-

ation TBI and control subject plasma EVs were obtained

during each run.

Single-Molecule Array digital ELISA
measurement

EV lysates and plasma samples were analysed using the

Neurology 4Plex (A) and Cytokine 3Plex (A) Single-

Molecule Array kits (SIMOA; Quanterix, Billerica,

Massachusetts). Five hundred microlitre of plasma sam-

ples and quality controls provided by the kit were

thawed on ice and spun at 10 000 RCF for 5 min.

Supernatant from this spin was used for plasma analysis

run using a 1:4 dilution. GluR2þ EV lysates were diluted

in the Quanterix-provided sample diluent at a 1:10 ratio.

For Neurology 4Plex analysis, 35 ml of EV lysate was

combined with 315ml of Neurology 4Plex sample diluent.

For cytokine analysis, 25 ml of EV lysate was combined

with 225 ml of Cytokine 3Plex sample diluent. 110–120 ml

of plasma and quality control samples were loaded into

sample plates and run at 4� dilution. The full volume

(315 or 225 ml) of diluted the EV lysate was loaded into

sample plates and run neat. The results were corrected

using the 10� or 4� dilution factor after analysis. To

avoid measurement biases, GluR2þ EV samples and

plasma were run on the same plate with their respective

SIMOA run settings.

Statistical analysis of single
biomarkers

We began our analysis by comparing biomarker levels

between mTBI and control subjects, and assessing their

ability to discriminate the two groups. We used one-way

ANOVA (95% confidence intervals) to assess the effects

of specific injury/control groups on biomarker expression,

and evaluated the correlation between biomarker levels

and age. To visualize the spread of the data across indi-

viduals, we used the log-transformed values of biomarker

measurements to plot heatmaps (Fig. 2) and scatter plots

(Fig. 3). For scatter plots, P-values were calculated using

Student’s t-test with log-transformed data. Correlations

between biomarkers were calculated using Pearson correl-

ation. To assess each biomarker’s ability to discriminate

mTBI from control groups, we calculated receiver operat-

ing characteristic (ROC) curves and reported the area

under the curve (AUC) for each. To statistically compare

the performance of each biomarker, we quantified the

standard deviation for each biomarker’s AUC calculation

using bootstrapping, analysing a random subset (90% of

the total sample size) 10 times with replacement. We

compared the AUCs of each individual biomarker with

our machine learning model’s AUC via Student’s t-test

function while taking into account the correlation be-

tween the AUCs that is induced by the paired nature of

data.44 To account for variability in biomarker yield

from TENPO-isolated EVs and centrifuged plasma, we

reported biomarker expression as the relative abundance

of each biomarker in its given category (cytokine or

brain-derived protein). To this end, we summed the pa-

tient or control average pg/ml levels of plasma IL6, IL10

and TNFa and then divided the pg/ml level of each indi-

vidual cytokine by this total. We repeated this process

with EV-packaged biomarkers, and for the brain-derived

proteins.

Machine learning analysis

We used a machine learning-based approach to algorith-

mically determine a biomarker signature that
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Figure 2 Expression of brain-derived proteins and cytokines is heterogeneous across TBI and controls in both plasma and

GluR21 EV compartments. (A) Log-transformed biomarker levels plotted in heat map. Columns represent subjects, each arranged

within respective TBI or control types by increasing age. (B) Number of GluR2þ EVs isolated from 0.5 ml plasma from N¼ 5 TBI and N¼ 5

control subjects.

Figure 3 Mild TBI is associated with elevations in both brain-derived proteins and cytokines in plasma and GluR21 EVs.

Scatter plots of mean log biomarker values and standard deviation as error bars. Calculation of P-values using student’s t-test were done using

log-transformed data. AUCs were generated using raw values.
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discriminates mTBI from control subjects, using protein

concentrations from both plasma and GluR2þ EVs. Our

machine learning approach consisted of two stages. In

the first, we used one set of patient (n¼ 30) and control

(n¼ 31) samples for feature selection and model training.

To perform feature selection and train our model, we

first performed Least Absolute Shrinkage and Selection

Operator (LASSO) to attain a biomarker panel. To miti-

gate the effect of overfitting, we averaged the predictive

values of an ensemble of five classifier algorithms—K-

Nearest-Neighbors, SVM, Linear Discriminate Analysis,

Logistic Regression and Naive Bayes—instead of relying

on a single classifier.41 Additionally, we applied a boot-

strapping method that averages the predictions of mul-

tiple subgroups of the training set to diminish the effects

of outlier data. We performed initial evaluation of the

performance of the machine learning panels using 5-fold

cross validation. In the second stage of our machine

learning analysis, we validated the model developed in

training phase with a user-blind, independent set of pa-

tient (n¼ 15) and control (n¼ 11) subjects. Testing was

done only once to avoid the possibility of overfitting our

model to the test set data. The classifier model was

implemented in Python and LASSO was carried out using

standard machine learning packages in Matlab 2017a. Of

the 93 total subjects assessed, 61 were used during ma-

chine learning training. Of the 32 subjects later obtained

during user-blind assessment of our machine learning al-

gorithm, 6 were excluded for incomplete biomarker data.

To assess the performance of our multi-analyte ap-

proach, we also generated biomarker panels obtained

from plasma brain-derived proteins, plasma cytokines,

GluR2þ EV brain-derived proteins and GluR2þ EV cyto-

kines. For statistical analysis, we randomly selected 90%

of the total test set to evaluate the variances of our pre-

diction, and repeated this approach 10 times to obtain an

average AUC and standard deviation across panels. We

compared the average AUC from each panel with our

original machine learning panel using t-tests while taking

into account the correlation between AUCs that is

induced by the paired nature of data.44

Scanning electron microscopy

We imaged captured GluR2þ EVs by fixing them to the

TENPO membrane using 2.5% glutaraldehyde, 2.0%

paraformaldehyde in 0.1 sodium cacodylate buffer, pH

7.4. Images were taken at the Cell and Developmental

Biology Microscopy Core at University of Pennsylvania.

Nanotracking analysis

500 ml of plasma from 5 TBI and 5 control subjects was

used to isolate GluR2þ vesicles with TENPO, and eluted

in 500 ml of PBS. Vesicles were diluted 1:1000 in molecu-

lar grade water. Nanotracking analysis was performed at

the Extracellular Vesicle Core facility at University of

Pennsylvania and particle count results were corrected

with the dilution factor. Student’s t-test was used to as-

sess differences in particle count across the groups.

Data availability

Data were generated at the School of Engineering and

Applied Science at the University of Pennsylvania and

Penn Presbyterian Medical Center. Data supporting the

findings of this study are available from the correspond-

ing author upon request.

Results

Participant demographics

To test our hypothesis that algorithmic combination of

biomarker data yields a more accurate mTBI diagnostic,

we collected plasma and EV samples from GCS mild

(13–15) clinical TBI patients (n¼ 47; Fig. 1). The study

design also included a control group (n¼ 46) consisting

of both healthy age-matched and orthopaedic injured

controls to assess the specificity of blood and EV-pack-

aged biomarkers to mTBI. Although controls and mTBI

subjects were of similar ages (mean ¼ 36 years 6 16

TBI, 614 controls), there were 20% more males in the

mTBI than in the control group (Table 1).

Plasma- and brain-derived GluR21
vesicles display variable biomarker
distribution across individuals

To visualize the spread of the data across individuals, we

first plotted log values of each biomarker across TBI and

control subjects (Fig. 2A). For the mTBI group, coeffi-

cient of variance (CV) values for plasma biomarker levels

ranged from 31% for GFAP, to 120% for TNFa. In the

control subjects, CV values for plasma biomarkers ranged

from 27% for IL10, and 140% for GFAP. Levels of

plasma biomarkers for mTBI subjects were not signifi-

cantly affected by injury type (Supplementary Table 1;

ANOVA; P> 0.65 across all biomarkers), nor did they

correlate with age (Supplementary Table 5). We thus

Table 1 Descriptive characteristics of traumatic brain

injury patient and control subjects; mean 6 SD or N

(%).

Characteristics TBI Control TBI

Control

Machine learning group Training Training Test Test

N 30 31 17 15

Demographics

Age, mean 6 SD (years) 35 6 14 36 6 16 44 6 18 28 6 8

Male gender, N (%) 83 53 61 60

GCS mean 14.4 N/A 14.5 N/A

Positive CT, N (%) 57 N/A 72 N/A
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collapsed all injury types into a single mTBI group for

our subsequent analysis of plasma biomarker measures.

In the control group, orthopaedic controls exhibited sig-

nificantly higher levels of plasma GFAP compared to the

control mean (Supplementary Table 2; ANOVA;

P< 0.05; Dunett correction for multiple comparisons),

but there were no additional effects of control type or

age on plasma biomarker levels. We thus consolidated

control subjects into a single group for plasma biomarker

analyses.

Our analysis and visualization of the data also

revealed, similar to plasma biomarkers, that proteins

packaged in GluR2þ EVs are also expressed heteroge-

neously across individual subjects (Fig. 2A). For the

mTBI group, CV for GluR2þ EV-packaged biomarkers

ranged from 45% for IL6 to 140% for Tau. We found

neither injury/control type nor age has an effect on the

expression of EV-packaged biomarkers (Supplementary

Tables 3–4; P> 0.38 (injury type, across all biomarkers);

P> 0.24 (control type, across all biomarkers)). Nor were

there any significant correlations between age and

GluR2þ EV biomarker levels for either group

(Supplementary Table 6; P> 0.05 across all biomarkers

for both groups). Therefore, we consolidated all injury

types into a single injury group, and the two control

types into a second group for analyses of these bio-

markers. Furthermore, we demonstrated that there is no

significant difference in the number of EVs across TBI

and controls (P> 0.05), eliminating the need to normalize

across EV count (Fig. 2B).

Once we consolidated our dataset, we hypothesized—

based on other studies of mTBI biomarkers, and on the

rate of CT scan abnormality of our mTBI subjects (Table

1)—that mTBI subjects would exhibit significant eleva-

tions in conventionally-studied plasma biomarkers relative

to controls.19 To test this hypothesis, and to investigate

whether mTBI was also associated with significant

changes to biomarker levels in the GluR2þ EV compart-

ment, we compared mean levels of individual biomarkers

in both compartments (Fig. 3).

Of the seven biomarkers measured, GFAP and IL6

were each significantly elevated in both plasma (GFAP

P< 0.0001, 147-fold change compared to controls; IL6

P< 0.01, 7-fold change relative to controls) and GluR2þ
EVs (GFAP P< 0.001, 6-fold change compared to con-

trols; IL6 P< 0.01, 3-fold change relative to controls) in

mTBI. Of the remaining brain-derived proteins, plasma

levels of NFL, Tau and UCHL1 were all significantly ele-

vated in the mTBI group. (NFL P< 0.0001, 3-fold

change relative to controls; Tau P< 0.01, 4-fold change

relative to controls; UCHL1 P< 0.0001, 3-fold change

relative to controls). GluR2þ EV levels of NFL, Tau and

UCHL1 were unchanged following mTBI. Of the two

remaining cytokines, both were significantly elevated in

plasma in the mTBI group (IL10 P< 0.001, 2-fold change

relative to controls; TNFa P< 0.001, 1-fold change rela-

tive to controls). Neither of these cytokines were

significantly altered in the GluR2þ EV compartment fol-

lowing mTBI. Additionally, biomarkers significantly ele-

vated in mTBI plasma also displayed the highest AUCs

for discriminating mTBI and control subjects (plasma

GFAP¼ 0.91; GluR2þ EV GFAP¼ 0.70; plasma

NFL¼ 0.86; plasma IL6¼ 0.86). AUCs for all other bio-

markers were likely affected by the heterogeneous distri-

bution of the dataset.

Brain-derived EVs and plasma
possess distinct protein
compositions

Until this point, we analysed the performance of single

proteins, regardless of its originating in plasma or

GluR2þ EVs, to best discriminate between mTBI and

control samples. However, simply combining the best in-

dividually high performing biomarkers would potentially

overlook combinations of biomarkers that would better

predict the presence/absence of mTBI. To evaluate distinc-

tions in biomarker information across plasma and

GluR2þ EV compartments, we first assessed the distribu-

tion of biomarkers in each group. In the mTBI group,

plasma and GluR2þ EVs displayed significantly different

proportions of all measured cytokines (P< 0.001 across

all cytokines; Fig. 4A). Specifically, the relative abundance

of IL6 was significantly elevated in plasma compared to

GluR2þ EVs. Conversely, GluR2þ EVs contain signifi-

cantly higher proportions of both IL10 and TNFa than

plasma. The distribution of cytokines is also more bal-

anced in GluR2þ EVs, with IL10 and TNFa making up

similar proportions, while in plasma, cytokine distribution

is skewed with the relative abundance of IL6 dwarfing

that of IL10 and TNFa by 11- and 5-fold respectively. In

contrast to the mTBI group, the control group displayed

no significant differences in proportions of IL6 or IL10

across the two compartments (P> 0.05). In this group,

only TNFa abundance differed in plasma and GluR2þ
EVs, showing a significant increase in the latter

(P< 0.0001). Lastly, in this group, distribution of the

three cytokines exhibits balance in both compartments,

each having similar proportions of IL6 and TNFa.

Like the cytokines, our analysis also revealed differen-

ces between plasma and GluR2þ EV distributions of the

four brain-derived proteins (Fig 4B). For both mTBI and

control subjects, abundance of three of the four (GFAP,

NFL and UCHL1) display significant differences in

plasma compared to GluR2þ EVs, and Tau abundance is

significantly elevated in GluR2þ EVs in the mTBI group

(P< 0.05 across all brain-derived proteins; Fig. 4B). In

both groups, the distributions of these proteins are

uniquely skewed in each compartment; in plasma, GFAP

abounds (fold increases of 31, 136 and 15 relative to

NFL, Tau and UCHL1 respectively for mTBI group; fold

increases of 10, 24 and 3 relative to NFL, Tau and

UCHL1 respectively for controls) while GluR2þ EVs are
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dominated by UCHL1 (fold increases of 6, 15 and 17

compared to GFAP, NFL and Tau respectively for mTBI

group; fold increases of 8, 16 and 22 relative to GFAP,

NFL and Tau respectively for controls).

Biomarker levels correlate more

within than across plasma- and

brain-derived EV compartments

To develop a combinatorial method for discriminating

TBI from control subjects, each biomarker should hold

the potential to contribute unique information about each

patient’s TBI. To assess this, we calculated three sets of

correlation values for each biomarker category (cytokines

or brain-derived proteins): correlations within plasma,

within the GluR2þ EVs, and across these two compart-

ments (Fig. 5A).

We found levels of cytokines (IL6, IL10 and TNFa)

and brain-derived proteins (GFAP, NFL, Tau and

UCHL1) correlated more with each other within the

same compartment than between the plasma and EVs

compartments (Fig. 5B). For mTBI subjects, cytokine lev-

els are most correlated within the plasma (avg. Pearson’s

R¼ 0.61). In comparison, cytokine correlations within the

EV compartment (avg Pearson’s R¼ 0.38) and across

plasma and EVs (avg Pearson’s R¼ 0.41) were similar.

Levels of brain-derived biomarkers are more correlated

within plasma (avg Pearson’s R¼ 0.50) and within

GluR2þ EVs (avg Pearson’s R¼ 0.35) than across plasma

and GluR2þ EV compartments (avg Pearson’s

R¼ 0.0065). As with the mTBI group, cytokine levels are

most correlated within plasma (avg Pearson’s R¼ 0.80)

in the control group. In contrast to the mTBI group,

cytokine levels are also more correlated within EVs (avg.

Pearson’s R¼ 0.57) than across plasma and EVs (avg.

Pearson’s R¼0.20). Like the mTBI group, pools of brain-

derived biomarkers are more distinct: levels of these pro-

teins are most correlated in EVs and within the plasma

compartment, and least correlated across compartments

(avg. Pearson’s R¼ 0.55, 0.42, 0.0065, respectively). Our

results showed that different groups of biomarkers had

very little correlation across compartments though levels

correlated within each group.

Given the independence of information collected from

plasma and plasma-derived EVs, we next assessed

whether we could develop a machine learning-based clas-

sifier of TBI using the complimentary biomarker informa-

tion contained within each. By first separating out a

group of samples to train our model and using a separate

group to test its accuracy, we found the combination of

information from plasma-derived EVs and plasma showed

high accuracy (AUC ¼ 0.913, Accuracy ¼ 0.825).

However, this combination of measures was only margin-

ally better than a single measure of plasma GFAP or IL-6

(Supplementary Fig. 3) and did slightly better in

Figure 4 Plasma- and brain-derived EVs possess distinct protein composition that are each altered by TBI. Mean levels of each

biomarker were totalled across individuals to determine the relative percentage of each (A) cytokine and (B) brain-derived protein in plasma

and GluR2þ EVs. Error bars represent SD calculated by propagation of uncertainty. T-tests were performed to assess statistically significant

differences in biomarker levels across compartments.
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prediction of injury when compared to combination of

measures from plasma. However, removing a measure of

Tau in the EVs significantly worsened the predictive

power of the panel, implying the importance of including

an EV-based measure in a combined diagnostic

(Supplementary Fig. 3). While the sample size in this

study is not sufficient to fully develop and evaluate a ma-

chine learning classifier, these results suggest its promise

in future clinical studies.

Discussion
Our study demonstrates that circulating brain-derived

EVs and plasma represent two distinct reservoirs of mo-

lecular information, the composition of each differentially

altered by mTBI. We combined two technologies—

TENPO that can specifically enrich for GluR2þ EVs

from plasma, and digital ELISA that can measure mul-

tiple protein biomarkers with 100–1000� better sensitiv-

ity than conventional ELISA—to address the challenges

of accurately detecting levels of biomarkers that often cir-

culate at levels too low to detect with conventional tech-

nologies. We then demonstrate that algorithmically

combining information from each biomarker compart-

ment accurately classifies mTBI (AUC¼ 0.92,

Accuracy¼ 0.885). The combined use of biomarkers of

specific TBI pathologies analysed in the context of dis-

tinct biofluid environments from separate cellular pools is

a promising approach for developing a more comprehen-

sive assessment of the state of the injured and recovering

brain.

We began our analysis with measuring circulating levels

of brain-derived proteins GFAP, NFL, Tau and UCHL1,

which demonstrated predictive power as individual bio-

markers similar to past studies of these biomarkers in

mTBI.19,45 Since a sizable proportion of mTBI subjects in

this study (57%) sustained brain pathology observable

through CT scan, the significant elevations in plasma lev-

els of UCHL1 and NFL (P< 0.0001 for each) were

expected.19 As mTBI results in few degenerating neu-

rons,46 it is not surprising that we did not detect

Figure 5 Biomarker levels are uncorrelated across plasma and brain-derived EV compartments. Pearson’s correlation

coefficients calculated for all possible combination of biomarkers. (A) Average R for each biomarker type (cytokines or brain-derived

markers) and for each compartment (plasma or GluR2þ EVs) were plotted in a heat map matrix for TBI patients and controls. Solid boxes

indicate average R for each biomarker type-compartment combination. (B) R for each biomarker comparison was plotted into heat map

matrices for both TBI patients and controls. Solid boxes indicate R for individual biomarkers of the same type (cytokines or brain-derived

proteins) within each compartment. Dashed boxes indicate R values for biomarkers of the same type, but of different compartments.
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significant elevations in Tau after mTBI. In contrast, re-

active gliosis can be observed throughout the brain even

after mild injury,47 and as expected we found plasma

GFAP the most robust single biomarker to discriminate

mTBI subjects from controls (AUC¼ 0.89). However, we

observed plasma GFAP levels were significantly elevated

in orthopaedic-injured controls and controls over 51 years

(ANOVA; P< 0.046 and P< 0.0001, respectively) com-

pared to the total control plasma GFAP mean. This find-

ing, combined with observations that GFAP is released

from other cell types of the body,48 may complicate

GFAP’s specificity to brain injury, especially if it is used

in isolation in polytrauma cases. We also observed sig-

nificant elevations in plasma levels of IL6, IL10 and

TNFa (P< 0.001 across all cytokines), and indeed,

plasma IL6 followed directly behind plasma GFAP in dis-

criminating mTBI (AUC¼ 0.86). But the broad role that

cytokines play in mediating systemic trauma,49 immune

challenges50,51 and other neurological disorders52 may

limit the specificity of these biomarkers in plasma.

In our assessment of mTBI, we also included brain-

derived EVs expressing GluR2, an appealing alternative

to co-opting the circulating neurodegenerative markers

typically associated with moderate-to-severe TBI for

mTBI diagnostics. On their own, the proteins in brain-

derived EVs performed no better than those in plasma as

individual biomarkers, despite the IL6 and GFAP eleva-

tions observed in this compartment relative to controls

(P< 0.01 and P< 0.001, respectively). However, it was

intriguing to see that protein concentration of the same

biomarkers across the two compartments did not correl-

ate with each other. One potential explanation for this

result is that plasma levels of some biomarkers appeared

from active degeneration processes in a small population

of cells, while the exosome derived measurements origin-

ate from a large population of largely intact neurons and

glia responding to the mild mechanical trauma. Other

studies of EV-based biomarkers of TBI have similarly

observed differences in EV-contained and plasma molecu-

lar cargo. In a study measuring time-dependent changes

in protein biomarkers within the total circulating EV

population and plasma, investigators found no correlation

between the two compartments out to 5 days after

injury.53

Although studies on EVs and their contents is only

emerging, the broader sampling of EV signatures from

cells that do not later degenerate provides a new oppor-

tunity for understanding the consequences and recovery

processes of mild trauma to the brain. With the broad

disruption in blood–brain barrier integrity that occurs

after mTBI,54 it is possible that plasma activates patho-

logic cascades in neurons and glia that do not later de-

generate, resulting in a cellular population that largely

outnumbers actively dying or degenerating ones in mTBI

that are not assessed with traditional plasma biomarkers.

In experimental models of concussion and in clinical

studies, degenerative changes can occur days to months

following the initial mild injury, and can be further com-

plicated by repeated, periodic opening of the blood–brain

barrier.55–58 These primed or activated neurons and glia

undergo subtler forms of cellular damage or distress as

they constitutively secrete exosomes, potentially as a

mechanism for clearing cellular debris as they recover.

We observed that GluR2þ EVs contain the same inflam-

matory cytokines and markers of cell damage expressed

by lesioned cells.59 Interestingly, we found UCHL1—a

deubiquitinating enzyme—dominated the EV pool of

brain-derived proteins (Fig. 4). As UCHL1 plays a neuro-

protective role in brain injury by degrading reactive lipids

and misfolded proteins,60,61 the high relative abundance

of this protein in GluR2þ EVs in relation to the other

measured brain-derived proteins suggests GluR2þ EVs

may serve as a protein clearing system for the damaged

or distressed cells of the brain, a role for EVs already

demonstrated for other EV populations in other contexts

and cell types.62 Thus, our machine learning approach

combines molecular information from three different cate-

gories: markers from a small number of severely dam-

aged, degenerating cells (plasma brain-derived markers),

markers of broad-scale inflammation, and markers origi-

nating from a potentially less-damaged population of

brain cells (brain-derived EVs). By investigating what

downstream molecular targets GluR2þ EV-packaged

UCHL1 interacts with, such as other components of the

ubiquitin ligase system and potential degradation targets,

we can broaden our understanding of the role the

GluR2þ EV population plays in TBI pathology, and our

potential pool of EV-associated biomarkers.

Though we demonstrate the orthogonality of molecular

information in plasma and brain-derived EVs, the ma-

chine panel we devised by algorithmically combining mo-

lecular information across the two compartments did not

significantly benefit mTBI diagnosis when compared to

the performance of plasma neurodegenerative markers

alone. Our analysis of brain-derived EVs was limited to

those expressing GluR2þ, and by expanding our ap-

proach to mTBI biomarker development—from broaden-

ing the EV subtypes and cargo that we isolate to surveil

a more comprehensive set of cells affected by TBI, to

advancing the technologies with which we measure and

analyse this complex information—we can improve our

ability to diagnose mTBI, and to extend this approach to

monitor mTBI outcome and identify accurate treatment

strategies. Since this work we have extensively optimized

the TENPO protocol, incorporating sequential wash steps

following vesicle capture which greatly reduce back-

ground relative to relying on the chip’s small dead vol-

ume to promote removal of unbound material.39

Additionally, while lysis with 0.1% SDS using RIPA buf-

fer resulted in lower protein concentration than lysing

with 1% SDS (Supplementary Fig. 2), it is possible that

this resulted in some protein denaturing. Since this work,

we have improved lysis conditions to maximize protein

yield and efficacy of biomarker detection. We now use
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phosphatase/protease inhibitor cocktail and are investigat-

ing non-denaturing reagents, both of which have been

used in other recently published SIMOA studies of exo-

some protein expression.35,53

We are also exploring capturing circulating EVs derived

from multiple brain cell types (neurons, astrocytes, micro-

glia, etc.), which, when combined with advancements in

downstream EV cargo analysis, maximizes the molecular

information at our disposal for these goals. Multianalyte

approaches to disease diagnosis have already shown

promise in other fields, resulting in higher accuracy in

early detection and staging of cancer.63–65 For mTBI, as

technology for isolating EVs from different populations

of distressed-but-not-dying brain cells evolves, we may

improve our ability to identify pathologies like gliosis

and brain endothelial cell dysfunction as they occur

across individual patients to better ‘grade’ the TBI.

Though we used digital ELISA in this study, a platform

incompatible with point-of-care diagnostics, widespread

efforts to scale down these assays into portable platforms

makes accessibility and clinical use of molecular diagnos-

tic more achievable.66 Our previous work also points to

the promise of miRNA cargo for a more open-ended TBI

assessment than is provided by known protein bio-

markers, but combining EV protein cargo information

with amplifiable EV-associated miRNA results in a

wealth of potential opportunities to develop more accur-

ate mTBI characterization. Advanced approaches to data

analysis such as machine learning coupled with improved

understanding of the pathologic roles brain-derived EVs

play in mTBI progression broadens our potential to com-

bine this wealth of information into meaningful molecular

signatures to monitor and intervene in this insidious

neurologic condition.

Supplementary material
Supplementary material is available at Brain

Communications online.
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