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Due to the prominent role of improvised explosive devices (IEDs) in wounding patterns of
U.S. war-fighters in Iraq and Afghanistan, blast injury has risen to a new level of importance
and is recognized to be a major cause of injuries to the brain. However, an injury risk-function
for microscopic, macroscopic, behavioral, and neurological deficits has yet to be defined.
While operational blast injuries can be very complex and thus difficult to analyze, a simpli-
fied blast injury model would facilitate studies correlating biological outcomes with blast
biomechanics to define tolerance criteria. Blast-induced traumatic brain injury (bTBI) results
from the translation of a shock wave in-air, such as that produced by an IED, into a pres-
sure wave within the skull–brain complex. Our blast injury methodology recapitulates this
phenomenon in vitro, allowing for control of the injury biomechanics via a compressed-gas
shock tube used in conjunction with a custom-designed, fluid-filled receiver that contains
the living culture. The receiver converts the air shock wave into a fast-rising pressure tran-
sient with minimal reflections, mimicking the intracranial pressure history in blast. We
have developed an organotypic hippocampal slice culture model that exhibits cell death
when exposed to a 530 ± 17.7-kPa peak overpressure with a 1.026 ± 0.017-ms duration and
190 ± 10.7 kPa-ms impulse in-air. We have also injured a simplified in vitro model of the
blood–brain barrier, which exhibits disrupted integrity immediately following exposure to
581 ± 10.0 kPa peak overpressure with a 1.067 ± 0.006-ms duration and 222 ± 6.9 kPa-ms
impulse in-air. To better prevent and treat bTBI, both the initiating biomechanics and the
ensuing pathobiology must be understood in greater detail. A well-characterized, in vitro
model of bTBI, in conjunction with animal models, will be a powerful tool for developing
strategies to mitigate the risks of bTBI.
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INTRODUCTION
The prevalence of injuries to service men and women resulting
from improvised explosive devices (IEDs) in recent U.S. military
conflicts has highlighted the knowledge-deficit that exists concern-
ing the acute and long-term human health threat of blast-induced
traumatic brain injury (bTBI). Since 2001, nearly 80% of all U.S.
service member casualties in Iraq and Afghanistan have been the
result of IEDs, and the incidence of bTBI has increased sharply
(Owens et al., 2008; Tanielian and Jaycox, 2008; Livingston and
O’hanlon, 2011; O’Hanlon and Livingston, 2011). The total num-
ber of service members reported to be affected by traumatic brain
injury (TBI) from 2000 to 2011 is over 220,000 (Defense and Veter-
ans Brain Injury Center, 2012). Experimental studies have shown
that exposure to blasts below the threshold for pulmonary injury
can result in acute and delayed behavioral deficits and neurodegen-
eration (Kaur et al., 1997; Cernak et al., 2001b; Risling et al., 2002;
Saljo et al., 2002a; Moochhala et al., 2004; Rafaels et al., 2010). In
light of these studies, there is an urgent need to develop an injury
risk-function for bTBI and to improve our understanding of the

mechanisms that lead to acute and long-term deficits resulting
from bTBI.

Real-world blast loading can be exceedingly complex; therefore,
simplified experimental models are necessary to begin develop-
ing blast injury risk-functions for brain tissue before investigat-
ing more complex conditions (Hooker, 1924). Peak overpressure,
duration, and impulse of the positive pressure phase have been
shown to be key parameters influencing the severity of bTBI (Bass
et al., 2008; Chen et al., 2009; Rafaels et al., 2010, 2011; Panzer
et al., 2011). In our system, a compressed-gas shock tube was
used to reproduce a free-field blast wave (i.e., a Friedlander wave)
characterized by a fast-rising overpressure with an exponential
decay into a negative pressure phase. This idealized blast injury
model has been used extensively to study the effects of primary
blast on the body (Cassen et al., 1950; Celander et al., 1955; Rich-
mond et al., 1961; Dodd et al., 1997; Elsayed, 1997; Cernak et al.,
2001a,b; Gorbunov et al., 2005; Bass et al., 2008; Garman et al.,
2009, 2011; Long et al., 2009; Rafaels et al., 2010, 2011; Panzer
et al., 2011).
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In vitro biological models offer several advantages including
ease of accessibility, allowing the sample to be viewed directly,
and functional or biochemical measures to be taken before and
after injury at multiple time points. Serial sampling helps to deter-
mine the evolution of the pathology for identification of not only
therapeutic targets but also critical delivery time points to treat
bTBI. In vitro injury models have the added advantage of precise
control over the injury biomechanics. Taken together, these advan-
tages make it possible to correlate biological outcome measures
to injury parameters for defining tissue-level tolerance criteria.
This is an advantage over using computational models to deduce
the tissue-level injury criteria, since computational models can
be highly sensitive to assumptions, including material properties,
loading conditions, and interface parameters. In vitro blast injury
lays a strong foundation for the development of bTBI models with
increased complexity, facilitating a correlation between micro-
scopic physiological damage witnessed in vitro to macroscopic
damage and behavioral deficits in vivo.

In vitro models have increased our mechanistic understand-
ing of TBI caused by blunt trauma or inertial mechanisms (i.e.,
motor vehicle accidents, falls, assaults) for both the initiating bio-
mechanics and the ensuing pathobiology (Morrison et al., 1998,
2011). The development of in vitro blast injury models that reca-
pitulate intracranial blast physics could accelerate future bTBI
research in a similar manner. For this reason, we have developed
an in vitro blast injury model that provides precise control of
the overpressure biomechanics for correlating loading parameters
to the living biological response (Panzer et al., 2012). To repro-
duce the intracranial milieu where the shock wave is translated
to a fast-rising pressure wave, tissue cultures were submerged in a
fluid-filled reservoir to simulate the surrounding brain. The result-
ing effect is an increase in the duration of the external pressure
input that replicated pressure histories measured within the brain
in experimental studies (Clemedson and Pettersson, 1956; Romba
et al., 1961; Chavko et al., 2007; Saljo et al., 2008). Of particu-
lar significance, the blast injury methodology described here is
compatible with many in vitro biological preparations with only
minor adjustments (Panzer et al., 2012); we present data utilizing
models of the brain parenchyma (organotypic hippocampal slice
culture, OHSC) and the blood–brain barrier (BBB). This work is in
conjunction with complementary characterization of test devices
for in vivo and in vitro blast injury and methodology for their
implementation with in vivo models.

MATERIALS AND METHODS
SHOCK TUBE
Blast overpressures were generated with a 76-mm diameter alu-
minum shock tube with an adjustable-length driver section
(25 mm used for the current studies) pressurized with helium
and a 1240-mm long driven section (Panzer et al., 2012). The
diaphragm was composed of polyethylene terephthalate (PET)
membranes, and the thickness of the diaphragm was varied to
control the burst pressure. Three piezoresistive pressure trans-
ducers (Endevco, San Juan Capistrano, CA, USA) flush-mounted
at the exit of the shock tube and oriented perpendicular to the
direction of propagation recorded side-on pressure. Analog out-
puts from the transducers were conditioned using instrumentation

amplifiers (gain of 50) and low-pass filters (corner frequency of
40 kHz, Alligator Technologies, Costa Mesa, CA, USA). Signals
were digitized with an X-series data acquisition card at 125 kHz
using LabVIEW™2010 (National Instruments, Austin, TX, USA).
Peak overpressure,duration,and impulse were calculated with cus-
tom MATLAB code (MathWorks, Natick, MA, USA). Room tem-
perature, ambient pressure, tank pressure, and regulator settings
were recorded for each blast.

IN VITRO RECEIVER
Cultures were placed in a fluid-filled blast receiver designed for
use with the shock tube (Panzer et al., 2012). The in vitro blast
injury receiver was composed of a polyethylene 57 L reservoir with
a polycarbonate test column. The test column extended into the
reservoir through a diverging nozzle. The geometry of the receiver
resulted in the mitigation of the majority of the internally reflected
pressure waves to reduce subsequent mechanical loading of the tis-
sue. The end of the shock tube was placed flush with the top of the
receiver and centered on its vertical axis. Turnbuckles were used to
align the test column with the axis of the shock tube (Figure 1).

The test column was separated from the reservoir by a 250-
μm thick polytetrafluoroethylene (PTFE) membrane to restrict
bulk fluid motion. A PTFE membrane was secured in the mid-
dle of the test column for a reproducible sample location in the
receiver. A silicone membrane (Specialty Manufacturing Inc., Sag-
inaw, MI, USA) was secured to the open end of the test column
with a hose clamp to prevent spray. Membrane materials used in
the receiver were carefully chosen for impedance matching with
water to prevent unintended reflections. Inclusion of air bubbles
was meticulously prevented.

The receiver was filled with water maintained at 37˚C with
a heating element (Innomax, Denver, CO, USA) affixed to the

FIGURE 1 | Schematic of the shock tube with receiver. (A) A
compressed helium source was connected to an adjustable driver section
of the shock tube, which was aligned vertically over the sample receiver.
In-air transducers were located at the exit of the shock tube. (B) The sample
within a bag rested on top of a PTFE membrane within the fluid-filled
sample receiver. Submersible transducers were located directly above the
sample bag and below the PTFE membrane.
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receiver for all in vitro blast injuries and blast characteriza-
tions. The water temperature in the test column was verified and
recorded prior to and following each blast injury.

To characterize the loading of the culture sample, two sub-
mersible pressure transducers (Millar Instruments, Houston, TX,
USA) were inserted into the test column adjacent to the sample.
The face of each transducer was oriented into the direction of
wave propagation. Data from these transducers were recorded as
described above.

OHSC CULTURE
All animal procedures were approved by the Columbia University
Institutional Animal Care and Use Committee (IACUC). Accord-
ing to previously published culture methods, P8-10 Sprague-
Dawley rat pups were decapitated, and their brains were removed
(Morrison et al., 2002, 2006; Cater et al., 2006, 2007; Elkin and
Morrison, 2007). Hippocampi were excised and sectioned into
400 μm thick slices using a McIlwain tissue chopper (Harvard
Apparatus, Holliston, MA, USA). Slices were separated asepti-
cally in ice-cold Gey’s salt solution supplemented with 25 mM
d-glucose (Sigma, St. Louis, MO, USA) using blunt, plastic spat-
ulas (Fisher, Pittsburgh, PA, USA). Slices were plated onto porous
Millipore Millicell cell culture membranes (Millipore, Billerica,
MA, USA). Slices were initially fed with Neurobasal medium sup-
plemented with 1 mM l-glutamine, 1× B27 supplement, 10 mM
HEPES, and 25 mM d-glucose (Invitrogen, Carlsbad, CA, USA).
Culture medium was changed to conditioned full-serum medium
(50% Minimum Essential Medium, 25% Hank’s Balanced Salt
Solution, 25% heat inactivated horse serum, 2 μM l-glutamine,
25 mM d-glucose, 10 mM HEPES, Sigma) 3 days following plat-
ing. OHSC were subsequently fed with conditioned full-serum
medium every 2–3 days. OHSC were cultured at 37˚C and 5%
CO2.

After 10–14 days in culture, the baseline health of OHSC imme-
diately prior to injury was assessed by quantifying pre-injury cell
death with the fluorescent stain propidium iodide (PI, Invitrogen).
OHSC with PI fluorescence greater than 10% in any region (DG,
CA3, CA1) were not included in the study (see OHSC Cell Death
Quantitative Analysis).

BBB MODEL
Using an endothelial monoculture model of the BBB (bEnd.3,
mouse brain microvascular cell line, ATCC, Manassas, VA, USA) a
total of 38,000 bEnd.3 cells were seeded on 1.12 cm2, poly-l-lysine
coated Transwell inserts in a 12-well plate (Corning Costar, Corn-
ing, NY, USA) and were cultured for 7 days according to published
methods (Simon et al., 2010, 2011). Cells were grown in serum-
containing medium [DMEM supplemented with 10% newborn
calf serum (Invitrogen) and 4 mM glutamine (Sigma)] and fed
every 2–3 days. bEnd.3 cells were cultured at 37˚C and 5% CO2.

Following 7 days in culture, to assess the baseline health of the
monolayer immediately prior to injury, images of both bright-field
and PI fluorescence were recorded, and baseline trans-endothelial
electrical resistance (TEER) was measured. Cell monolayers with
TEER less than 12 Ω cm2 were not included in the study (see BBB
Cell Death Quantitative Analysis; see Trans-endothelial Electrical
Resistance).

BLAST LOADING
OHSC injury
Prior to placing cultures in the receiver, individual culture wells
were sealed inside sterile bags to prevent contamination, maintain
medium pH, minimize bulk flow immediately around the sam-
ple, and minimize waste of culture medium. Small sterile bags
made of 57 μm thick, low density polyethylene (Whirl Pak, Fort
Atkinson, WI, USA) were filled with pre-warmed, serum-free cul-
ture medium that had been equilibrated with 5% CO2/95% O2

for 10 min. Care was taken to prevent entrapment of air bub-
bles. The culture and the bag were submerged in the test col-
umn of the receiver and oriented perpendicular to pressure wave
propagation.

Injured cultures were subjected to a single blast exposure. Fol-
lowing blast exposure, the bag with the culture was immediately
removed from the receiver, and the culture was returned to fresh,
serum-free medium and incubated. Sham-exposed samples were
sealed into bags with equilibrated, warmed, serum-free medium,
and submerged in the receiver for an equivalent period, but the
shock tube was not fired. Resultant cell death was measured 4 days
following blast injury given the delayed cell death response of
OHSC exposed to stretch-injury (Morrison et al., 1998, 2002, 2003,
2006; Cater et al., 2006, 2007).

BBB injury
Prior to placing cultures in the receiver, individual Transwells
were sealed inside sterile bags to prevent contamination, main-
tain medium pH, minimize bulk flow immediately around the
sample, and minimize waste of culture medium (Whirl Pak). Sam-
ple bags were filled with pre-warmed, serum-containing culture
medium that had been equilibrated with 5% CO2/95% O2 for
10 min. Care was taken to prevent entrapment of air bubbles.
The culture and the bag were submerged in the test column of
the receiver and oriented perpendicular to the direction of wave
propagation.

Injured cultures were subjected to a single blast exposure. Fol-
lowing blast exposure, the bag with the culture was immediately
removed from the receiver, and the culture was returned to the
incubator in fresh medium. Sham-exposed samples were sealed
into bags and submerged in the receiver for an equivalent period,
but the shock tube was not fired.

EXCITOTOXIC INJURY
After OHSC had been imaged for blast-induced cell death, total
cell death resultant from an excitotoxic injury was induced. OHSC
medium was switched to a 10-mM glutamate solution in serum-
free medium. Cultures were incubated for 3 h and then returned
to fresh serum-free medium. Cell death resulting from excitotoxic
injury was determined 24 h later with PI staining and imaging (see
OHSC Cell Death Quantitative Analysis).

CELL DEATH ANALYSIS
OHSC cell death quantitative analysis
PI fluorescence was used to quantify cell death prior to and
4 days following injury and 1 day following excitotoxic injury.
OHSC were incubated in 2.5 μM PI in serum-free medium for
1 h before imaging. Images were acquired using an Olympus IX81
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microscope with 568/24 excitation and 610/40 emission filters.
Following imaging, cultures were returned to fresh, serum-free
medium. Cell death was determined for specific OHSC regions
(DG, CA1, CA3), as previously described, using MetaMorph [Mol-
ecular Devices, Downingtown, PA, USA (Morrison et al., 2002,
2003, 2006; Cater et al., 2006; Elkin and Morrison, 2007)]. In
brief, the same threshold for fluorescence was used to analyze all
images at each time point. Tissue damage at a given time point
was quantified as the percentage area of a specific region exhibit-
ing fluorescence above the threshold. Changes in percent cell death
were normalized to maximum cell death resulting from excitotoxic
injury.

BBB cell death quantitative analysis
PI fluorescence was used to quantify cell death prior to, 2 and
8 h after injury. Cell monolayers were incubated in 2.5 μM PI for
1 h in serum-free medium before imaging. Images were acquired
using an Olympus IX81 microscope with 568/24 excitation and
610/40 emission filters. Images were examined using MetaMorph
(Molecular Devices, Downingtown, PA, USA). In brief, the same
threshold for fluorescence was used to analyze all images at each
time point. Tissue damage at a given time point was quantified as
the number of dead cells per area of a specific region exhibiting
fluorescence above the threshold. Following imaging, PI medium
was aspirated completely, and the cultures were returned to fresh,
supplemented culture medium.

TRANS-ENDOTHELIAL ELECTRICAL RESISTANCE
Changes in TEER were quantified using an Endohm-12 cham-
ber electrode connected to an EVOMX Epithelial Voltohmmeter
(World Precision Instruments), taking into account the TEER of
cell-free Transwell filters. TEER values were normalized to the
membrane surface area. TEER measurements were taken imme-
diately prior to and after injury. Sham-exposed samples were
processed identically to blast-exposed cultures.

STATISTICAL ANALYSIS
A univariate general linear model was used to analyze the com-
plete data set for each region of the OHSC with cell death as the
dependent variable and experimental group (sham, injured) as
the fixed factor (SPSS v. 19, IBM, Armonk, NY, USA, significance
*p < 0.05). Independent samples t -tests were used to analyze the
results of injured and sham-exposed BBB cultures, with TEER as
the dependent variable (SPSS v. 19, significance *p < 0.05).

RESULTS
Characterization of the shock tube was performed without the
receiver in place (Figure 2). Pressure time-histories recorded
at the end of the shock tube were typical of a Friedlander
wave (Figure 2B) and demonstrated good inter-test consistency
(Figure 2A). Duration of the positive pressure phase was corre-
lated with peak overpressure, and the relationship was well-defined
by a second-order polynomial fit (Figure 2C). The impulse was

FIGURE 2 | Characterization of the open shock tube. (A) Three in-air
pressure transducers located equidistant around the exit to the shock tube
recorded pressure transients in-air for blast of a 1.5-mm thick PET burst
membrane. The peak overpressure [denoted by point (C)] for this blast was
534 kPa with a duration of 1.040 ms and an impulse of 184 kPa-ms. (B) The
output of the shock tube was similar in shape to the Friedlander wave,

which models the primary blast produced from an explosion in the free-field.
(C) For the open shock tube, the durations were plotted as a function of the
peak overpressures for each blast and fit to a second-order polynomial
(n = 78). (D) For the open tube, the impulses were plotted as a function of
peak overpressures for each blast and fit to a second-order polynomial
(n = 78).
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FIGURE 3 | Characterization of the shock tube and fluid pressures with

receiver in place. (A) An in-air pressure transducer (blue trace) located at the
exit of the shock tube recorded pressure transients in-air for a shock produced
from a 508-μm thick burst membrane with the receiver in place. The peak
pressure in-air of the incident shock wave upon exiting the shock tube is
denoted by “I,” and the peak pressure of the reflection is denoted as “R.” Two
submersible transducers, located above or below the sample holder (including
culture well, bag, and PTFE membrane; red and green traces, respectively)

demonstrated the absence of attenuation through the in vitro set-up. (B) The
peak overpressures from the submersible transducer below the sample
holder were correlated to peak pressures measured by the in-air transducers.
(C) The durations within the fluid-filled receiver were plotted against peak
overpressures measured within the fluid-filled receiver, with no correlation to
pressure found. (D) The impulses within the fluid-filled receiver were
correlated to peak overpressures measured within the fluid-filled receiver and
approximated using a linear fit.

also correlated with peak overpressure and was well-defined by a
second-order polynomial as well (Figure 2D).

Placement of the receiver below the shock tube significantly
altered the pressure recorded by the transducers at the end of the
shock tube (Figure 3A). Similar to the principles of transmission
for acoustic waves, the pressure history revealed two waves pro-
duced from the interaction of the incident shock wave with the
top surface of the fluid-filled receiver. The incident pressure of the
shock wave exiting the shock tube (Figure 3A, point “I”) remained
discernable in the pressure trace as the first peak. However, the sub-
sequent, larger peak (Figure 3A, point “R”) was due to the shock
wave reflecting off the liquid surface and re-entering the shock
tube. The presence of the receiver effectively altered the pressure
history, affecting the peak pressure, duration, and impulse. These
parameters were highly sensitive to the placement and interaction
of the receiver with the shock wave, so we have chosen to charac-
terize the applied blast loading by the pressure history in the open
tube configuration and by the pressure experienced directly by the
biological sample (Chavko et al., 2011). The close temporal rela-
tionship and the significantly higher magnitude of the pressure of
the reflected wave can make it difficult to identify the peak pressure
of the incident shock wave. Misappropriation of the reflection as
the incident shock could confound interpretation of the loading
conditions and lead to the erroneous conclusion that the presence
of an object amplified the incident shock wave.

Transducers located on the upstream and downstream side
of the sample holder (culture well, bag, and PTFE membrane)
recorded the pressure transients within the fluid-filled receiver
(Figure 3A). The peak overpressures measured by the upstream
and downstream transducers were 405 ± 17.0 and 405 ± 15.0 kPa
with durations of 1.8 ± 0.036 and 1.8 ± 0.004 ms, respectively
(n = 3). These results indicated that the propagation of the pres-
sure wave was not affected by the presence of the culture well, bag,
or PTFE membrane. The relationship between the peak incident
pressure (in-air) and the peak pressure in the sample receiver was
linear (R2 = 0.90474) over the pressure range tested (Figure 3B).
As peak pressure increased, the duration values remained con-
sistent, increasing slightly over the upper range of pressures but
did not correlate with the incident pressure (Figure 3C). The
durations ranged from 1.384 to 2.248 ms. Impulse correlated lin-
early (R2 = 0.9331) to peak overpressure measured in the fluid-
filled receiver (Figure 3D). Impulse values ranged from 265.6 to
757.6 kPa-ms.

Exposure of OHSC to 530 ± 17.7 kPa peak incident pressure,
1.026 ± 0.017 ms duration, and 190 ± 10.7 kPa-ms impulse in-air
increased cell death 4 days following blast (Figure 4). Injured tissue
cultures experienced significantly more cell death 4 days follow-
ing blast as compared to sham-exposed samples in all regions
of the hippocampus (Figure 4A). Injured tissue appeared darker
in bright-field images (Figure 4B), indicative of ultrastructural
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FIGURE 4 | In vitro blast injury of OHSC. OHSC were exposed to
530 ± 17.7 kPa peak incident overpressure, 1.026 ms duration ± 0.017 ms,
and 190 ± 10.7 kPa-ms impulse in-air. (A) Injured OHSC experienced
increased cell death 4 days following blast. Cell death increased
significantly in all regions of injured OHSC as compared to sham-exposed
OHSC (*p < 0.05; SEM; Sham n = 21; Injured n = 13). (B) Bright-field and
fluorescent images of injured tissue revealed significant PI staining 4 days
following injury. (C) Sham-exposed cultures maintained normal morphology
with minimal cell death over the 4-day period following injury.

changes inducible by cell death such as mitochondrial swelling
(Muller and Somjen, 1999). Additionally, resultant cell death in
injured tissue was isolated to the principal cell layers (pyrami-
dal and granule cells) as has been seen 4 days following in vitro
stretch-injury of OHSC (Morrison et al., 2002, 2003; Cater et al.,
2006, 2007). OHSC exposed to the sham injury maintained healthy
morphology and experienced minimal cell death over the same
time-course (Figure 4C).

Exposure of bEnd.3 cultures to 581 ± 10.0 kPa peak incident
overpressure, 1.067 ± 0.006 ms duration, and 222 ± 6.9 kPa-ms
impulse in-air significantly decreased TEER to 75 ± 7% of pre-
exposure levels immediately following blast (Figure 5A). Bright-
field images revealed healthy cell morphology consistent across all
time points for both injured and sham-exposed cultures. Mini-
mal cell death was observed in blast-exposed cultures (Figure 5C)
as compared to sham-exposed cultures (Figure 5D) at 2 and 8 h
following the injury time point, which served as a qualitative indi-
cator of endothelial monolayer health. The number of dead cells
per millimeter squared was not significantly higher in injured
cultures as compared to sham-exposed cultures at the pre-injury
(0.7 ± 0.6 injured vs. 0.2 ± 0.1 sham), 2 h post-injury (15.9 ± 7.6
injured vs. 11.4 ± 8.8 sham), and 8 h post-injury (3.3 ± 1.2 injured
vs. 2.7 ± 1.4 sham) time points tested (Figure 5B). The increase
of cell death in all cultures at the 2-h time point was likely due to
medium changes and physical manipulations required to transfer
cultures into the receiver.

DISCUSSION
Tissue-level injury criteria for the brain from blast loading have
yet to be published. In vitro models of the brain have proven to be
highly predicative of the brain’s response to injury in vivo and addi-
tionally allow for precise control and characterization of injury
biomechanics (Morrison et al., 2011). The choice of the blast injury
model and its characterization are critical for reproducing oper-
ationally relevant loading histories. With a realistic injury model,
understanding the energy transfer to the tissue and the resultant
biological response can begin. The in vitro blast injury methodol-
ogy described here benefits from twofold utility to this end: (1) an
easily modifiable receiver to accommodate various in vitro biologi-
cal models and (2) a high degree of characterization for correlating
primary blast exposure to biological outcomes. Development of an
in vitro injury risk-function coupled with a strong understanding
of damage mechanisms will supplement in vivo studies to facilitate
an understanding of the intrinsic and extrinsic signals essential in
the overall, neurological outcome following blast injury.

Organotypic hippocampal slice culture were chosen for this
study because they have proven to be biofidelic in recapitulating
the progressive neurodegenerative cascades and delayed cell death
observed in animal models of neurodegeneration (Morrison et al.,
1998, 2002, 2011; Sundstrom et al., 2005; Cater et al., 2006, 2007).
After blast exposure, cell death in OHSC was largely isolated to the
principal cell layers in all regions of the hippocampus (i.e., pyra-
midal and granule cells), similar to cell death patterns observed in
in vitro models of inertial injuries (i.e., stretch or shear). Although
the biomechanics of blast (low strain, high strain rate) and inertial
injuries (large strain, relatively low strain rates) are fundamen-
tally different, the similar pattern observed suggests that similar
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FIGURE 5 |Trans-endothelial electrical resistance (TEER) and

bEnd.3 monolayer viability following blast injury. Cultures were
exposed to 581 ± 10.0 kPa peak overpressure with a 1.067 ± 0.006-ms
duration and 222 ± 6.9 kPa-ms impulse in-air. (A) An acute decrease in
TEER was observed for the injured cultures immediately following
injury to 75 ± 7% of pre-exposure levels (*p < 0.05; SEM; Sham n = 6;
Injured n = 6). Bright-field and PI fluorescence images were taken

immediately prior to, 2 and 8 h following injury. (B) The number of dead
cells in injured cultures as compared to controls was not significantly
higher at the pre-injury, 2 h post-injury, and 8 h post-injury time points
tested. (C) Blast exposure resulted in no change in morphology and
only minimal cell death (white arrows) at 2 and 8 h post-exposure. (D)

Sham exposure resulted in no change in morphology or PI staining,
indicating a lack of cell death.

cell types are vulnerable to both loading conditions (Morrison
et al., 1998, 2002, 2003, 2006; Cater et al., 2006, 2007). Future
studies will determine whether the pathobiology initiated by both
injuries differs. Studies in the rat have observed dose-dependent
induction of axonal damage, activation of apoptotic transcription
factors, and cell death in the hippocampus after exposure to 154
and 240 kPa incident overpressure with associated 1.7 and 2 ms
durations, respectively (Kaur et al., 1995; Saljo et al., 2002a,b).
These changes occurred between 2 h and 21 days following injury,
suggesting that blast initiates an extended pathobiology that results
in progressive neurodegenerative changes (Saljo et al., 2003). One
limitation of these findings reported by Kaur et al. (1995) was that
the overpressure history was exceedingly complex, being formed
from an explosive charge detonated within a closed bunker. Saljo
et al. (2002a,b) utilized the same blast parameters under more con-
trolled conditions, using an explosive-driven blast tube; however,
a limitation of their studies was that the thorax was not protected
during exposure such that the response could have been due to
pulmonary effects of blast. A primary conclusion from our study
was that principal cells of the hippocampus were vulnerable to
primary blast injury without a complex overpressure history. One
limitation of our study is that we did not investigate the time-
course of this cell death response; therefore we were unable to
report whether cell death was acute or delayed. Future studies
are necessary to explore the induced pathobiology in more detail,
specifically to determine OHSC tolerance and mechanisms of cell
death. However, our results do establish the feasibility of inducing

hippocampal cell death in response to a pressure transient that
mimics operationally relevant primary blast loading.

Previous studies have reported an acute increase in BBB per-
meability as observed by IgG immunoreactivity in rat brain at 3
and 24 h following exposure to a shock wave of 120 kPa (duration
not reported) or 240 kPa peak overpressure with 4 ms duration
(Readnower et al., 2010; Garman et al., 2011). This acute disrup-
tion of the barrier was consistent with our findings that TEER of
endothelial monolayers – an indicator of BBB integrity – decreased
immediately after exposure to overpressure. In vivo, BBB dam-
age was reported to be more severe in the cerebral cortex and
underlying striatum contralateral to the direction of the imping-
ing shock wave (Garman et al., 2011). The authors speculated
that diffraction of the shock wave around the skull produced a
localized region of imploding shock amplification on the con-
tralateral side, suggesting that their reported pressures may have
been underestimates of the in situ pressures required to induce
BBB damage. One limitation of our data presented for disruption
of endothelial monolayer integrity is the lack of a TEER time-
course recorded following exposure to blast overpressure. Previous
studies have reported restoration of the compromised BBB 72 h
following blast, evidenced by the return of IgG immunoreactivity
to control levels (Readnower et al., 2010; Garman et al., 2011).
In addition, we found that cell death of blast-exposed cultures
was not significantly higher than that of sham-exposed cultures
at each time point tested, further ruling out the possibility of cell
death as the underlying cause for acute changes in TEER following
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injury. The slightly elevated number of dead cells in both sham-
exposed and injured groups at 2 h post-injury may have been due
to sample handling involved with sham and blast injury. Less pro-
pidium iodide staining at the 8-h time point following injury is
thought to be the result of detachment of dead cells during the
staining process. Together, these data suggest that BBB disruption
could be a transient phenomenon not caused solely by cell death,
with a time-course and mechanisms of repair that warrant further
investigation.

Previously published in vitro models of bTBI have reported
the incident overpressure of the blast wave but not the loading
conditions at the tissue-level (Leung et al., 2008; Arun et al., 2011;
Connell et al., 2011). Without a tissue-level biomechanical context,
it is difficult to make quantitative comparisons between biologi-
cal outcomes from different studies given the potential for vastly
different loading conditions. In a high-throughput model of blast,
rodent- and human-derived neuroblastoma cell lines were injured
by exposure to a single overpressure of 145 kPa; however, the study
reported the paradoxical finding of reduced injury after multiple
exposures (Arun et al., 2011). For this study, cell cultures in 96-
well plates were exposed to blast inside the shock tube. The injury
biomechanics at the sample-level were not reported. In a different
in vitro blast injury model, the excised spinal cord was subjected
to strains as high as 60% with a jet of gas produced by a blast tube,
which did not accurately reproduce the low strain, high strain rate
biomechanics of blast (Connell et al., 2011). In each of these pre-
vious studies, overpressures were applied directly to the culture
preparations, so the loading conditions were not representative of
internal physiological loading conditions. Our studies benefited
from a novel fluid-filled receiver, which propagated a fast-rising
pressure wave through the tissue to reproduce in situ intracra-
nial biomechanics (Panzer et al., 2012). In addition, the receiver
allowed for measurement of the injury parameters that directly
interact with the tissue.

Combining tissue culture models with blast modeling held
additional challenges related to the maintenance of important
culture conditions during injury. Many of these challenges were
surmounted by encasing the cultures within sterile, media-filled
bags. Critically, we showed that the bag, sample holder, and cul-
ture wells did not alter the passage of the pressure wave. Isolating
the cultures from the fluid in the receiver prevented infections,
which was absolutely required for analysis of cell death over 4 days.
To maintain physiologic pH during injury, culture medium was

equilibrated with 5% CO2/95% O2, which was critical since pH
changes can induce excitotoxicity of pyramidal neurons (Pringle
et al., 2000) and interneurons (Wang and Xu, 2011; Zhao et al.,
2011). The fluid in the receiver was maintained at 37˚C to prevent
hypothermia, which is highly neuroprotective in multiple mod-
els of neurodegeneration (Dietrich et al., 1994; Tymianski et al.,
1998; Lawrence et al., 2005). The sample bags also reduced bulk
fluid flow in the immediate vicinity of the cultures, thereby reduc-
ing unwanted tissue deformation after passage of the pressure
wave.

Development and implementation of a simplified model of
blast injury for the definition of blast tolerance criteria is only a first
step toward an understanding of the acute and long-term patho-
biology of bTBI. However, there were some limitations associated
with this study. Blast exposure was simulated as a Friedlander wave
without the complexity caused by reflections that occur opera-
tionally. Currently our device is not configured to reproduce more
complex blasts but could be modified to do so (Panzer et al., 2012).
Preparation of OHSC was a lengthy and technically challenging
culture process with a culture period of 2 weeks prior to injury
to ensure tissue health and maturation (Morrison et al., 2003).
bEnd.3 cells were chosen to model the BBB; however, bEnd.3 cells
are a cell line, and therefore may respond differently to blast as
compared to primary endothelial cells. Although the shock tube
requires minimal set-up, the preparation of the in vitro biological
samples to prevent infection and control physiologic parameters
during exposure decreased throughput.

In vitro models of the brain parenchyma (OHSC) and BBB
were exposed to simulated blast loading with our unique system
consisting of a shock tube and a specialized receiver, resulting in
cell death in OHSC and disruption of tight junction integrity in
our BBB cultures. Our in vitro blast model benefited from the
ability to measure the loading conditions at the level of the cell
or tissue sample. Future studies will utilize our well-characterized
blast injury model and methods along with biomarkers previously
shown to be valuable for bTBI to correlate injury biomechanics to
biological responses.
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