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Abstract

Traumatic brain injury (TBI) can lead to neurodegeneration in the injured circuitry, either

through primary structural damage to the neuron or secondary effects that disrupt key cellu-

lar processes. Moreover, traumatic injuries can preferentially impact subpopulations of neu-

rons, but the functional network effects of these targeted degeneration profiles remain

unclear. Although isolating the consequences of complex injury dynamics and long-term

recovery of the circuit can be difficult to control experimentally, computational networks can

be a powerful tool to analyze the consequences of injury. Here, we use the Izhikevich spik-

ing neuron model to create networks representative of cortical tissue. After an initial settling

period with spike-timing-dependent plasticity (STDP), networks developed rhythmic oscilla-

tions similar to those seen in vivo. As neurons were sequentially removed from the network,

population activity rate and oscillation dynamics were significantly reduced. In a successive

period of network restructuring with STDP, network activity levels returned to baseline for

some injury levels and oscillation dynamics significantly improved. We next explored the

role that specific neurons have in the creation and termination of oscillation dynamics. We

determined that oscillations initiate from activation of low firing rate neurons with limited

structural inputs. To terminate oscillations, high activity excitatory neurons with strong input

connectivity activate downstream inhibitory circuitry. Finally, we confirm the excitatory neu-

ron population role through targeted neurodegeneration. These results suggest targeted

neurodegeneration can play a key role in the oscillation dynamics after injury.

Introduction

Traumatic Brain Injury (TBI) is a prominent cause of disability in the US [1]. Perhaps due to

growing awareness of the consequences of TBI, emergency department visits for TBI increased

47% from 2007 to 2013 [2]. Although many of these injuries produce no long-term deficits, a

fraction of injuries produces cognitive and psychological impairments that can last years after
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the original insult [3–5]. As a result, more than 5 million people in the US live with significant

consequences of TBI, contributing to an estimated 70 billion dollars annually in medical and

non-medical costs [6]. Effective recovery from TBI remains a challenge because no two inju-

ries are exactly alike, leading to a unique injury and recovery pattern for each TBI patient.

One key feature in TBI recovery is how the structural and functional networks in the brain

evolve over time after injury to guide the cognitive recovery processes [7–11]. Recent studies

have shown alterations in brain circuitry after moderate and severe injury affect the coordina-

tion among functional brain networks [12]. With the development of models to predict the

overall changes in brain networks during different tasks, there is an emerging consensus that

the dynamic network that connects different brain regions can influence cognitive and psycho-

logical alterations after injury [13–16]. However, the unique circumstances that cause each

TBI make it difficult to predict which injuries will likely lead to long-term changes in brain

function. These challenges exist especially at the cellular scale, where the neuronal degenera-

tion that may occur days to weeks after a TBI can alter the function of local microcircuits

throughout the brain [17, 18].

To this end, computational models can be a useful tool to understand how neuronal dam-

age ultimately contributes to the impairments in circuit function after TBI. In general, these

models can account for the mechanisms of acute injury to the network (e.g., primary axotomy,

membrane permeability changes, receptor dysfunction) and secondary changes that can also

trigger neuronal loss [18–22]. Despite the many experimental methods to explore neural activ-

ity at different scales (e.g., single unit recording, local field potential recordings representing

the aggregate activity of neuronal ensembles, and high speed calcium imaging to explore neu-

ronal activation in awake animals), it is challenging to develop a precise relationship between

neurodegeneration and network dynamics with these techniques [23–26]. Furthermore, mod-

els are adept at manipulating network features which are less accessible experimentally. For

instance, the percentage of inhibitory neurons is known to vary depending on the specific neu-

ral circuit [27, 28] and is a feature of interest in this work. Finally, computational models can

systematically examine the effect of damaging neurons within an integrated network without

the influence of variable upstream circuitry. We can gain critical information that would be

impossible or impractical to acquire using conventional methods.

Building upon past studies that examined how neuronal connectivity and injury patterns

can lead to activity patterns which resemble posttraumatic epilepsy [29, 30], we use a computa-

tional model to examine the effect of neurodegeneration on the spontaneous activity of neural

circuits. We utilize microcircuits that resemble isolated cortical circuitry to identify the exact

relationship between local changes in network function and degeneration without the com-

plexity of large-scale interconnected topology. We focused our work on how rhythmic oscilla-

tions developed in our networks, how spike-timing-dependent plasticity enhanced the

recovery of these circuits after degeneration, and how degeneration in populations of neurons

can play specific roles in altered network function. Together, our results demonstrate how

neurodegeneration affects the dynamics of a microcircuit and the importance of spike-timing-

dependent plasticity in repairing damaged microcircuits after injury.

Methods

Modeling a representative cortical circuit

To investigate the connection between degeneration and functional network activity, we con-

structed computational neural networks of integrate-and-fire neurons ([31]; Summary in Fig

1). Networks of 1000 neurons were constructed with 80% regular-spiking, excitatory neurons

and 20% fast-spiking inhibitory to mimic the ratios commonly used to model cortical circuits
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[30–32]. While a ratio of 80% excitatory to 20% inhibitory neurons represents generic cortical

tissue, we also explored the effects of excitatory/inhibitory balance on baseline network activity

in an additional set of simulations. To do so, we created networks varying the percentage of

excitatory neurons from 65% to 95%.

These neurons follow a system of ordinary differential equations to track membrane poten-

tial, membrane recovery, and threshold-based spiking as follows:

v0 ¼ :04v2 þ 5vþ 140 � uþ I

u0 ¼ aðbv � uÞ

if v � 30 mV; then
v ¼ c

u ¼ uþ d

(

Where v represents the membrane potential in millivolts, and u is the membrane recovery var-

iable. Parameters a, b, c, and d were set to create heterogeneous regular-spiking excitatory

Fig 1. Schematic of methods. (A) The Izhikevich integrate-and-fire neuron model was used to simulate neuron activity. (B) Model parameters

were tuned to represent regular-spiking excitatory (Exc.) neurons and fast-spiking, low-threshold inhibitory (Inh.) interneurons. (C) Neurons were

randomly placed on the surface of a sphere and connected into a 1000 node network. (D) Networks developed rhythmic activity oscillations after a

four-hour period of connectivity weight settling with spike-timing-dependent plasticity (STDP). (E) We characterized oscillations in our networks

based on the number of oscillations per second, the peak number of spikes within the oscillation as a fraction of network size, and the full-width-

half-maximum (FWHM). After network weights settled with STDP, we injured networks at damage levels from 5% to 95%. After recording activity

metrics immediately after injury, the networks restructured connectivity weights, again according to STDP. We then reassessed network function.

https://doi.org/10.1371/journal.pone.0234749.g001
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neurons and fast-spiking, low-threshold inhibitory neurons as in Izhikevich 2003 (Fig 1B). For

each neuron, we allowed parameters a, b, c, and d to vary within a tight range to avoid network

behavior resulting from a homogeneous neuron population. We used a fixed timestep (0.2 mil-

lisecond) and a forward Euler method to compute v and u over time.

Consistent with average firing rates in vivo and previous models using Izhikevich neurons

[30, 33, 34], we used a gamma distribution (k, θ = 2, ½) to randomly (f = 1 Hz) inject currents

into individual neurons within the network. This stimulation was strong enough to cause the

neuron to fire and send AMPA- or GABA-based synaptic signals to downstream targets. Syn-

aptic currents were modeled as exponential decays from AMPA or GABAA receptors, with τ =

5 ms [32, 35–37]. Although there are other receptors with more slowly decaying currents, we

focused on fast-decaying receptors to represent a large proportion of the synaptic current.

AMPA and GABA receptors were calibrated to create excitatory or inhibitory post-synaptic

potentials in accordance with past in vivo recordings [38]. Repeated input stimuli were attenu-

ated at 40% immediately after a spike occurred (τ = 150 ms) to model desensitization in the

neuron population.

To avoid bias from edge effects in seeding neuron position, we placed neurons randomly

on the surface of a unit sphere ([30]; Fig 1C). The number of outputs for each neuron, which

was drawn from a normal distribution with an average of 100 total outputs and inputs per neu-

ron, varied slightly for each neuron to mimic features estimated in cortical circuits (10% vari-

ance; [39]). Neurons were randomly connected to each other across the surface of the sphere,

producing network properties of a classic Erdos-Renyi random graph [40]. In a subset of simu-

lations, we examined the effects of weak and strong distance-dependent connections and

found that our main findings were unchanged. As a result, we present only the simulations

using a random connection topology. Finally, we implemented synaptic transmission delays

that were proportional to the distance between two neurons along the arclength of the sphere

and set 8 ms as the maximum delay, consistent with in vivo recordings [41–45].

In neural networks, synaptic connection strengths adapt according to different models of

synaptic plasticity. Among the models available, we chose to implement spike-timing-depen-

dent plasticity (STDP) because of its critical role in learning and the potential role this feature

may play in cognitive deficits after traumatic injury [46–48]. We used the Song model of

STDP [49, 50], in which the synaptic strength was adjusted based on the relative timing of syn-

aptic inputs to a neuron and the subsequent action potential firing of the target neuron. Math-

ematically, this can be described as:

DwðwÞ ¼
AþðwÞexp �

tpost � tpre
t

� �

if tpost � tpre > 0

A� ðwÞexp �
tpost � tpre

t

� �

if tpost � tpre � 0

8
>>>><

>>>>:

Where w is the synaptic weight of the connection between the pre- and postsynaptic neuron;

A+ and A- determine the maximum synaptic modification; tpre and tpost are the timing of the

pre- and postsynaptic activations; and τ is the plasticity time constant of 20 ms. Importantly,

STDP was implemented at excitatory-excitatory synapses only. While there is evidence for

STDP at other synapses (e.g., excitatory-inhibitory), inhibitory plasticity is complex and vari-

able, depending on features like cell type, dendritic location, and neuromodulation [47, 51].

Until there is more consensus around these alternative forms of STDP, we and others have

focused on well-characterized excitatory-excitatory synapses for computational modeling.

Given that this formulation of STDP leads to a bimodal distribution of synaptic weights, in

which weights approach either the minimum or maximum possible weight [49], we seeded the
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synaptic strengths in our networks using a bimodal distribution. For inhibitory neurons,

which do not have STDP in the model, we used a normal distribution of synaptic weights 10%

variance. We scaled the synaptic weights of excitatory and inhibitory connections from the

starting distributions [0 1] to [0 4] for excitatory neurons and to [–14 0] for inhibitory neu-

rons. These scales were chosen to correspond to excitatory and inhibitory postsynaptic poten-

tials recorded in vivo [38].

For each network, we constructed the network topology and assigned synaptic weights

between connected neurons. We then allowed the network architecture to reweight with

STDP until the firing behavior of neurons achieved activity that did not vary in firing rate or

average oscillation rate by more than 1% over a 5-minute simulation period. Across a range of

connection architectures and synaptic weights, we attained a stable activity pattern for simula-

tion times of 4 hours. For each condition examined, we constructed and completed ten inde-

pendent simulations, averaging the results from these simulations into a single group.

We recorded five measures from each simulation: the neuron activity rate, coefficient of

variation of the inter-spike interval (CoV ISI), oscillation frequency, oscillation peak magni-

tude, and oscillation width. Activity rate was calculated as the average firing rate of neurons

within the network over a five-minute period. To assess variability in this activity, we com-

puted the CoV (standard deviation over the mean) of the intervals between spike times. The

CoV ISI was computed for each neuron and averaged across the population. Higher values

correspond to larger variation in spike timing. To evaluate the occurrence of oscillations, we

recorded the number of action potentials occurring in a 10-millisecond sliding time window

over the simulation time (Fig 1D). From these data, we selected times where peaks in activity

occurred for the network (peak prominence� 1) and used these times to compute the oscilla-

tion frequency as the number of oscillations per second. At each oscillation, we defined the

oscillation magnitude as the maximum number of spikes within the sliding window and the

width as the full width at half peak intensity.

We further analyzed each network oscillation to identify preferred spike timings for neu-

rons. For each oscillation, we identified an interval that was 1.4 times the size of the oscillation

width centered around the peak. We then split the interval into uniform deciles and assessed

the likelihood for each neuron to fire within each time interval.

Damaging the neural network

Random neuron injury: To mimic traumatic injury, neurons were randomly removed from

the network after initial network reweighting with STDP. To maintain the initial excitatory/

inhibitory balance of the circuit, 4 excitatory neurons were removed for every 1 inhibitory neu-

ron. To assess the immediate effects of damage, we ran simulations without adjusting connec-

tivity weights for 5 minutes, recording both the average firing rate and oscillation parameters

over this time period. Next, we allowed networks to remodel with STDP with simulation times

long enough to allow the firing rates and oscillation behavior to settle (4 hours). We then reas-

sessed our metrics with a stable connectivity for an additional 5 minutes (Fig 1E).

Activity-based excitatory neuron injury: A second type of deletion scheme used the firing

rate of individual neurons as the selection criterion for deletion. Once a given network restruc-

tured with STDP, we rank ordered the firing rate of each neuron within the network and

deleted either the neurons with the lowest firing rate (LFR) or, alternatively, the neurons with

the highest firing rate (HFR). Because the focus of this removal strategy was to determine the

effects of activity-based deletion, we opted to only remove excitatory neurons. Similar to ran-

dom neuron injury, we assessed the immediate effects of neuron removal with static connec-

tion weights for 5 minutes and then allowed the network to resettle for 4 hours.
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Statistical testing

To compare average activity and oscillation parameters between injury levels and baseline, we

used one-way analysis of variance (ANOVA) with Tukey-Kramer post hoc test. Comparisons

between injured and damaged networks at each injury level used t-tests with Bonferroni cor-

rection for multiple comparisons.

Results

To date, there is no clear evidence in the literature to suggest neurons with specific topological

properties are more vulnerable than others to traumatic injury, although there are indications

that specific regions of anatomic structures (e.g., CA3 in the hippocampus, cingulate, or thala-

mus) may preferentially show neuronal damage [52–54]. We first examined how the random

deletion of neurons affected the pattern of neuronal activity in the networks. Without any neu-

ronal deletions, networks had an average firing rate of 4.7 ± 0.1 Hz and an average oscillation

frequency of 12.4 ± 0.4 Hz (Fig 2A, 2C and 2D). The CoV ISI was 0.91 ± 0.01 (Fig 2B). This

activity level and the presence of oscillations are consistent with past computational models

using similar methods [31, 32, 50].

Patterns of activity and oscillations slowly changed with the progressive deletion of neurons

in the network. The average firing rate significantly decreased when deleting 15% or more of

the network neurons (One-way ANOVA with Tukey Kramer post-hoc P< .001; Fig 2A). Con-

currently, the CoV ISI remained stable until 60% removal at which point it increased, corre-

sponding to increased variability in spike timing (Fig 2B). With significant changes appearing

first in activity rate, the CoV ISI is interestingly more resilient to damage than the activity rate

is. At the peaks in oscillation activity, we found that 8.1 ± 0.2% of the neuronal network was

activated at baseline (Fig 2E). Random removal of neurons also led to a significant decrease in

oscillation frequency and oscillation magnitude, with these changes appearing at lower damage

levels (>5% or more deleted neurons; One-way ANOVA with Tukey Kramer post-hoc;

p = 0.001 and p<0.001, respectively; Fig 2D and 2E). The duration of an oscillation was most

resistant to neuronal loss, requiring at least 80% neuronal loss to show a significant decrease

(One-way ANOVA with Tukey Kramer post-hoc; Fig 2F).

In a subset of simulations, we considered focal neuron removal, in which case we created a

lesion by removing neurons that are physically near one another (S1 Fig). We found that the

general trends were similar to those presented above and decided to proceed with random

removal in subsequent studies. We attribute the similarity of these results to the random topol-

ogy of our networks and anticipate that focal deletion might be more detrimental in a heavily

distance-dependent network or another alternative topology. Furthermore, in a separate set of

simulations, we investigated how altering the excitatory and inhibitory neuron subtype may

alter general network dynamics after injury (S2 Fig). We find that our general results are simi-

lar for a variety of network compositions with differences only when chattering excitatory neu-

rons were included.

We next considered whether STDP would repair the functional deficits appearing in net-

works after damage. The average firing rate of neurons in the network increased significantly

over a broad range of damage when STDP rebalanced synaptic weights (20–80%; Fig 3A; rep-

resentative changes in Fig 3C). At lower levels of damage (5–60%), average neuronal activity

was not significantly different from undamaged networks (Fig 3A). We also found that the

CoV ISI did not differ from baseline at lower levels of removal (5–45%) and did significantly

differ from networks without STDP in the range of 45–80% deletion (Fig 3B). Similar to firing

rate, plasticity supported a significant increase in oscillation frequency and magnitude relative

to networks in which the synaptic weight was held constant (Fig 3D and 3E). Unlike average
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firing rate, though, plasticity did not recover the oscillation frequency, magnitude, or duration

to levels observed in undamaged networks. Beyond 25% damage, oscillation width signifi-

cantly increased relative to undamaged networks (One-way ANOVA with Tukey Kramer

post-hoc; Fig 3F).

Fig 2. Effect of neurodegeneration on network dynamics. (A) Network firing rate was significantly reduced after 15% injury and continued to decline with

further damage. (B) CoV ISI increased with higher levels of damage (60% and beyond). (C) Representative raster plots before and after 50% injury. (D,E)

Network oscillation frequency and magnitude changed significantly from baseline at 5% injury. Oscillations were not consistently present in simulations with

greater than 70% injury, demarked by the vertical dashed line. (F) Random neurodegeneration did not significantly impact oscillation FWHM.

https://doi.org/10.1371/journal.pone.0234749.g002
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After observing that spike-timing-dependent plasticity introduced resilience to damage, we

next explored if there were specific connectivity features of individual neurons that influenced

or explained part of this resilience. For each neuron in an undamaged network, we computed

Fig 3. Role of plasticity in network recovery. (A) Four hours of recovery with STDP fully restored neuron activity back to baseline up to 60% damage. (B)

With STDP, CoV ISI differed significantly from injury alone in the range of 45–80% damage. (C) Raster plots after 50% neurodegeneration and subsequent

STDP recovery. (D,E) Network oscillation frequency and magnitude recovered significantly at moderate levels of damage (two sample t-test with Bonferroni

correction for multiple comparisons). These changes were not sufficient to return to baseline, but partially restored function. Dotted vertical line at 70% and

75% injury denote the last injury that all simulations contained oscillations in pre- and post-plasticity simulations, respectively. (F) FWHM changes after

plasticity were significantly different from baseline and significantly different from immediately post-injury in the range of 40–70% injury.

https://doi.org/10.1371/journal.pone.0234749.g003
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a neuron connectivity index as the normalized difference of total synaptic input strength and

the total output strength. This neuron-connectivity index correlated with the average neuronal

firing rate; neurons with high index showed higher firing rates than neurons with low index

did (Fig 4A). The relationship between input/output strength and firing rate was stable while

the synaptic weights adjusted via STDP over 4 simulation hours. In addition, these relation-

ships did not change across a broad range of neuronal network parameters that included syn-

aptic strength, neuron parameters (a-d) that could change neuronal type [31], and connection

number among neurons in the network.

We then sought to find if either the initiation or termination of oscillations was related to

neuronal activity and, in turn, connectivity strength. Using our definition of the beginning

and end of an oscillation (see Methods; representative oscillation appears in Fig 4B and 4C),

we divided an oscillation period into quintiles. In general, excitatory neurons with low inputs

relative to their outputs (i.e., low index) fired primarily during the initiation period of an oscil-

lation, while high input strength excitatory neurons fired near the peak of an oscillation and

activated inhibitory neurons to arrest the oscillation. The average firing rate of excitatory neu-

rons within each of the first four quintiles significantly increased, while the firing rate signifi-

cantly decreased in the fifth quintile (One-way ANOVA with Tukey Kramer post-hoc; p<

.001; Fig 4D). In comparison, we could not identify any dependence on firing time and oscilla-

tion period for inhibitory neurons (Fig 4D). Excitatory neurons most commonly fired during

Fig 4. Activity-dependent functional roles of neurons. (A) After initial settling, networks developed structure-function relationships. We defined the neuron-

connectivity index as the difference between input and output strengths normalized to total strength. Firing rate was significantly correlated with neuron-connectivity

index. (B) To test the roles of neurons with different activity profiles in oscillations, we divided each oscillation into equal quintiles centered around the peak activation

period. The labels and dashed lines correspond to those in panel C. We then tracked when each neuron fired within the oscillation. (C) Low index neurons tended to fire

early in network oscillations, suggesting a role in oscillation initiation. High index neurons conversely fired at the peak of the oscillation and activated downstream

inhibitory circuitry to stop oscillatory behavior. (D) Low activity excitatory neurons were more likely to be active early in oscillations. Later stages showed increased

activation of highly active excitatory neurons. Inhibitory neurons showed no activity dependence in their firing time within oscillations. (E-F) Excitatory neurons had

increased activation to peak oscillation magnitude, with decreasing activation after the peak. Inhibitory neurons had delayed activation, primarily firing at peak or late in

the oscillation.

https://doi.org/10.1371/journal.pone.0234749.g004
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the peak of the oscillation, decreasing on both sides of peak (Fig 4E). Inhibitory neurons had a

preference to fire later in the oscillation, peaking between the 3rd and 4th quintile (Fig 4E).

Together, these results indicate that the initiation of an oscillation corresponds with the activa-

tion of excitatory neurons with low firing rates, while the termination of the oscillation begins

with the simultaneous recruitment of excitatory neurons with high firing rates and a signifi-

cant fraction of the inhibitory neurons.

After observing differences in activation timing between excitatory and inhibitory neurons

in the representative cortical circuit, we investigated how changing the excitatory/inhibitory

(E/I) balance of the baseline network affected network activity, and in particular, when neu-

rons spiked within each oscillation. To adjust the E/I composition of our networks, we seeded

networks with a range of 65% to 95% excitatory neurons and compared these to the baseline

network of 80% excitatory neurons. As expected for networks with more excitatory neurons,

we found that the overall firing rate increased. With increasing proportion of excitatory neu-

rons, we also found that the frequency of oscillations increased while the average oscillation

width, or duration, decreased (Fig 5A). As the percentage of excitatory neurons in the network

grew, the fraction of excitatory neuron spiking increased at the peak of oscillations, decreased

at the beginning, and most sharply decreased at the end of oscillations (Fig 5C). Opposing

shifts in the fraction of excitatory spiking were observed for networks with a low proportion of

excitatory neurons (Fig 5C). Specifically, a larger fraction of spikes occurred at the beginning

of the oscillation. For inhibitory neurons, increasing excitatory neuron composition in the net-

work decreased the number of spikes before the oscillation peak and modestly increased it

after the oscillation peak (Fig 5C). We found that the neuron-connectivity index (defined in

Fig 4A) correlated with activity rate regardless of the E/I composition of the networks tested

(Pearson’s correlation coefficient; r>0.7 and p<0.001 for all). The gap between the activity

rates of the highest and lowest index neurons grew as the percentage of excitatory neurons in

the network increased (Fig 5B). These results suggest networks comprised of more excitatory

neurons exhibit shorter, more frequent oscillations, a likely result of two reductions in activity:

excitatory neurons at the end of each oscillation (ending oscillations more quickly) and inhibi-

tory neurons at the start of each oscillation (allowing oscillations to start more often).

Since excitatory neurons with specific connectivity and activity patterns correlated with oscilla-

tion dynamics, we next considered if the targeted deletion of either activity type (low firing rate,

LFR, or high firing rate, HFR) would alter the neural circuit dynamics. Using the random deletion

of neurons as a comparison, we explored the change in functional network characteristics that

would occur if we progressively deleted the neurons with the lowest average activity. With this

strategy, we found that average activity rate would significantly decrease when damage exceeded

5% of the network (Fig 6A and 6B). Similar to random deletion, less damage was required to sig-

nificantly change oscillation frequency (Fig 6C; damage> 5%) than activity rate. The deletion of

the lowest firing rate neurons additionally led to significant change in the average width of an

oscillation (Fig 6E). Plasticity returned the average activity in the network to baseline up to 15%

damage; beyond this level, plasticity did improve average firing rate up to 90% injury (Fig 6A). In

comparison, plasticity improved the oscillation frequency (and magnitude) over a range of injury

levels (10–65% and 5–55% respectively), but it did not reach baseline levels.

In contrast to these results, the progressive deletion of neurons with the highest activity rate

did not significantly change the overall average activity of the network until more than 20% of

neurons were removed (Fig 7A and 7B). Removing the neurons with highest activity led to a

progressive decrease in oscillation frequency that was significantly different from deleting the

same fraction of low firing rate neurons (t-test with Bonferroni correction for multiple com-

parisons; p< .001; Figs 6C & 7C). Unlike the random deletion of neurons, the width of oscilla-

tions increased significantly over a broad injury range (15–55%; Fig 7E). While the oscillation

PLOS ONE Neurodegeneration and oscillation dynamics in neural networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0234749 September 23, 2020 10 / 21

https://doi.org/10.1371/journal.pone.0234749


frequency and/or magnitude changed with this injury approach, plasticity only modestly

affected the oscillation frequency, magnitude, and average width at higher damage levels. (Fig

7C–7E).

To summarize the differences between deleting low vs. high firing rate neurons, removing

low activity neurons produced nearly immediate changes in both activity and oscillation prop-

erties; however, these networks exhibited partial recovery to baseline after plasticity. Removing

high activity neurons did not immediately reduce the network firing rate, but these networks

did not show much recovery with STDP. Importantly, the mechanism of STDP is the same in

both cases. The only difference was the subset of neurons which was removed, so any differ-

ences in recovery were due to the topological properties of those removed neurons. Our results

show a greater potential for STDP-dependent recovery when LFR neurons were removed than

when HFR neurons were removed.

Fig 5. Changes in excitatory/inhibitory balance affect network dynamics. (A) Increasing the percentage of

excitatory neurons in the network increased firing rate, oscillation frequency, and oscillation magnitude. In contrast,

oscillation FWHM decreased with a higher proportion of excitatory neurons. All network parameters are normalized

to the baseline (80% excitatory to 20% inhibitory) network. (B) The difference between average firing rate of neurons

with the highest and lowest index values widened as the percentage of excitatory neurons increased. (C) As the

percentage of excitatory neurons increased, the fraction of excitatory neuron spiking increased at oscillation peak and

decreased at oscillation start and end, with most prominent changes occurring at the end of oscillations. With a lower

percentage of excitatory neurons, opposite changes occurred with higher fractions of excitatory neuron spiking at the

start and end of oscillations. As the proportion of excitatory neurons increased, the fraction of inhibitory neuron

spiking decreased at start and increased at end of oscillation, with most prominent changes occurring at the start of

oscillations. All spike fractions were normalized to the baseline (80% excitatory) network.

https://doi.org/10.1371/journal.pone.0234749.g005
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Discussion

Here, we modeled the effects of neurodegeneration on the functional dynamics of neural cir-

cuitry. We utilized an established spiking neural network model to investigate how damage

and plasticity impact network firing and oscillatory behavior. In addition to establishing how

unique connectivity patterns of neurons contribute to the development of oscillations, we

Fig 6. Effect of deleting relatively inactive neurons is partially recovered with plasticity. (A) Representative raster plots before injury, at 50% low firing rate

(LFR) excitatory neuron injury, and after network restructuring with STDP. (B) LFR damage produced a rapid decline to baseline firing after injury that

significantly recovered with STDP. (C,D) This restoration was primarily due to a recovery of network oscillation frequency and magnitude. (E) Changes in

oscillation width occurred relative to baseline, primarily following damage exceeding the threshold of full firing rate restoration.

https://doi.org/10.1371/journal.pone.0234749.g006

Fig 7. Removing highly active neurons predominantly alters oscillation dynamics. (A) Raster plots before injury, at 50% high firing rate (HFR) excitatory

neuron injury, and after network restructuring with STDP. (B) Network activity did not significantly vary from baseline after HFR neurodegeneration. (C-D)

Oscillation frequency and magnitude after plasticity were significantly different at the same injury level at higher levels of injury. (E) Oscillation width

increased above baseline levels after damage and was maintained following restructuring with STDP.

https://doi.org/10.1371/journal.pone.0234749.g007
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show how those activity patterns are affected by E/I balance in the network. Further, we dem-

onstrate that neurodegeneration, regardless of whether it was random or based on neuronal

firing rate, significantly decreased network activity and oscillation dynamics. For all types of

neurodegeneration, activity was significantly restored with spike-timing-dependent plasticity.

Deleting highly active neurons led to a marked increase in oscillation duration, while deleting

neurons with low activity reduced the initiation of oscillations without decreasing their fre-

quency. These results suggest that the degeneration or inactivation of specific neuron activity

profiles can differentially affect oscillation dynamics of neuronal circuits.

We used several simplifying assumptions to examine the potential impact of neurodegen-

eration. First, we use generalized topologies and neuron spiking behaviors of cortical neurons

based on simplified rules developed from in vivo observations [30–34]. We recognize that neu-

rons within specific brain regions can vary greatly in their connectivity preferences [55, 56],

spiking behavior [57], and functional plasticity properties [51]; therefore, some of our observa-

tions on neuronal degeneration may not apply universally to all brain regions. We did explore

whether our observations were influenced by different distance-dependent connection algo-

rithms and found that the general decline in activity and the restorative effect of plasticity did

not depend on the initial spatial connections in the network. We also appreciate that there

have been documented forms of inhibitory STDP [51, 58–60] outside the classical excitatory-

excitatory implementation we used in this work. It would be worth exploring the effect of

these algorithms on synapses between more specific neuron models. Since inhibitory STDP

characteristics vary considerably based on the cell type, it would be important to first identify a

key brain region and cell types of interest. Although we anticipate that our general findings

could inform predictions for networks of more complex, region-specific topologies, many of

the regions commonly damaged in TBI (e.g., hippocampus, thalamus, and cingulate [52, 53])

lack clear estimates of neuronal connectivity. Once available, we envision creating specific

computational network models to assess how dynamics differ with deletion across these spe-

cific regions.

Our second main limitation is that we used the Izhikevich integrate-and-fire neuron model

to approximate neuron activity, which may not fully represent the complexity of in vivo cir-

cuitry. Furthermore, there are additional receptors beyond the fast-decaying AMPA and

GABAA receptors used to model synaptic activity here, and other slow-decaying receptors

(e.g., GABAB, NMDA) have longer time constants [32, 36]. These additional receptors may

alter action potential timing at the margins, but the parameters of the neuron model were cho-

sen to accurately represent spiking behavior for these generic neurons given the currents we

implemented. Since we were interested in evaluating network activity and oscillations, the

most salient feature of our chosen neuron model was accurate spike timing. Because the Izhi-

kevich model has been thoroughly validated on this feature for a variety of neuron spiking

behaviors [31, 61–63], this model represents in vivo neural activity for the metrics we utilized

in this study. Another neuron model would likely be a better choice for exploring detailed

intracellular responses to injury. For instance, a multicompartment model would enable analy-

sis of the dendritic response. Extending the current work into a more computationally com-

plex neuron model with higher-order biological features (reviewed in [62]) could provide

additional information into the timing of activation and synaptic inputs across an individual

neuron [64]. However, these changes would likely affect all neurons in the network similarly

and would not significantly impact the overall estimates of activity and our main findings.

Finally, we considered whether the broad distribution of neuronal types employed in larger

scale Izhikevich integrate-and-fire models were important to include in this study. Indeed, in a

limited set of simulations, we found that excitatory neuron type did influence the response to

mechanical trauma, implying that more complex circuits with more excitatory neuronal types
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may lead to more complex patterns of activity after injury. However, without first examining

how more homogeneous circuits remodel in response to trauma, we believed this additional

complexity would prevent one from gaining clear insight into which types of neuronal deletion

would be particularly damaging to circuit dynamics.

In general, our neural activity patterns match the general spiking patterns and network-

wide oscillations in both computational networks of similar size (e.g., [29, 31]) and more com-

plex networks of larger size [32]. One key characteristic we observed in our simulations was

the coordinated activation of a subset of neurons in regular periodic intervals over the entire

simulation period. Again, these waves of neuronal activation are distinct from a near simulta-

neous activation or bursting of the network that can appear in some studies [29]. These oscilla-

tions of neuronal activity, where 10–15% of the network was activated, were the first to show a

significant decrease in oscillation frequency after neurons were deleted from the network.

Although neuron characterization traditionally depends on functional spiking properties of

neurons [65–67], our results show that plasticity is an important mechanism to produce func-

tional diversity. Moreover, our results identified subpopulations of neurons that could either

trigger or suppress these periods of high network activity. To our knowledge, showing that

neurons with low activity rates preferentially activate oscillations in a network has not been

reported in past modeling studies, nor are we aware of past reports showing that neurons with

high firing rates are important for quieting periods of high activity. Together, these data sug-

gested that targeting specific neuronal populations for degeneration would preferentially affect

neuronal dynamics, a prediction we confirmed with subsequent simulations.

The rhythmic oscillations may also have important consequences on the synchronization,

or coherence, of activity across brain regions. Coherence among neuron populations is impor-

tant for attention and memory [68–70], cognitive processes that are commonly affected after

traumatic brain injury. Selective degeneration of low firing rate neurons reduces the likelihood

of initiating an oscillation, in turn lowering coherence with other brain regions downstream of

the injured microcircuit. Therefore, losing this neuronal subpopulation would appear to play a

significant role in information relay across brain regions, an aspect of information processing

that has appeared in network-based studies of TBI [13, 71]. In comparison, losing neurons

with high firing rates would appear to have less consequence on the coordinated oscillations

among regions because these neurons do not affect the emergence of an oscillation and only

slightly lengthen the oscillation duration. However, we cannot completely discount the impact

of losing high firing rate neurons because lengthening a specific oscillation may impede the

propagation of sequential information across nodes in a network. Together, these point to the

possibility for a small number of neurons to play a large role in relaying information, via oscil-

lations, across several interconnected microcircuits.

Our general finding that spike-timing-dependent plasticity (STDP) is a key mechanism to

re-stabilize network dynamics provides a potentially new role for STDP in the injured brain.

As a primary mechanism associated with Hebbian learning, STDP is typically considered as a

mechanism to restructure the synaptic connections in a network after a training stimulus [72,

73]. The return of activity to a damaged network using STDP is reminiscent of how homeo-

static plasticity allows a healthy network to gravitate towards a target activity rate [74]. Inter-

estingly, homeostatic plasticity may play a very different and destabilizing role in networks

after either focal or more diffuse deafferentation of neurons [29], leading these networks into

brief bursts of activity that resemble interictal discharges that appear in posttraumatic epilepsy

[75, 76]. However, this rebalancing of networks with STDP has its limits, as the relative success

of recovering initial dynamics is not complete at the highest injury levels. In light of several

reports showing that one form of plasticity–long-term potentiation (LTP)–is lost after trau-

matic injury in vivo and in vitro [48, 77], our results emphasize the importance of therapeutic
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strategies to help promote plasticity after injury and regain initial network dynamics. Similarly,

given that oscillations can be important to establish coherence among brain regions, steps to

maintain plasticity in an injured network would likely improve network communications in

the traumatically injured brain.

Our results also provide some suggestions on how local damage in the brain may affect

both local and global brain dynamics. Cognitive disruptions from TBI are frequently viewed as

changes in the network structure among regions in the brain (reviewed in [13, 14, 71, 78, 79]).

Commonly, past studies focus on the functional and structural deficits in the connections

among nodes in the network resulting from diffuse axonal injury [52, 71, 80]. With new tech-

niques in medical imaging and network theory, we can begin to understand how changes in

the connectivity between regions can impact higher level cognitive function [81–83]. However,

these approaches rely on maintaining function at the node (microcircuit) level after injury.

Certainly, we know there are regions of the brain that can impart large cognitive deficits sim-

ply with their own malfunction [71, 84]. From the current work, we know that neurodegenera-

tion can impact both network activity and neural oscillations in the node. In combination, our

results suggest that damage to one node (microcircuit) could indirectly influence the coordina-

tion of activity across many connected brain areas.

One method by which local damage could impact coordinated neural activity across a

broad network is through shifts in the balance of excitation and inhibition. Specifically, our

work shows that networks with high excitatory tone developed shorter, more frequent oscilla-

tions than their low excitatory tone counterparts did. This result is supported by the existing

literature and carries important implications in the context of traumatic brain injury. Previous

work indicates the importance of GABAergic inhibition for developing oscillatory rhythms in

cortical circuits [85]. Other studies established that TBI alters E/I balance across different

brain regions as well as via various injury modalities and severities [86–90]. E/I balance could

shift due to selective vulnerability of interneuron subpopulations or due to changes in excit-

atory synaptic transmission. Regardless of the mechanism, our results suggest that changes in

E/I balance post-injury modify the pattern of information generated by that local circuit. This

would transform not only the local signaling within that sub-circuit but also the way the region

communicates with other sub-circuits [91]. More study is required to determine the precise

injury and recovery trajectory of networks with selectively removed inhibitory subpopulations.

Inhibitory tone also is known to vary depending on the brain region as well as species. For

example, in the thalamus alone, the percentage of interneurons varies from 4 to 16% in differ-

ent nuclei of the murine thalamus, with reported values up to 30% in other species [28]. Based

on our analysis of networks with varying percentages of inhibitory neurons, it is important to

accurately represent the balance of excitation and inhibition in the network when assessing the

impact of neurodegeneration on a specific circuit. Given the importance of the hippocampus

in memory and TBI, our lab is working to further study this question within a network model

of the hippocampal circuitry.

It is certainly plausible to explore some of the unique consequences of local neurodegenera-

tion in broader brain networks using oscillator or neural mass models to link structural and

functional networks of the brain [92, 93]. Although these models capture gross behavior of net-

work dynamics, the current formulation of these models lacks the nodal accuracy to determine

how perturbations caused by injury can impact the larger network function. Similar to work

showing how local gamma activity could create biologically realistic BOLD correlations [32],

changes in network oscillation frequency or oscillation width would likely have far-reaching

impact beyond the local network. Particularly important would be examining the implications

of an inconsistent oscillatory rate, as seen in our model, in a connected oscillatory model. To

our knowledge, this feature is not commonly explored in neural mass or oscillator-based
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models. There is evidence to suggest that these models have synchronization properties that are

sensitive to nodal dynamic changes, but oscillators with individually variable frequencies have

yet to be investigated [94, 95]. Similarly, both neural mass and oscillator-based models can

potentially benefit from further analysis of biological plasticity mechanisms to repair damage,

given the role we found for plasticity in stabilizing or practically recovering nodal dynamics.

Overall, this study indicates that neurodegeneration alters population-level activity and net-

work oscillations, with subpopulation-dependent changes to oscillation frequency or duration.

These changes in network dynamics can be significantly recovered with spike-timing-depen-

dent plasticity. We anticipate that future work in brain network dynamics will develop insight

to discriminate between specific patterns of damage that cause long-lasting alterations in brain

dynamics and other patterns of damage that produce temporary changes in neural dynamics.

At a higher level, distinguishing between these two injury patterns can help identify injuries

that could cause lasting cognitive deficits much earlier than currently possible, pointing to an

opportunity to treat and improve outcome in a vulnerable population of TBI survivors.

Supporting information

S1 Fig. Effect of focal neurodegeneration on network dynamics. (A) Network firing rate

decreased significantly after 35% injury and continued to decline with further damage. (B)

CoV ISI increased with higher levels of damage (60% and beyond). (C,D) Network oscillation

frequency and magnitude changed significantly from baseline at 5% injury. Oscillations were

not present in simulations with greater than 80% injury, marked by the vertical dashed line.

(E) Random neurodegeneration did not significantly impact oscillation FWHM until 60%

injury.

(PDF)

S2 Fig. Electrophysiology and spiking behaviors of neurons affect network response to

damage. (A) Networks consisting of RS or IB excitatory neurons had reduced average network

firing rate compared to uninjured baseline networks at 25% damage. Networks with CH excit-

atory neurons responded less to injury and, thus, sustained activity near baseline levels. (B) At

50% damage, networks with RS or IB excitatory neurons showed larger decreases in firing rate.

Networks with chattering neurons remained resilient. Inhibitory neuron subtype did not sig-

nificantly affect the network response to damage.

(PDF)
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