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Mild traumatic brain injury (mTBI) presents a significant health concern
with potential persisting deficits that can last decades. Although a grow-
ing body of literature improves our understanding of the brain network
response and corresponding underlying cellular alterations after injury,
the effects of cellular disruptions on local circuitry after mTBI are poorly
understood. Our group recently reported how mTBI in neuronal net-
works affects the functional wiring of neural circuits and how neuronal
inactivation influences the synchrony of coupled microcircuits. Here, we
utilized a computational neural network model to investigate the circuit-
level effects of N-methyl D-aspartate receptor dysfunction. The initial
increase in activity in injured neurons spreads to downstream neurons,
but this increase was partially reduced by restructuring the network with
spike-timing-dependent plasticity. As a model of network-based learn-
ing, we also investigated how injury alters pattern acquisition, recall,
and maintenance of a conditioned response to stimulus. Although pat-
tern acquisition and maintenance were impaired in injured networks,
the greatest deficits arose in recall of previously trained patterns. These
results demonstrate how one specific mechanism of cellular-level dam-
age in mTBI affects the overall function of a neural network and point to
the importance of reversing cellular-level changes to recover important
properties of learning and memory in a microcircuit.
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68 D. Gabrieli, S. Schumm, N. Vigilante, and D. Meaney

1 Introduction

Over recent years, the number of reported traumatic brain injuries (TBI) re-
quiring medical attention increased 54% from 1.6 million annually in 2006
to 2.5 million in 2014 (Cancelliere, Coronado, Taylor, & Xu, 2017; Taylor, Bell,
Breiding, & Xu, 2017). Reasons for this increase include greater awareness
of the consequences and symptoms of TBI, as well as better detection and
diagnosis criteria (Bazarian et al., 2018; Jeter et al., 2013). Mild TBI (mTBI)
is the most pervasive form of traumatic brain injury, comprising 75% to
80% of emergency room TBI patients (Bazarian et al., 2005; Rutland-Brown,
Langlois, Thomas, & Xi, 2006). While most patients show full recovery, ap-
proximately 15% of mTBI patients experience persistent cognitive deficits
and behavioral changes from even a single injury (DeKosky & Asken, 2017;
Gavett, Stern, & McKee, 2011; Johnson et al., 2013).

The increase in incidence coincides with a growth in studies emphasiz-
ing the importance of understanding subtle differences produced by mTBI,
or concussion (Hawryluk & Manley, 2015; Mullally, 2017). The proximal
event in each mTBI is either a primary impact or impulsive loading con-
dition in which the head accelerates or decelerates quickly and inertial
forces deform the brain tissue. The primary event is followed by acute and
secondary injury sequelae, which range from early synaptic changes and
metabolic effects to persisting inflammation (Kumar & Loane, 2012). One
acute synaptic change is altered conductive properties of the N-methyl D-
aspartate receptor (NMDAR), an ionotropic glutamate receptor (Paoletti,
Bellone, & Zhou, 2013). NMDARs comprise several subunits that give rise
to the functional character of individual receptors (Paoletti et al., 2013). In
the adult brain, the two most important subunits are GluN2A and GluN2B,
which are specifically associated with neurological pathologies (Paoletti
et al., 2013).

In the context of TBI, initial studies showed how NMDARs responded
to stretch injury by modifying the current-voltage relationship (Zhang, Rzi-
galinski, Ellis, & Satin, 1996). Other work has confirmed that the GluN2B
subunit of the NMDAR confers this mechanical sensitivity, at least in part
through the coupling of the receptor to the neuronal cytoskeleton (Singh
et al., 2012). The primary consequence of the mechanical forces during im-
pact is altering the binding efficiency of the internal magnesium ion within
the channel pore of the NMDAR. As a result, the partial loss of the Mg2+

block after mechanical injury leads to an acute phase where ion flux through
the NMDARs is enhanced, creating a condition where normal balance in
signaling across the receptor is altered (Zhang et al., 1996). In the most
damaging form, sustained firing patterns within neurons could lead to ex-
cess glutamatergic-receptor activation, cell death due to excitotoxicity, or
overactivation of the neuron (Lau & Tymianski, 2010; Werner & Engelhard,
2007).
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NMDAR Dysfunction Impairs Memory in Neural Networks 69

Although this is a known injury mechanism of mTBI, how NMDAR
damage contributes to functional impairments in neural circuitry is not well
defined. By isolating individual cellular mechanisms and measuring prop-
erties that are inaccessible experimentally, computational methods provide
an opportunity to examine many consequences of traumatic injury. Neural
networks use simplified neuron activity models to assess the interactions
that lead to higher-level processing (Izhikevich, 2004, 2006). Recent stud-
ies have analyzed the role that plasticity mechanisms may have after deaf-
ferentation, leading to waves of activity resembling posttraumatic epilepsy
and the effect of neurodegeneration on rhythmic oscillations (Schumm,
Gabrieli, & Meaney, 2020; Volman, Bazhenov, & Sejnowski, 2011). Col-
lectively, these studies examined higher-level, dynamical descriptions of
network activity but did not explore changes in the learning capacity of
the network. Other work has found that biological neural networks are dy-
namic and respond to new stimuli by altering their connectivity pattern
(Buzsáki & Draguhn, 2004; Ismail, Fatemi, & Johnston, 2017; Rajasethupa-
thy, Ferenczi, & Deisseroth, 2016). Learning new activation patterns is a key
feature of such networks, yet it remains relatively unexplored in models
of the effects of disease on microcircuit function. Although NMDAR-
dependent mechanisms of modifying neural circuitry have been charac-
terized, the effect of alterations to NMDAR properties on developing new
patterns in networks remains unclear (Bliss & Collingridge, 1993; Citri &
Malenka, 2008; Kleim & Jones, 2008; Turrigiano, 2012). One group assessed
pattern separation in a model of dendritic atrophy in the dentate gyrus, but
this model did not include plasticity-dependent remodeling of the circuitry
(Chavlis, Petrantonakis, & Poirazi, 2017). Since NMDARs are both impor-
tant for memory and susceptible to traumatic injury, learning in networks
is likely impaired after injury (Paoletti et al., 2013; Ruppin & Reggia, 1995).
However, these effects have not been systematically investigated in compu-
tational neural networks previously.

Here we used a model of neural activity to determine the effects of NM-
DAR injury on circuit function and structure. We simulate the effects of
mTBI by incorporating pathophysiological properties of the NMDAR—
namely, the partial loss of the magnesium receptor block. We show that
mild injury immediately increases activation of injured neurons, an effect
that propagates to nearby uninjured neurons in the circuit. Spike-timing-
dependent plasticity mitigates the functional effects of damage by isolating
injured circuitry from the rest of the network. Finally, we assessed the ability
of networks to acquire and recall conditioned responses to a stimulus after
injury. Injury after training was the most detrimental to learning, causing
large deficits in the ability to recall trained patterns. Mild traumatic damage
during training or extinction also impaired network capacity to acquire new
patterns or retain learned responses, respectively. In total, we show that the
integrity of the NMDAR is important to the baseline function and learning
capacities of small-scale neural circuits.
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70 D. Gabrieli, S. Schumm, N. Vigilante, and D. Meaney

2 Materials and Methods

2.1 Computational Model. The neuron and network models used in
this study are similar to those used in Schumm et al. (2020). Briefly, 10 net-
works of 1000 Izhikevich integrate-and-fire neurons followed a system of
ordinary differential equations to determine membrane potential from in-
coming current (Izhikevich, 2003; Izhikevich & Edelman, 2008):

v ′ = .04v2 + 5v + 140 − u + I,

u′ = a(bv − u),

if v ≥ 30 mV, then

{
v = c

u = u + d
,

where v represents the membrane potential in millivolts and u is the mem-
brane recovery variable. Parameters a, b, c, and d were set to make the
network 80% regular-spiking excitatory neurons and 20% low-threshold,
fast-spiking inhibitory neurons (see Table 1 in the appendix and Figure 1A).
Neurons were placed on the surface of a unit sphere and randomly con-
nected at 10% density (see Figure 1B), as in previous studies (Wiles et al.,
2017). Networks were stimulated with noise based on a gamma distribution
(k = 2, θ = 1/2. A description of the probability density function follows:

f (x) = xk−1e
−x
θ

θ k(k − 1)!
,

where k is the shape parameter and θ is the scale parameter. The noise func-
tion is applied at a frequency of 1 Hz and amplitude of 14 mV/msec to pro-
vide random tonic stimulation to the network. Neurons had desensitization
to repeated stimuli and conduction delays consistent with in vivo studies
(Beierlein, Gibson, & Connors, 2003; Izhikevich & Edelman, 2008). Spike-
timing-dependent plasticity (STDP) was implemented as in Song, Miller,
and Abbott (2000) as an adjustment of the synaptic strength based on the
relative spike timing of the received spike from the presynaptic neuron and
activation of the postsynaptic action potential:

�w(w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A+(w) exp
(

− tpost − tpre

τ

)
if tpost − tpre > 0

A−(w) exp
(

− tpost − tpre

τ

)
if tpost − tpre ≤ 0

,

where w is the synaptic weight of the connection between the pre-
and postsynaptic neurons, A+ and A determine the maximum synaptic
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NMDAR Dysfunction Impairs Memory in Neural Networks 71

Figure 1: Modeling the effect of trauma-induced alterations of NMDAR phys-
iology in neural networks. (A) Model parameters were tuned to represent
regular-spiking excitatory neurons and fast-spiking, low-threshold inhibitory
neurons. This is the response of model neurons to 4 mV/msec DC current.
(B) To avoid position bias, neurons were randomly placed on the surface of
a sphere and connected into a 1000-node network. (C) We modeled trauma-
induced changes in NMDAR function using published data on the I-V rela-
tionship for mechanically injured neurons. (D) Change in voltage over time
for AMPA, NMDAR-GluN2A, NMDAR-GluN2B, and injured NMDAR-N2B at
resting membrane potential shows AMPA receptors exceed NMDAR instanta-
neous voltage changes even after injury. (E) The representative change in charge
transfer during an actional potential event demonstrates that charge transfer
of injured NMDAR-GluN2B greatly exceeds that of AMPA receptors over the
course of activation.
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modification, tpre and tpost are the timing of the pre- and postsynaptic ac-
tivations, and τ is the plasticity time constant of 20 ms. As in Song et al.
(2000), STDP was biased slightly toward depression as opposed to poten-
tiation with A−/A+ = 1.05. The peak potentiation (A+) was set to 0.01 of
the maximum AMPA synaptic strength. STDP was restricted to excitatory-
excitatory synapses in the network. Networks were seeded with a bimodal
distribution of connection weights and allowed to run for 2 hours to achieve
a stable distribution of synaptic weights. (See Figure S1 in the supplemen-
tal material for synaptic weight distributions.) A simulation time of 2 hours
was chosen because the networks had achieved 98% 4 by this time. (See
Figure S2 in the supplemental material.)

2.2 NMDAR Modeling and Simulating Injury. Excitatory synapses
were modeled as having AMPA, di-heteromeric GluN2A-containing NM-
DAR, and di-heteromeric GluN2B-containing NMDAR. NMDAR channel
conductance was modeled using equations from Jahr and Stevens (1990a,
1990b),

g(V ) = 1

1 + exp(−0.062V )C
3.57

,

where g is the gating function, V is the membrane potential (mV), and C is
the extracellular magnesium concentration (mM). NMDAR receptors show
longer channel kinetics relative to AMPA receptors (TNMDAR-N2A = 22 msec,
TNMDAR-N2B = 110 msec, TAMPA = 5 msec). We used values similar to those
reported in the literature (Izhikevich, 2003; Izhikevich & Edelman, 2008;
Singh, Hockenberry, Tiruvadi, & Meaney, 2011; Vicini et al., 1998).

Stretch injury in vitro alters the Mg2+ block of the mechanically sensitive
NMDAR-NR2B receptors (Patel, Ventre, Geddes-Klein, Singh, & Meaney,
2014; Singh et al., 2012; Zhang et al., 1996). To model this reduced affinity, we
lowered the local concentration of Mg2+ ions in the dendrites of injured ex-
citatory neurons, mimicking experimental data of stretch injury (Patel et al.,
2014; Zhang et al., 1996). Our initial and injured concentrations were 2 mM
and 0.01 mM for “normal” and “injured” receptors, respectively (Jahr &
Stevens, 1990b; Zhang et al., 1996). This altered the I-V relationship of these
receptors from baseline (see Figure 1C). AMPA receptors retained greater
peak amplitude over both NMDAR subtypes, but injury elevated the over-
all response of GluN2B-containing NMDAR (see Figure 1D). This resulted
in an NMDAR-N2B dominant charge transfer, the discrete integral of the
ionic flux through the receptor, at injured synapses (see Figure 1E).

2.3 Fundamental Functional and Structural Analysis. To assess the im-
pact of NMDAR-mediated damage to network activity, we measured the
average neuron firing rate over 6 minute simulation periods, computed for
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NMDAR Dysfunction Impairs Memory in Neural Networks 73

all neurons in the network. To assess network structure, the aggregate input
and output strengths were computed for each neuron and normalized by
the maximum for each.

2.4 Training and Testing a Conditioned Response to External Stim-
ulation. The ability to learn a response from repeated stimulus is a key
function of biological neuronal networks. While the specific ways in which
networks develop and store complex patterns are unclear, we have some
indications about the potential outcomes and mechanisms for developing
these patterns. STDP has long been touted as the primary mechanism for
Hebbian learning, where paired responses increase the strength of the un-
derling connection (Bi & Poo, 1998; Song et al., 2000). As a result, output
neurons develop a more consistent response given a specific stimulus. There
are also data that suggest how neurons learn to respond to a given stimu-
lus. For instance, neurons of the visual cortex develop increased firing to
patterns in the visual field, and auditory cortex neurons develop similar
responses to tonal patterns (Bracci, Ritchie, & de Beeck, 2017; Connor &
Knierim, 2017; Plack, Barker, & Hall, 2014; Victor, Conte, & Chubb, 2017).
We took these two known features of learning to develop an unsupervised
learning paradigm in which stimulation causes a learned increase in down-
stream activity. Although researchers have used many methods to under-
stand potential learning mechanisms in the brain, our method makes no
assumptions about the underlying circuitry and operates at the neuron
scale (Izhikevich, 2006; Moser, Rowland, & Moser, 2015; Rebola, Carta, &
Mulle, 2017; Richards & Frankland, 2017; Rolls, 2018). It is also computa-
tionally simplistic enough to apply and assess rapidly in networks of dif-
ferent topologies, unlike past algorithms (Izhikevich, 2006).

To summarize, our overall learning paradigm consisted of several steps.
During training, the network acquired a conditioned response to a pat-
terned input. To test recall, we recorded the response to the input stimulus
and compared it to baseline (before training). To evaluate the maintenance
of trained patterns, we considered an extinction protocol during which the
network adapted with random noise and no training stimulus. We then
tested again to determine whether the conditioned response remained. We
consider each of these steps in further detail next.

2.4.1 Training. To develop a conditioned response to periodic input
within our networks, we initialized each network and allowed the con-
nectivity and activity to stabilize with STDP and random 1 Hz gamma-
distributed (k = 2, θ = 1/2) external noise for 2 hours. We then selected a
group of 10 excitatory input neurons that are stimulated simultaneously at
1 Hz in addition to background noisy firing. We primarily used this single-
input protocol, but in a subset of simulations, we also tested multiple inputs
by training the network on three unique patterns interleaved with 333 msec
between each stimulation. The simulation ran for an additional 2 hours to
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74 D. Gabrieli, S. Schumm, N. Vigilante, and D. Meaney

let the network connectivity ingrain learned responses to the exogenous
stimulation. There was no effect of altering the number of input neurons on
our results.

2.4.2 Testing. After training with the periodic stimulus, we assessed
whether neurons in the network had developed conditioned responses. For
this testing period, we used the network topology after training and again
applied the 1 Hz stimulation to the same input neurons for 360 indepen-
dent trials (6 minutes of simulation activity). We tracked the 100 millisecond
(msec) period of activity after each stimulus trial to capture both on-target
and off-target responses of the network to stimulation. We normalized the
conditioned activity by the initial response to input-neuron stimulation be-
fore training. This normalization accounted for neurons that had generally
high activity rates that were not a result of training. Because this approach is
unsupervised, there were no assumptions about the amount of activation
or the specific neurons that would respond to stimulation. Therefore, we
defined the neurons with the greatest increase in activity after training as
output neurons, accounting for 4% of the overall excitatory network. The
output neurons constitute the on-target response of the network to stim-
ulation. All other excitatory neurons were categorized as a nonresponsive
hidden layer, where a response to stimulation is considered off-target (see
Figure 4A). Output metrics included the relative change of output and
hidden-layer neuron activation in the training epoch. We also measured the
signal-to-noise ratio as the ratio of the on-target response (i.e., output neu-
ron activation) to the off-target response (i.e., hidden-layer activation).

2.4.3 Extinction. After training, we wanted to assess maintenance of
learned responses in the absence of the training stimulus. While the
previous testing protocol indicates whether we were able to encode and re-
trieve a response to input stimulation, it does not determine if that learned
response depends on constant application of the training stimulus or is ro-
bust and persistent. To test whether the trained networks retain the condi-
tioned input-output relationship after training, we simulated an extinction
period by running an additional 2 hours of simulation time with 1 Hz ran-
dom noise but without the training stimulus. After the extinction period,
we tested the networks again with 1 Hz stimulation to input neurons and
compared output and hidden-layer activity relative to baseline.

2.5 Injury during Learning: Testing Pattern Recall, Acquisition, and
Maintenance. To test the effect of injury on the ability of the network to en-
code, recall, and maintain a conditioned response, we implemented injury
at specific steps in the learning paradigm. Injury occurred in the hidden-
layer neurons (not input or output neurons) by altering the Mg2+ concen-
tration in the incoming synaptic connections of selected cells. We limited
injury to hidden-layer neurons to investigate signal propagation through
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NMDAR Dysfunction Impairs Memory in Neural Networks 75

the hidden layer and mitigate the confounding effects of directly damaging
output neurons. We tested two levels of injury (25% or 50% of hidden-layer
neurons) as compared to control (0% injury).

• Injury paradigm 1: Injury during testing to evaluate recall. To evaluate
the ability of the network to recall previously learned patterns, we
trained the network as in the initial learning paradigm but injured
cells during assessment. (See Figure 4.)

• Injury paradigm 2: Injury during training to evaluate acquisition. To test
the pattern acquisition of damaged networks, we injured and trained
them with input stimulation for 2 hours. To test, we replaced dam-
aged receptors, restoring all cells to healthy function. While such a
manipulation is not possible in vitro or in vivo, we sought to isolate
the effect of injury during training only. (See Figure 6.)

• Injury paradigm 3: Injury during extinction to evaluate maintenance. We
assessed the ability of the network to retain trained patterns after a
period of extinction without stimulus. We injured the networks after
training and assessed any alterations in the total recall of the network
after 2 hours. (See Figure 7.)

2.6 Statistical Analysis and Tools. Statistical testing included one-way
ANOVA with Tukey-Kramer post hoc for comparison between injury lev-
els or testing periods of the learning paradigm. For comparison between in-
jured and uninjured subpopulations of our networks for structural network
analysis, we used two-sample t-tests with Bonferroni correction for multi-
ple comparisons. The model was implemented in the C++ programming
language with network setup and analysis performed in Matlab (Math-
Works). All simulations and analysis were conducted on an AMD Ryzen
7 1700X processor with 32 GB of system memory.

3 Results

3.1 Effect of NMDAR Injury on Network Dynamics. In response to
mechanical trauma, the NMDAR in neurons exhibits a partial loss of the
magnesium block (Patel et al., 2014; Zhang et al., 1996). Accordingly, we
simulated the effect of mechanical trauma with a partial loss of this receptor
Mg2+ block in a fraction of the neurons in the network. As expected, the
network activity rate immediately increased when either 25% or 50% of the
excitatory neurons in the network were injured (see Figure 2).

We next isolated each population within our network (excitatory unin-
jured, excitatory injured, and inhibitory) and assessed activity after injury.
A higher activity rate was associated with injured neurons (69.41 ± 9.89 Hz
and 103.28 ± 3.85 Hz, at 25% and 50% injury levels) relative to the unin-
jured excitatory neurons (16.64 ± 2.64 Hz and 24.92 ± 1.69 Hz, at 25% and
50% injury). This difference is apparent in the raster plots of raw activity
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76 D. Gabrieli, S. Schumm, N. Vigilante, and D. Meaney

Figure 2: Trauma-induced changes in NMDAR function induce acute hyperac-
tivity, which is mitigated by STDP. (A) Representative raster plots before injury,
after 25% injury, and then following 2 hours of recovery with spike-timing-
dependent plasticity (STDP). Raster plots are grouped to show differences
between injured and uninjured excitatory neurons following injury. (B) After
injury, firing rate significantly increased for all subtypes of neurons, with in-
jured excitatory neurons showing the largest increase. After 2 hours of recovery
with STDP, firing rate significantly decreased for all neuron subtypes (colored
bars) as compared to their activity immediately after injury (white bars). Only
the uninjured excitatory neurons in 50% injured networks returned to their pre-
injury firing rate. Asterisks indicate significance (p < 0.001).
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NMDAR Dysfunction Impairs Memory in Neural Networks 77

(see Figure 2A). Due to recurrent connectivity with the injured subpopu-
lation, both uninjured excitatory and inhibitory populations also had ele-
vated firing rates (see Figure 2B). That is, the increased firing of excitatory
neurons with damaged NMDAR elevates the excitatory drive onto both un-
injured excitatory and inhibitory neurons, thereby increasing the firing rates
of those populations as well.

After STDP for 2 hours after injury, all neuronal populations showed
a significant reduction in their average firing rates at both injury levels
(69.41 ± 9.89 Hz and 103.28 ± 3.85 Hz to 49.74 ± 2.59 Hz and 64.33 ± 2.48 Hz,
p < 0.001 for injured excitatory neurons, 16.64 ± 2.64 Hz and 24.92 ± 1.69 Hz
to 6.87 ± 0.34 Hz and 5.34 ± 0.39 Hz, p < 0.001 for uninjured excitatory
neurons, and 23.73 Hz ± 1.67 and 32.55 ± 0.67 Hz to 16.51 ± 0.30 Hz and
23.50 ± 0.27 Hz, p < 0.001 for inhibitory neurons at 25% and 50% injury,
respectively). The decrease was most apparent in the injured population,
where reweighting reduced average firing rate by up to 40% at the high-
est damage level. Shifts in synaptic weights between injured and uninjured
populations likely drives the change in activity of injured excitatory neu-
rons. (See Figure S3 in the supplemental material.) Uniquely, the firing rate
of uninjured excitatory neurons was not significantly different than base-
line at 50% injury (5.34 ± 0.39 Hz versus 5.38 ± 0.24 Hz, p = 0.60). This was
not the case for other populations. Of note, activity in inhibitory neurons
decreased, but not to the extent of the other populations (see Figure 2B).

3.2 NMDAR Dysfunction Alters Network Structure after Injury. Af-
ter characterizing the network activity post-injury, we determined whether
structural differences appeared in injured neurons. The injured and un-
injured populations were not significantly different from each other ini-
tially, as the injured neurons were selected randomly from the total pool
of excitatory neurons in the network (see Figure 3B). However, after plas-
ticity, both groups were significantly different from each other and from
their initial baseline connectivity. Injured neurons, which receive more to-
tal charge from upstream action potentials, increased their input strength
and decreased their output strength relative to baseline (0.61 ± 0.12 from
0.51 ± 0.17 and 0.27 ± 0.21 from 0.45 ± 0.28, p < 0.001 for input strength and
output strength, respectively; see Figure 3). Interestingly, uninjured neu-
rons had significantly lower normalized input strength and higher output
strength (0.43 ± 0.17 and 0.56 ± 0.24) relative to baseline (0.49 ± 0.18 and
0.47 ± 0.27; p < 0.001). In general, injured neurons increased their input
strength and decreased their output strength relative to excitatory neurons
prior to injury, while uninjured neurons showed the opposite effect.

3.3 Developing Learned Patterns in Baseline and Injured Neural Net-
works. To this point, we have studied neural networks stimulated with
random thalamic input, per previous studies (Izhikevich, 2003; Izhikevich
& Edelman, 2008; Wiles et al., 2017). However, in vivo neural networks
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Figure 3: Synaptic remodeling after injury significantly changes network struc-
ture. (A) Neurons were characterized by their aggregate input and output
strength, defined as the sum of synaptic input and output strengths, respec-
tively. (B) Injured and uninjured excitatory neurons did not significantly differ
in their input/output strength profiles immediately after injury. (C) After al-
lowing connections to remodel for 2 hours after trauma, injured neurons devel-
oped significantly stronger excitatory inputs and significantly weaker outputs
relative to their uninjured counterparts. Crosses represent the means of the two
excitatory neuron populations.

constantly receive extrinsic stimulation from peripheral sensory neurons.
STDP is one mechanism of Hebbian learning, so we designed a paradigm to
assess the ability of the network to acquire and recall a conditioned response
to a regular stimulus. Our unsupervised approach stimulates a group of
input neurons with a regular patterned input. These input neurons pass
the signal to the rest of the network, which consists of output neurons and
hidden-layer neurons. The output neurons represent the desired, targeted
response, and the remaining neurons comprise the hidden layer, which rep-
resents the off-target response (see Figure 4A). We then compared the re-
sponse of the output and hidden-layer neurons to the stimulus before and
after training.
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NMDAR Dysfunction Impairs Memory in Neural Networks 79

Figure 4: Uninjured networks increase output neuron firing rate in response
to stimulus, but injury impairs recall. (A) Networks were partitioned into in-
put, hidden-layer, and output neurons. Input neurons were stimulated above
the noise input. Output neurons represent the conditioned, on-target response,
and hidden-layer neurons comprise the remaining off-target response. (B) Af-
ter a training period consisting of stimulating input neurons, output neurons
had a significant increase in firing rate, which persisted 2 hours after stimu-
lus removal. The firing rate of hidden-layer neurons was unchanged. (C) By
injuring during the testing phase, this procedure evaluated the impact of in-
jury on network ability to recall learned patterns. The lightning bolt indicates
injury in hidden-layer neurons. (D, E) Output and hidden-layer neurons sig-
nificantly increased their response to stimulus after injury, with hidden-layer
neurons showing the most notable increase. (F) The ratio of the output firing
rate to the hidden-layer firing rate was significantly lower than that of unin-
jured networks and of pretraining baseline, indicating impaired recall.
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In response to stimulating input neurons, output neurons significantly
increased their firing rates. In contrast, there was no significant increase
in relative firing rate in the hidden-layer neurons (1.0 ± 0 versus 0.97 ±
0.04; p = 0.92; see Figure 4B; we report these and all subsequent firing rates
as normalized to that of control networks before stimulation). Networks
adapted without the training stimulus for another 2 hours of simulation
time to examine the persistence of the conditioned output. After this pe-
riod, we tested the firing rate of output neurons under the same stimulus
conditions and found that it significantly decreased. However, their firing
rate still exceeded that of a network without exposure to an extrinsic train-
ing stimulus (1.28 ± 0.11 versus 1.47 ± 0.10 versus 1.0 ± 0; p < 0.001). Across
all conditions, hidden-layer neurons exhibited no significant change in av-
erage firing rate relative to control networks not receiving any stimulation
(0.96 ± 0.04 versus 1.0 ± 0; p = 0.73; see Figure 4B).

After establishing the ability to condition networks with an input stim-
ulation and create a reliable and persistent increase in the firing rate of out-
put neurons, we next considered how traumatic injury affects this process.
We used networks that were conditioned to the input stimulation and ap-
plied an NMDAR-based injury in a fraction of the hidden-layer neurons.
(We used the same approach of reducing the effective Mg2+ concentration
as implemented and analyzed in Figure 2.) Injuring hidden-layer neurons
produced a significant increase in activation of output neurons (2.84 ± 0.42
versus 4.45 ± 0.59 versus. 1.47 ± 0.10; p < 0.001; see Figure 4D), suggest-
ing the network became more sensitive to the input stimulus. However, the
hidden-layer neurons also had a significantly higher firing rate, an effect
that did not occur in uninjured networks (6.71 ± 0.45 versus 16.12 ± 0.56
versus 0.97 ± 0.04; p < 0.001; see Figure 4E). To evaluate whether the out-
put neurons continued to produce a distinct activity pattern, we computed
the ratio of output neuron firing rate to hidden-layer neuron firing rate. We
found the ratio was highest for uninjured networks and significantly lower
for both 25% and 50% injury (1.51 ± 0.06 versus 0.42 ± 0.04 versus 0.28 ±
0.03; p < 0.001; see Figure 4F). This result suggests a loss of the ability to
preserve conditioned output stimulus in injured networks.

For completeness, we also tested whether the network could store and re-
call responses to multiple stimulation patterns. In this subset of simulations,
the network was trained by interleaving three different stimulation patterns
with 333 msec between each pattern. Similar to our results with one pattern,
we found the network can store and recall three unique input-output pat-
terns. The activity rates of on-target responses have similar magnitudes to
that of a single stimulus (see Figure 5A). Furthermore, the groups of output
neurons had only partial overlap (see Figure 5B). This enabled discrimina-
tion among the three input patterns in each network based on the response.
With injury during the recall step, we find that the hidden layer again dom-
inated the activity in the output neurons and even find evidence that target
populations show preferences for incorrect stimuli (see Figures 5C and 5D).
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Figure 5: Recall of multiple trained patterns is inhibited by injury. (A) Networks
were trained on three stimulus patterns above the noise input. Each pattern was
unique and included 10 neurons. Training interleaved the three unique patterns
with 333 msec between each stimulation. Uninjured networks exhibit a specific
response to each trained stimulus within the target output neuronal population
during recall. (B) Output neurons for each stimulus predominantly consisted
of neurons that specifically responded to that unique input pattern. The Venn
diagram depicts the output neuron population overlap between stimulus one
(blue), two (red), and three (gray). (C, D) Similar to the results from a single
trained stimulus, injury within the hidden-layer subpopulation dominates out-
put neuron activation at 25% and 50% injury levels.

Due to the similarity between stimulating single versus multiple patterns,
the remainder of our work focuses on the single-input stimulation protocol.

3.4 Impaired Circuitry-Based Learning after Injury. A second feature
we examined is whether mechanical injury affected the ability to condition
a network. Rather than injuring a network after it was conditioned with an
input stimulation protocol, we first injured the network and then applied
the conditioning stimulus. In this injury paradigm, the hidden layer was
injured to the appropriate level and a training stimulus applied to input
neurons (see Figure 6A). Following the conditioned stimulation of these in-
jured circuits, activation in output neurons at the 25% injury level increased
significantly relative to sham (2.14 ± 0.39 versus 1.47 ± 0.10; p < 0.001; see
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Figure 6: Injury impairs network ability to acquire conditioned responses to
training stimulus. (A) This procedure evaluated the impact of injury on the net-
work’s ability to acquire and learn new responses, with the lightning bolt indi-
cating injury in hidden-layer neurons. (B) Output neurons showed a significant
increase in firing rate at 25% injury but not at 50% injury. (C) In comparison, the
firing rate of hidden-layer neurons increased significantly at both injury levels.
(D) The ratio of the output firing rate to the hidden-layer firing rate was signif-
icantly lower than that of uninjured networks, but it remained higher than that
of untrained networks.

Figure 6B). In comparison, no significant differences occurred between the
higher 50% injury and uninjured networks (1.65 ± 0.22 versus 1.47 ± 0.10;
p= 0.32; see Figure 6B). Similar to our results when injury was applied af-
ter conditioning the network, hidden-layer neurons showed significantly
increased activity rate relative to the sham networks (1.62 ± 0.22 versus
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1.30 ± 0.12 versus 0.97 ± 0.04; p < 0.001; see Figure 6C). However, unlike
the results observed when injury was applied after conditioning the net-
work, adding an injury immediately prior to conditioning a network still
produced a relative increase in the average firing rate of output neurons to
hidden-layer neurons (1.31 ± 0.07 and 1.27 ± 0.08 versus 1.0 ± 0; p < 0.001;
see Figure 6D). Additionally, the relative increase in activity of output neu-
rons was not different between the two injury levels studied (1.31 ± 0.07
versus 1.27 ± 0.08; p = 0.37; see Figure 6D).

A third question we addressed was how injury affects the persistence
of output-neuron response in conditioned networks. After training, we in-
jured neurons and allowed injured networks to adapt over the subsequent
two hours (see Figure 7A). Similar to simulations where the injury occurred
immediately prior to the conditioning stimulus, the output and hidden-
layer neurons showed a significant increase in activity relative to uninjured
networks (1.94 ± 0.11 and 1.59 ± 0.27 versus 1.28 ± 0.38 and 0.96 ± 0.043;
p < 0.001; see Figures 7B and 7C). The ratio of output-neuron activity to
hidden-layer activity was lower after injury than in uninjured networks
(1.33 ± 0.07), but it was not different between injury levels (1.21 ± 0.12 ver-
sus 1.22 ± 0.09; p = 0.99; see Figure 7D).

4 Discussion

In this work, we have assessed the impact of NMDA receptor dysfunction
on circuit structure and function to understand how the learning capac-
ity of neural circuits adapts after mild traumatic injury. Building on past
models of neural dynamics and injury, we assessed functional and struc-
tural changes after injury in randomly activated networks and developed a
learning paradigm to determine how altered activity from injury can inhibit
learning acquisition and recall in the model circuit. Corroborating existing
studies, we find that the partial loss of the magnesium block of NMDARs
after trauma significantly increases the activity of injured neurons and that
this increased activity is transmitted to downstream, uninjured circuitry
(Patel et al., 2014; Zhang et al., 1996). Although STDP mitigates these ac-
tivity changes, there were lasting dynamical differences compared to unin-
jured networks. Finally, injury most affected the ability to recall conditioned
responses, with lesser impairments in pattern acquisition and maintenance
after extinction. Together, these results show that the reported changes in
physiological properties of the NMDAR after mild mechanical injury can
inhibit the proper functioning of network circuitry during the onset of in-
jury and can alter the long-term structure of the network.

This study has three primary limitations: (1) the generalized neuron
model and topology, (2) lack of receptor turnover and replacement mecha-
nisms, and (3) unsupervised learning. We address each in turn.

First, we used a computationally simple, generalized model for both
neurons and topology in our system. Although we made efforts to create
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Figure 7: Traumatic injury weakens network ability to maintain previously
learned patterns after extinction. (A) By injuring during extinction, this pro-
cedure evaluated the impact of injury on network ability to maintain the
previously learned response. The lightning bolt indicates injury in hidden-layer
neurons, and the injury does not carry forward to the testing phase. (B, C) Ex-
tinction alone did not significantly change the firing rate of either output or
hidden-layer neurons, but networks injured during extinction had a signifi-
cantly elevated firing rate in both output and hidden-layer neurons. (D) Ex-
tinction alone did not significantly affect the ratio of the output firing rate to the
hidden-layer firing rate, but this signal-to-noise ratio decreased significantly in
injured networks.

biologically realistic neuron activity and circuit designs, our results may
not be entirely generalizable to unique, specialized systems. The Izhike-
vich neuron model was developed as a computationally efficient, adap-
tive integrate-and-fire model that can reproduce spike timing of a variety
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of neuron types and has been widely used in simulating neural activity
at the network scale (Izhikevich, 2003, 2004; Izhikevich & Edelman, 2008;
Vertes, Alexander-Bloch, & Bullmore, 2014; Vertes & Duke, 2010; Wiles et al.,
2017). This neuron model has also been specifically validated with STDP
(Izhikevich, 2003). For these reasons, we do not believe modifying the neu-
ron model would significantly change the broad conclusions of our work.
There remains an opportunity to rapidly extend our approaches to more
specialized microcircuits, better representing specific areas of the brain.

A second limitation involves NMDAR physiology in that this study did
not incorporate receptor replacement mechanisms. Furthermore, we used
an instantaneous switch for NMDAR injury such that excitatory neurons
had either normal, functional receptors or injured, dysfunctional NDMARs.
Our experimental work demonstrates that mild neuronal injury in vitro
does lead to a rapid change in the conductance properties of the receptor
(Patel et al., 2014; Zhang et al., 1996). Therefore, instantaneous conversion
from normal to pathological NMDARs appears reasonable. Experimental
work also shows a transient change in NMDAR subunits over days fol-
lowing TBI in vivo, suggesting that the replacement of damaged NMDA
receptors occurs gradually over the days following injury (Biegon et al.,
2004). In a subset of simulations not included here, we tested instantaneous
replacement of damaged receptors with healthy ones and found that the
activity returned to baseline after rewiring with STDP. Further research is
necessary to characterize the time course of receptor replacement to better
assess this recovery mechanism in our network model. It is also worth not-
ing that these studies focused on NMDAR damage in excitatory neurons
only; however, inhibitory neurons also have NMDARs (De Marco García,
Karayannis, & Fishell, 2011). It would be interesting to explore NMDAR
injury in inhibitory or mixed populations in future work.

Finally, the third limitation is our unsupervised learning paradigm. The
general approach was to define learning as a trained adaptation of the net-
work following patterned stimulation in a subset of neurons. The network
response was unsupervised, with responsive output neurons selected after
training. This approach ensured that output neurons showed greater re-
sponse to the training stimulus than the hidden-layer neurons did, but it
did not define correct or incorrect responses within the circuitry a priori.
Of course, there are other algorithms to study learning in computational
neural networks. For example, polychronization interrogates the network
topology by stimulating each set of three neurons to determine which are
able to create a polychronous chain of activity (Izhikevich, 2006). Others
have used this methodology to understand the development of specific net-
work topologies and the ability of these networks to retain specific patterns
(Vertes et al., 2014; Vertes & Duke, 2010). However, polychronization as-
sumes particular knowledge about the underlying circuit and the existing
patterns, as well as the ability to resolve them individually. Alternatively,
other studies explored pattern separation within a computational model of
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dentate circuitry (Chavlis et al., 2017), revealing the challenges of resolv-
ing patterns with similar inputs without sparse coding within specialized
cell types (Olshausen & Field, 2004). As we used generalized topologies, we
designed our paradigm without assumptions about the underlying topol-
ogy. Future studies might assess the capacity to develop multiple, separable
output responses in generalized networks.

Our work demonstrates that one primary consequence of trauma-
induced alterations in NMDAR channel conductance is a generalized in-
crease in activity of both injured and uninjured neurons. Moreover, the
relative enhancement of ion flux from GluN2B-containing NMDARs is
consistent with past experimental work (Patel et al., 2014) and, similar
to previous findings by Ferrario and colleagues (Ferrario, Ndukwe, Ren,
Satin, & Goforth, 2013), the predicted immediate effect of injury was to
produce more pronounced oscillations through increased calcium influx
from GluN2B-NMDARs. Interestingly, neurons with greater contributions
of N2B-NMDAR actively disconnect from the functional network (Patel
et al., 2014), suggesting that the mechanosensitive property of the NMDAR
may also change the functional integration of a neuron with its neighbors.
With STDP, the high activity rate of injured neurons may contribute to a
similar decoupling of injured neurons from the structural network, as ev-
idenced by the lower output strength of injured compared to uninjured
neurons. Injured neurons quickly developed a unique structural phenotype
characterized by large, aggregate input from the neighboring neuronal pop-
ulation and weak output to downstream neurons. These results further sug-
gest that injury can partition the network between injured and uninjured
populations.

Our network model represents a small subnetwork of the brain, but
many subnetworks and the communication between them constitute
macroscale brain networks. Broadly speaking, coordination among sub-
networks is important to critical cognitive processes, many of which are
impaired following traumatic brain injury (Clayton, Yeung, & Cohen Ka-
dosh, 2015; Corbetta, 2012; Hanslmayr, Staresina, & Bowman, 2016; Kin-
nunen et al., 2011; Nakamura, Hillary, & Biswal, 2009; Pandit et al., 2013).
Based on the functional changes observed after simulated mild traumatic
injury and the way that elevated firing rates propagated from directly dam-
aged neurons to uninjured circuitry, we anticipate a more widespread dis-
turbance of the coordinated signaling throughout the brain. A recent study
using the deletion or inactivation of neurons in a simple coupled network of
oscillating microcircuits shows a clear impairment in synchronization after
neurodegeneration (Schumm et al., 2020). As neurodegeneration decreases
the average firing rate but mild NMDAR injury increases activity, one possi-
bility is that NMDAR injury may increase synchrony between networks. To
this end, synchronization in networks of different frequency and the impact
of adaptive restructuring mechanisms on network order have been recently
investigated in oscillator models (Papadopoulos, Kim, Kurths, & Bassett,
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2017). Although the result of NMDAR injury suggests an increase in coher-
ence among brain regions, this injury may also make it more difficult for
different brain regions to switch their functional coupling, an effect seen in
the default mode network after TBI (Bonnelle et al., 2011; Jilka et al., 2014;
Johnson et al., 2012). Together, our work suggests that NMDAR-based in-
jury could increase synchronization but may impair the flexibility of these
networks after brain injury.

These studies explored the intersection of learning and adaptation to
injury via STDP, finding that the mechanism helped restore network func-
tion after injury and thereby expanding the role of STDP beyond Heb-
bian learning (Bi & Poo, 1998; Meliza & Dan, 2006). Despite the inability
of STDP to fully repair the damaged circuitry and restore function, there
were marked directional improvements in network dynamics. Therefore,
STDP appears to provide a regulatory role in network dynamics much like
classical homeostatic plasticity (HSP) (Turrigiano, 2012; Turrigiano & Nel-
son, 2004). HSP dictates that each neuron has an optimal firing rate that
is regulated internally by uniformly adjusting receptor count at the den-
dritic spines; STDP requires pairs of neurons with correlated inputs to in-
crease synaptic strength. Through this mechanism, the network rewires its
topology to mitigate the impact of damage. An additional notable difference
between HSP and STDP is the timescale over which they operate (Zenke,
Gerstner, & Ganguli, 2017); STDP acts on a much shorter time frame than
does HSP (Zenke et al., 2017). Therefore, other homeostatic mechanisms
may further mitigate the lingering effects of NMDAR damage at chronic
time points after injury. In past work focusing on the role of homeostatic
synaptic scaling after trauma, it was shown that HSP can lead to persis-
tent bursting in the network, perhaps providing a cellular substrate for
epileptic-like seizures in the cortex (Volman et al., 2011). Although we did
not explicitly account for HSP, past work and our simulations suggest that
STDP and HSP may provide complementary roles in injured circuits. Specif-
ically, one recovery mechanism (HSP) might lead to a risk of developing
pathology, and a second mechanism (STDP) quickly adjusts the network to
avoid such uncontrollable bursting. It is intriguing to consider how these
two mechanisms may interact in future work, potentially cooperating to
repair an injured circuit by re-establishing the dynamics of a health one.

The ability to respond and adapt to incoming stimulus and store these
patterns for future use is a key component of biological networks. Here,
we took a minimalistic approach in the implementation of an unsupervised
learning paradigm to assess how injury affects network learning and recall.
Currently, there is limited consensus on the ways to train and assess bio-
logical models, which inherently results from an incomplete understand-
ing of how neurons store information (Josselyn, Köhler, & Frankland, 2015;
Sharpee, 2017; Titley, Brunel, & Hansel, 2017; Vertes & Duke, 2010). Our
method is based in rate coding, where sensitivity to firing rates is the pri-
mary form of information storage and transmission. Rate coding is critical
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to our understanding of receptive fields of place cells, muscle activation,
and time perception (Enoka & Duchateau, 2017; Kraus, Robinson, White,
Eichenbaum, & Hasselmo, 2013; MacDonald, Lepage, Eden, & Eichenbaum,
2011; O’Keefe & Dostrovsky, 1971; Pastalkova, Itskov, Amarasingham, &
Buzsáki, 2008). Alternatively, new studies have investigated temporal cod-
ing, or the storage of information within precise spike timing as a more effi-
cient and faster coding method in brain structures (Buzsáki, Llinas, Singer,
Berthoz, & Christen, 1994; Terada, Sakurai, Nakahara, & Fujisawa, 2017;
Vertes & Duke, 2010). Implementing temporal coding methods relies on
precise timing and structures within the network, which must be known
in advance to be trained (Izhikevich, 2006; Vertes & Duke, 2010).

We found that the most significant learning impairments after injury
occurred in recalling previously trained patterns. In this case, injured net-
works had distinct increases in their rate-coded response to stimulus in the
hidden layer. As in untrained networks with NMDAR dysfunction, injured
trained networks indiscriminately increased firing in both the damaged
population and the connected circuitry. Therefore, the increased response
in injured hidden-layer neurons masked the elevated, trained output. This
implies that networks that rely on rate coding are predisposed to deficits in
previously trained responses after mild injury. Supporting this idea, there is
a marked decrease in task-specific cells found in the hippocampus of rats af-
ter injury (Eakin & Miller, 2012; Munyon, Eakin, Sweet, & Miller, 2014). Cou-
pled with decreased performance in previously trained behavioral tasks
(Chen, Mao, Yang, Abel, & Meaney, 2014), this could indicate poor sepa-
ration between on- and off-target activation patterns.

5 Conclusion

Together, these simulations demonstrate how stretch-induced alterations in
NMDAR physiology propagate to information processing in the circuit. De-
spite a significant increase in neuronal activity that occurs with this injury
mechanism, STDP can reduce the effect of injury by altering the network
structure around the damaged neuron population. Finally, this work shows
impaired learning capacity in injured networks with specific deficits in pat-
tern acquisition, recall, and maintenance.

Appendix: Methods

Table 1: Neuron Model Parameters for Excitatory and Inhibitory Neurons.

Property Excitatory Neurons Inhibitory Neurons

a
(

1
msec

)
0.02 0.02–0.1

b
(

1
msec

)
0.2 0.2–0.25
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Table 1: Continued.

Property Excitatory Neurons Inhibitory Neurons

c (mV) −65.0–50.0 −65.0

d
(

mV
msec

)
2.0–8.0 2.0

Threshold voltage (mV) 30 30

AMPA strength
(

mV
msec

)
0.0–4.0 NA

NMDA-N2A strength
(

mV
msec

)
0.0–3.52 NA

NMDA-N2B strength
(

mV
msec

)
0.0–0.48 NA

GABA strength
(

mV
msec

)
NA 10 ± 1

Delay per unit length
( msec

a.u.

) 8
2π

0

Notes: NA = not applicable. The strength is output strength for each neuron
type, so inhibitory neurons are represented with GABA only while excitatory
neurons have values for AMPA, NMDA-N2A, and NMDA-N2B.
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