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The accurate diagnosis and clinical management of traumatic brain injury (TBI) is currently limited by the

lack of accessible molecular biomarkers that reflect the pathophysiology of this heterogeneous disease. To

address this challenge, we developed a microchip diagnostic that can characterize TBI more comprehen-

sively using the RNA found in brain-derived extracellular vesicles (EVs). Our approach measures a panel of

EV miRNAs, processed with machine learning algorithms to capture the state of the injured and recovering

brain. Our diagnostic combines surface marker-specific nanomagnetic isolation of brain-derived EVs, bio-

marker discovery using RNA sequencing, and machine learning processing of the EV miRNA cargo to mini-

mally invasively measure the state of TBI. We achieved an accuracy of 99% identifying the signature of in-

jured vs. sham control mice using an independent blinded test set (N = 77), where the injured group

consists of heterogeneous populations (injury intensity, elapsed time since injury) to model the variability

present in clinical samples. Moreover, we successfully predicted the intensity of the injury, the elapsed time

since injury, and the presence of a prior injury using independent blinded test sets (N = 82). We demon-

strated the translatability in a blinded test set by identifying TBI patients from healthy controls (AUC = 0.9,

N = 60). This approach, which can detect signatures of injury that persist across a variety of injury types

and individual responses to injury, more accurately reflects the heterogeneity of human TBI injury and re-

covery than conventional diagnostics, opening new opportunities to improve treatment of traumatic brain

injuries.

Introduction

In the United States, 1.74 million people every year seek medi-
cal attention for traumatic brain injury (TBI), of which 80%
are considered to have a mild TBI.1 Even in those with mild

injuries, approximately 10–20% of individuals will suffer long-
term disability including seizures and emotional and behav-
ioral issues.2 One of the primary challenges in TBI care is ap-
propriately classifying this heterogeneous injury and identify-
ing patients at risk for these chronic impairments.3 The
neuropathology of TBI includes axonal shearing, inflamma-
tion, brain edema, and vascular injury, but the extent of these
findings varies among patients.4,5 Conventional imaging stud-
ies, including magnetic resonance imaging and computed to-
mography, are commonly used to classify TBI, but do not reli-
ably capture the full extent of the injury, particularly in those
patients with mild injuries.6,7 Currently, there are few molecu-
lar markers to assist in the assessment of an individual's in-
jury and subsequent recovery. Biomarkers are desperately
needed in the field that correlate with these varied patholo-
gies, track the progress of the disease, and predict outcome to
facilitate accurate phenotyping of this heterogeneous disease.

Although there is great interest in developing biomarkers
for both the diagnosis and management of TBI,8,9 break-
throughs in this area have been limited. Most past biomarker
work focuses on protein biomarkers in cerebrospinal fluid
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(CSF) or blood, including tau,10,11 calcium-binding protein
S100B,12 glial fibrillary acidic protein (GFAP),13 neuron-
specific enolase,12,13 ubiquitin carboxy-terminal hydrolase L1
(UCH-L1),13 myelin basic protein (MBP),14 metabolites such
as glucose,15 and miRNA.16 However, these efforts face detec-
tion sensitivity challenges because of the low concentration
(fM–pM) of circulating molecular markers, as well as proteo-
lytic degradation, clearance by the liver or kidney, and bind-
ing of potential biomarkers to carrier proteins.9 Moreover,
due to the diversity of head injury types and the complexity
of cellular and molecular mechanisms underlying resilience
to injury and recovery, it is difficult for any single biomarker
to sufficiently characterize the complex states of the injured
and recovering brain.17

Recently, the recognition that extracellular nanoscale vesi-
cles (EVs), including exosomes and microvesicles, derived
from brain cells that carry proteins and nucleic acid from
their mother cells and cross the blood brain barrier (BBB), of-
fer a new opportunity to evaluate molecular changes in neu-
rons and glia after trauma.18–20 In previous work, increases
in circulating EVs have been observed in the blood of TBI pa-
tients following injury.3,21,22 Despite their enormous poten-
tial, the use of EV biomarkers to improve patient care faces
several challenges. Due to the nanoscale size of EVs, conven-
tional size-based isolation is time consuming (>6 h), results
in co-purification of cellular debris, and cannot selectively
isolate specific sub-populations of EVs.18,23 While micro-
fluidics can precisely sort and detect cells from complex me-
dia, applying these approaches to nanoscale EVs is limited
by the low throughput and susceptibility to clogging of
nanofluidics.

This work builds on the success of using microfluidic
immunomagnetic sorting to isolate rare cells, achieving cap-
ture efficiency and selectivity not possible using conventional
macroscale technologies.27,28,38,39,65 In prior work, there has
been great success using immunomagnetic sorting to isolate
EVs, which due to the lack of magnetism of biological sam-
ples, can achieve surface-marker specific sorting without
prior sample purification.37,61–64 In this study, we use a
new approach to nanofluidic sorting of brain-derived EVs,
wherein millions of nanofluidic devices were incorporated
onto a microchip platform and operated in parallel, increas-
ing throughput by a million-fold and eliminating susceptibil-
ity to clogging from unprocessed clinical samples. By using
nanoscale immunomagnetic traps, EVs can be sorted individ-
ually based on its labeling by a sufficient number of 50 nm
iron oxide MNPs (Miltenyi)70 (Fig. S12†), analogous to the
microfluidic devices used to selectively sort rare cells.38,39,65

This capability distinguishes our Track-Etched magnetic
NanoPOre (TENPO) platform from previous microfluidic tech-
nologies and micro-scale bead systems, where the beads are
larger then the EVs, that capture EVs onto functionalized sur-
faces36 or beads,61,63 where the capture selectivity is set by
the affinity ligand specificity. We applied our method to TBI,
with three goals: 1. to develop a platform that could effi-
ciently and practically profile biomarkers, 2. to use these

novel miRNA biomarkers to accurately differentiate plasma
or serum collected from uninjured and injured subjects, and
3. to use the EV biomarkers to predict injury intensity and in-
jury history, key clinical variables that will guide therapy.

Our approach measures multiple EV miRNA biomarkers to
capture a more comprehensive view of the injured and recov-
ering brain than is possible with a single biomarker (Fig. 1A).
Conventional methods relying on only a single molecular bio-
marker are often not sufficiently specific and only give a lim-
ited view of the recovering brain.8,59 Because EVs package
multiple biomarkers from the injured and recovering brain,
there is an opportunity to measure a panel of molecular bio-
markers to more fully describe the complex states of the re-
covering brain. Several groups have measured multiple
miRNAs71,72 or protein markers13,66 and combined these mul-
tiple measures algorithmically to diagnose TBI. In fact, this
year the FDA has approved a diagnostic that can identify pa-
tients with intracranial lesions following a head injury with-
out the need for a computed tomography (CT) X-ray scan,
using UCH-L1 and GFAP concentration in the blood (U.S.
Food & Drug Administration, 2018). However, despite these
recent successes, because of the wide variety of injury types
and severities endemic to TBI, and the unique and dynami-
cally changing combination of multiple endophenotypes of
an injured and recovering brain,4,5 it remains challenging to
adequately map biomarkers to an individual's unique state of
injury and recovery to improve clinical outcomes. To analyze
these multiple molecular biomarkers, we used machine
learning algorithms to reduce a panel of EV miRNA bio-
markers into a set of optimized linear discriminators. By
choosing relevant states of injury and training the machine
learning algorithm to find patterns that optimally classify
this set, we can outperform single markers. In this study, we
isolated brain-derived EVs based on their expression of the
AMPA receptor subunit (GluR2), performed small RNA se-
quencing, measured multiple miRNA biomarkers packaged
in these EVs, and then combined these biomarkers using lin-
ear discriminant analysis (LDA) to specifically classify the in-
jured and recovering brain (Fig. 1A). We used an established
murine model for blast injury, which produced a mild TBI
with neurobehavioral impairments 5 days after injury,24 to
develop and characterize this method. Previous work charac-
terized biomechanics of the blast overpressure injury,52 the
design of the device used to create the blast overpressure
loading,53 the deficits that appeared following mild blast ex-
posure,54 the time course of blood–brain barrier opening af-
ter exposure,55 and the difference between mild and moder-
ate blast overpressure exposure.56 Using blast injury, we
demonstrated successful classification of injured mice versus
sham controls, identified key pathways activated in the in-
jured brain, and successfully classified between different
pressures of blast injury, time points post injury, and histo-
ries of previous injuries. We additionally validated the trans-
latability of this approach to humans by using the bio-
markers identified in our mouse study and successfully
classified (AUC = 0.9) a cohort of human clinical samples
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(N = 60), identifying uninjured controls versus those that ex-
perienced a diverse set of TBIs with an abbreviated injury
score (AIS) 2–5, using <1 mL of serum.

Results
Surface marker-specific nanomagnetic isolation of brain-
derived EVs

We used a nanofluidic architecture to precisely isolate and
enrich for specific subpopulations of circulating EVs directly
from unprocessed serum or plasma, based on the targeted
EVs' positive expression of a surface marker. Immuno-
magnetic sorting has the advantage that biological material

is inherently not magnetic, enabling high contrast between
targeted EVs and background material.25 We used an anti-
body for the AMPA receptor subunit, glutamate receptor 2
(GluR2) because GluR2 is known to be found preferentially in
brain-derived EVs.22,26 We labeled EVs with magnetic nano-
particles (r = 25 nm) functionalized with affinity ligands to la-
bel GluR2+ surface markers (Fig. 1B). Our EV sorting track-
etched magnetic nanopore (TENPO) chip consists of an ion
track-etched polycarbonate membrane with 600 nm diameter
pores coated with a soft magnetic film (Ni80Fe20) (Fig. 1C),
rotating conventional microfluidic sorting by 90° to form
magnetic traps at the edges of pores instead of in channels.
Using TENPO, we can isolate EV sub-populations directly

Fig. 1 Immunomagnetic isolation of brain-derived EVs using TENPO. A. The workflow of our machine learning-based TBI diagnostics that uses
brain-derived EVs isolated using TENPO. B. EVs are immunomagnetically labeled using biotin anti-GluR2 antibody and anti-biotin magnetic nano-
particles (MNP). C. Finite element simulation of the magnetic field gradient generated by the TENPO's permalloy-coated nanopores. The highest
magnetic field gradient is at the edges of the pores where the labelled EVs are captured. D. The TENPO consists of millions of magnetic nanopores
(600 nm diameter), which are incorporated into an acrylic reservoir. Fluid is pulled through the chip from the output using a syringe pump. The
scale bar is 1 μm. E. Size distribution of EVs measured with DLS. Input is mixed cortical neuron/astrocyte cultured medium and isolate are GluR2+
EVs eluted from TENPO. The input has peaks at 8.7 nm, 78.8 nm, and 615 nm whereas the isolate has a major peak at 141.8 nm. F. Scanning
electron microscopy (SEM) image of an EV captured using TENPO. The captured particle has a morphology consistent with EVs labeled with mag-
netic nanoparticles. G. Total EV miRNA yield (ng) comparison between centrifugation method (122.7 ng) and TENPO (216.2 ng). EVs are isolated
from 20 ml of mixed cortical neuron/astrocyte cultured medium.
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from V ≅ 10 mL of serum or plasma in less than 30 minutes,
using either pan-exosome surface markers or brain-specific
surface markers. Importantly, this architecture is insensitive
to clogging from protein aggregates, cell debris, and lipopro-
teins present in serum or plasma samples73,74 because block-
age of any individual pore causes the flow to be diverted to
neighboring pores and does not affect overall device behavior
(Fig. S13†), enabling the highly specific EV capture in serum
or plasma demonstrated throughout this paper. Finite ele-
ment simulations were used to model the magnetophoretic
force, and the strong trapping forces at the edge of the pore
motivated us to make the pores as small as possible, without
inadvertently trapping objects based on size, to bring targeted
EVs close to the regions of strong forces (Fig. 1C). Moreover,
because the flow velocity is minimized by increasing the num-
ber of pores, we were motivated to maximize the pore density
as much as possible without leading to a significant number
of overlapping pores. The capture rate, i.e. the fraction of cap-
tured targeted EVs, decreases as a function of flow rate but
can be fully recovered by stacking multiple TENPO mem-
branes in series, enabling high capture rate at flow rates as
high as ϕ = 10 mL h (Fig. S1†).

The TENPO uses a track etching process for manufacturing, a
process that is widely available and therefore makes TENPO suit-
able for translation from the laboratory environment to practical
clinical settings. In this work, we build off of our previous work
in which we used magnetic micropores with a diameter d = 5
μm to isolate bacteria27 and d = 30 μm to isolate mammalian
cells.25 Track etching allows this approach to be scaled to the
nanoscale (d = 600 nm) to tailor it to the isolation of EVs,59 with-
out requiring electron beam lithography (Fig. 1D). The orders of
magnitude decrease in cost relative to conventional nano-
lithography comes at the expense of not controlling the pores' lo-
cation, which is not a critical feature for this application. These
TENPO membranes are incorporated into a microfluidic device
using laser micromachined layers of adhesive-coated polymer
sheets.27 In this paper, we used TENPO with a pore size d = 600
nm, a membrane area A = 15.2 cm2, a pore density ρ > 107 pores
per cm2, and N = 6 membranes in series.

To characterize the performance of the TENPO for isolat-
ing brain-derived EVs, we first used an in vitro cell culture
model of TBI.28 To validate that the vesicles isolated by our
device have a size consistent with EVs, we measured the size
distribution of particles in the medium from mixed cortical
neuron/astrocyte cultured cells and compared it to TENPO
isolated vesicles from that medium. The GluR2+ EVs in 20
mL of medium were magnetically labeled and run through
our device at ϕ = 10 mL h−1. After the isolated vesicles were
eluted (System Biosciences), their size distribution was pro-
filed and compared to that of the input using dynamic light
scattering (DLS). We found that our device isolated particles
with a size distribution <d> = 140 nm (Fig. 1E). Additionally,
we fixed the vesicles directly on our device after capture and
imaged them using scanning electron microscopy (SEM)
(Electron Microscopy Resource Laboratory, University of
Pennsylvania) (Fig. 1F). We observed 150–200 nm vesicles,

captured at the edge of the pores consistent with the trapping
mechanism of TENPO. Additionally, we performed Western
blot analysis on the captured material to validate for the pres-
ence of exosomal markers (TSG101, Alix, CD9) and GluR2,
our capture marker (Fig. S2†).

For downstream analysis, we first lysed the vesicles directly
on the chip to minimize loss, collected the lysate, and then
extracted the RNA off chip. By using TENPO isolation, we
achieved 1.8× improvement in RNA yield from 20 ml of cortical
neuron/astrocyte cultured medium compared to a centrifugal
technique (Total Exosome Isolation kit, Life technologies)29

(Fig. 1G). The details of this extraction is described in the
methods. The captured vesicles had properties consistent with
that of the presence of exosomes, but because we used a brain-
specific surface marker and not an exosome specific marker,
co-purification of microvesicles is likely. For the diagnostic ap-
plication that is the focus of this paper, co-purification of
brain-derived microvesicles does not affect the results. We
quantified the specificity of TENPO capture by comparing the
quantity of EV RNA capture from mixed cortical neuron/astro-
cyte cultured medium using the TENPO, comparing GluR2 ver-
sus a control wherein the antibodies were replaced with an iso-
type control (biotin mouse IgG1 k isotype, Biolegend). There
was >500% RNA yield (P < 0.005) using the GluR2+ markers as
affinity ligands compared to the isotype control, confirming
the specificity of the TENPO (Fig. S14†).

RNA sequencing of brain-derived EV miRNAs from a murine
blast injury model for biomarker identification

To accomplish our first objective and identify miRNA bio-
markers to classify injury state in mice, we first sequenced EV
miRNAs from both mice that were injured using our blast
model (415 kPa, N = 5 pooled) and mice that were uninjured
(N = 5 pooled) (Fig. 2A). For each animal, 400–600 μL of plasma
was processed. We obtained 15–25 ng of total RNA from each
animal and pooled the samples to maximize the sensitivity of
sequencing, at the expense of being able to resolve animal-to-
animal variability in the sequencing data. NEBNext Small RNA
Library Prep Set for Illumina (BioLabs) was used to make a li-
brary and then sequenced on a NextSeq500.

The top three most abundant miRNAs were the same in
the injured and uninjured samples, miR-486b-5p, miR-486a-
5p, and let-7i-5p, but their relative abundance was signifi-
cantly different between injured and sham states (p < 0.05;
Fig. 2B). We selected eight biomarkers to use in our
multiplexed assay, (Fig. 2C) based on a combination of their
abundance and either a maximally positive or negative differ-
ential expression in the injured versus the sham control sam-
ples. We required all EV miRNA biomarkers to have a total
raw read count >50. From the EV miRNA that met this
criteria, we selected three biomarkers that were up-regulated
in injured versus sham (miR-129-5p, miR-212-5p, miR-9-5p)
and we selected four biomarkers that were down-regulated in
injured versus sham (miR-152-5p, miR-21, miR-374b-5p, miR-
664-3p). Following the sequencing experiment, we isolated
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EVs from a separate group of N = 10 injured mice and N = 10
sham mice and measured the eight candidate markers with
qPCR. We found a positive correlation between qPCR and the
sequencing data (R2 = 0.83 with a single outlier (miR-152-5p)
removed and R2 = 0.62 with the outlier) (Fig. 2D).

We performed a bioinformatics analysis on the full set of
sequencing data to explore the signaling pathways that were
activated after TBI. We performed a Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis using 53
microRNAs with fold change (DESeq normalized data) >3.
Among significantly enriched pathways (N = 62; FDR
corrected p-value < 0.05), we highlight the eight relevant
brain injury-related pathways (Table 1) as well as the
uncurated list (Fig. S3†). Some of these pathways were
supported in previous studies in the literature.30,31 We sum-
marized target genes corresponding the microRNAs and the
pathways (Fig. S4†).

Workflow of using machine learning algorithms to diagnose
injury based on EV miRNA signatures

The work flow of our machine learning-based EV diagnostic
is shown in Fig. 3A. To develop our LDA-based classification,
we used qPCR to measure Ct values of EV miRNA biomarkers

in each individual subject within a training cohort wT, for
which each subject's true state (e.g. injured or uninjured is
known) is known a priori. As an example case to demonstrate
the value of this approach, we measured a training set
consisting of a cohort of mice that experienced a blast injury
(415 kPa) (N = 5) and a cohort of mice that were uninjured (N
= 5). Expression levels were calculated by normalizing to the
RNA gene RNU6. Leave-one-out cross validation (N-1) method
was used for analysis of the training set data. The perfor-
mance of the training sets are included in Fig. S5.† This train-
ing set is fed into an LDA algorithm (Matlab) to generate an
LDA vector x. This vector x is used to calculate an LDA score

Fig. 2 miRNA sequencing of brain-derived EVs from injured and control mice. A. Brain-derived EV miRNAs were isolated using GluR2+ labeling
and TENPO isolation and sequenced from pooled blast injured (415 kPa) and control mice. DESeq normalized expression levels of individual
miRNAs were plotted using a heat map. B. The five most abundantly expressed miRNAs from control and injured groups are plotted. C. Top 10
upregulated and downregulated miRNAs after the injury. D. 7 miRNAs biomarkers were selected and validated using qPCR. We used RNU6 for nor-
malization. Expression levels from qPCR were compared to RNA sequencing (R2 = 0.83 without and R2 = 0.62 with an outlier). Error bar indicates
standard deviation of three technical replicates.

Table 1 KEGG pathway analysis for blast injured (415 kPa) mice versus
sham mice. 8 different pathways related to traumatic brain injury

KEGG pathway p-Value #genes #miRNAs

Axon guidance 6.3E-08 69 39
Long-term potentiation 5.9E-05 39 29
Glutamatergic synapse 5.9E-05 54 34
Oxytocin signaling pathway 6.7E-05 77 39
GABAergic synapse 0.0013 34 27
Dopaminergic synapse 0.0018 60 30
Neurotrophin signaling pathway 0.0018 57 33
Cholinergic synapse 0.037 51 31
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(w·x) for each mouse that can be used to optimally classify
the mice, where every mouse with an LDA score above a
threshold value Ψ, defined by the training data, is classified
as belonging to one group and every mouse below it is classi-
fied as belonging to the other group (Fig. S5A†). This thresh-
old can be chosen to tradeoff sensitivity and specificity. We
next evaluate the LDA algorithm by performing a set of mea-
surements on a user-blinded test set of subjects wB, where we
are a priori blinded to each subject's true injury state. Here,
we applied a model averaging approach (bootstrapping) that
considers multiple subsets of features to help overcome the
limitation of the small size of datasets inherent to animal
studies. The use of blinded test sets allowed us to validate
our classification subjects while avoiding the effects of
overfitting. In our example case, we used N = 36 mice in the
blinded test set.

For each of these mice, an LDA score S was calculated
(Fig. 3B) and based on this score a classification was pre-
dicted (Fig. 3C). Our LDA method classified N = 36 mice in
the blinded test set with accuracy of 94%, outperforming any
of the individual EV miRNA that we measured. Amongst the
panel of miRNAs that we measured, several miRNAs were
expressed with a statistically significant difference between
these two groups (Fig. S6†), e.g. miR-9-5p (p < 0.05). Here,
we normalized using RNU6. However, due to mouse-to-
mouse variability within the groups, there was no single EV
biomarker that could accurately classify all of the mice. For

example, the best performing biomarker miR-9-5p achieved
only an AUC = 0.74.

Designing machine learning for reproducibility

To prevent the effects of overfitting and correctly apply ma-
chine learning algorithms in this study, we applied several
well established strategies.60 Most importantly, to evaluate
each classification, we created an independent user-blinded
test set, which consisted of samples from different subjects
than used in the training set, to test our diagnostic perfor-
mance. For the independent test set, we received blinded
samples with unknown labels, processed them using our
platform, and predicted their labels using the models gener-
ated by training sets. The predicted labels were then sent and
compared to true labels to prevent any issue with overfitting.
Additionally, we took the following steps to mitigate
overfitting. We first restricted the number of features to eight
miRNAs to ensure that the number of features was fewer
than that of our smallest training set. In the application of
machine learning to each training set, we first evaluated the
predictive performance using a leave-one-out cross validation
(N-1) to attempt to predict each model's performance when
used on an independent, user-blinded test data. We also vali-
dated the specificity of the predictive power of our analysis
by comparing the performance of each classification to a data
set where a training set of scrambled group labels was

Fig. 3 Machine learning based diagnostics for blast injured mice. A. A training set of data wT, where the true state of the mice is a priori known, is
fed into an LDA algorithm to generate an LDA vector x. This LDA vector is then evaluated using a blinded test set (wB·x), where the true state of
the mice was not a priori known, to classify samples into different groups. B. The blinded test set is plotted by their LDA score (wB·x), where the
mice can be classified into the correct group by choosing a threshold value ψ. C. A confusion matrix was generated to summarize the results of
classifying the blinded test set (N = 36).
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created. We applied bootstrapping, a model averaging ap-
proach that considers multiple subsets of features to better
represent the outcome and help overcome the limitation of
the small size of datasets. Additionally, we restricted our-
selves in this study to LDA, and did not use the increasingly
popular deep learning or neural networks that rely on layers
of interconnected, nonlinear data transformations. While
these models can be highly effective, they generally require
very large datasets during training to avoid overfitting.60 Ad-
ditionally, in this study we include all raw data to both allow
others to confirm our findings (ESI† Data 1) and to encour-
age the community to use our data to further improve TBI
diagnostics.

Classification of heterogeneous injuries and sham controls

In an actual clinical setting, there is a much greater diversity
in the injuries that a subject can sustain than in the simple
example demonstrated above. To evaluate whether our ap-
proach could diagnose TBI in animals with a variable set of

injuries, we created a blinded test cohort of N = 77 mice with
variable injury intensity and a variable window of time (Δt)
between the injury and the sample collected, as well as sham
controls (Fig. 4A). In this user-blinded test set, we included
two different blast pressures (high blast injury-415 kPa and
low blast injury-215 kPa) and multiple times elapsed since in-
jury Δt = 1 h, Δt = 1 day, Δt = 4 days, and Δt = 14 days. When
we measured blood samples from each of these mice using
our chip and compared our prediction for each mouse's in-
jury state (injured or uninjured) to the true state of the mice,
a high accuracy of 99% was achieved. For this classification,
we used a training set (N = 30) that consisted of two groups:
N = 5 sham controls and a diverse set of injured mice (N =
25) including N = 5 low blast Δt = 1 h, N = 5 low blast Δt = 1
day, N = 5 low blast Δt = 4 days, N = 5 low blast Δt = 14 days,
N = 5 high blast Δt = 1 h (Fig. S5B†).

We next evaluated how long after an injury the EV miRNA
signature measured by our chip persists. To address this
question, we evaluated the specificity and sensitivity of our
classification of mice as a function of the time elapsed since

Fig. 4 Diagnosis of heterogeneous injury with variable intensity and time elapsed since injury from sham controls. A. Classification of injured vs.
sham control mice in a user blinded test set (N = 77), which includes variable intensity and time elapsed since injury Δt, achieving an area under
the curve AUC = 1 and accuracy = 0.99. B. Discrimination of injured vs. sham mice as a function of time elapsed since injury Δt. C. Comparison of
AUC of our approach and simply counting GluR2+ EVs as a function of time elapsed since injury Δt.
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their injury Δt. We considered a user blinded test set of mice
(N = 66) that received a low level of blast injury (215 kPa),
where blood was collected from cohorts of mice at either Δt
of 1 hour, 1 day, 4 days, and 14 days after the injury. When
we considered all of the time points together, an AUC = 1 for
discriminating injured versus sham was achieved (p < 0.001,
Fisher's exact test) (Fig. 4B). We compared our chip's perfor-
mance to simply counting GluR2+ EVs (Fig. 4C),22 and we
found that our approach of using EV miRNA signatures
outperformed EV counting at every time point after injury Δt.
For this experiment, a single training set (N = 25) that
consisted of two groups was created, including injured mice
that were collected at multiple time points after injury (N = 5
Δt = 1 h, N = 5 Δt = 1 day, N = 5 Δt = 4 days, N = 5 Δt = 14
days) and sham controls (N = 5) (Fig. S5C†).

Discrimination of injury intensity, time elapsed since injury,
and history of prior injuries using EV miRNA biomarkers

Beyond identifying the presence or absence of an injury, an
important goal for a TBI clinical biomarker is to characterize
features of the injury that include its intensity, the time since
the injury occurred, and whether the injury was isolated or in
combination with an additional previous injury. To this end,

we next evaluated whether we could retrain our LDA ap-
proach, using the same EV miRNA biomarkers identified in
our sequencing experiment, to predict the injury intensity,
the time elapsed since the injury Δt, and injury history. Each
of these classifications was performed by creating a sepa-
rately trained model and was evaluated using an independent
user-blinded test set.60 Here, we chose the sample size for
multiple injury states that could both demonstrate statisti-
cally significant results (p < 2 × 10−3 for the data shown in
Fig. S5D and S5E†) and be consistent with the ethics rules of
our IACUC protocol to minimize the number of mice used.

We first demonstrated the ability to classify the intensity
of injury between mice with a low level of blast injury (215
kPa) and with a higher level of blast injury (415 kPa) from
sham controls. We used a classification scheme based on the
blast pressure level itself rather than any specific histological
or behavioral differences associated with two levels of blast
injury. In an independent blinded test set (N = 43 mice), we
successfully classified two different levels of injuries from
sham controls (accuracy = 88%, chi square test, p-value = 1.1
× 10−11) (Fig. 5A). The training set included a total of 19 ani-
mals (N = 7 sham mice, N = 6 with high blast injury, and N =
6 with low blast injury) collected Δt = 1 h after injury (Fig.
S5D†). To validate the specificity of our signatures, we

Fig. 5 Discrimination of injury intensity, time elapsed since injury, and history of injury using EV miRNA signatures in a murine blast injury model.
A. Classification of intensity of injury for sham mice and mice with a low blast (LB) injury (215 kPa) and a high blast (HB) injury (415 kPa) at Δt = 1 h
after injury. B. Classification of time elapsed since injury (Δt), for mice with LB injury. C. Schematic of history of injury study. Black dots correspond
to the time of injury, and the colored coded dots correspond to the time the sample was taken. D. Classification of sham mice and mice with a
history of injury c and without a history of injury b (single injury).
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scrambled the training set as a control experiment and found
that the accuracy dropped to 26%, similar to random guess-
ing (33%). Sample size, limited by number of sacrificed mice,
can affect power of classification. We examined the effect of
sample size on cross-validation accuracy by including our
left-out test data in the training set and examining cross-
validation accuracy as a function of sample size. Cross-
validation accuracy increased as a function of sample size,
again indicating that data contains meaningfully separable
signals (Fig. S8†).

We next evaluated the ability to detect the time elapsed Δt
since the injury. In an independent user blinded dataset (N =
41), we were able to discriminate between mice that had an
injury with an elapsed time between injury and the sample
being taken of: Δt = 1 h, 1 day, 4 days, and 14 days (Fig. 5B).
An accuracy of 71% was achieved for this multi label classifi-
cation (chi square test, p-value = 2.6 × 10−7). To validate the
specificity of our signatures, we scrambled the training set as
a control experiment and found the accuracy dropped to
24%, similar to random guessing (25%). The training set was
comprised of a total of 23 animals across four groups; Δt = 1
h (N = 6), Δt = 1 day (N = 6), Δt = 4 days (N = 5), and Δt = 14
days (N = 6) (Fig. S5G†). All injured mice in these experi-
ments had a low blast (215 kPa) injury.

We next demonstrated the ability of our approach to de-
tect a history of prior injuries in our murine injury model.
We evaluated the following groups of mice, a: sham controls,
b: mice that were measured 1 hour after a single blast injury
(215 kPa), and c: mice that were measured 1 hour after a sec-
ond blast injury (215 kPa) that had received the same injury
24 hours prior (Fig. 5C). Using independent blinded test sets,
we demonstrated that we could classify mice with a history of
injury (c), mice that were injured only once (b), and sham
controls (a) (accuracy = 88%, N = 42) (Fig. 5D). Here, we show
both a 3D plot and a 2D projection of the same plot to pro-
vide two different perspectives. The training set was com-
prised of a total of 18 animals across three groups (N = 7
sham, N = 6 single injury, N = 7 double injury) (Fig. S5E†).

Detection of EV miRNA signatures of injury in human
samples

To evaluate our approach in human clinical samples, we used
the same miRNAs determined from our preclinical model ex-
periments to predict the injured/uninjured state for individ-
ual samples from a blinded test cohort of 60 human subjects.
Amongst the panel of miRNA that we measured, several were
differentially expressed between the injured and control
groups, e.g. miR-129-5p, miR-9-5p (p < 0.05), but no single
miRNA could classify the individual subjects into the correct
groups due to variable in expression between individual sub-
jects (Fig. S7†). Therefore, as in our mouse studies, we used
an LDA analysis to detect EV miRNA signatures in TBI pa-
tients. The training set included 15 total patients (N = 5 TBI
patients and N = 10 healthy controls) (Fig. S5F†). The user-
blinded test set included those with TBIs with an abbreviated

injury score (AIS) of 2–5 (N = 32) and healthy controls (N =
28) (Fig. 6A). We performed a receiver operator characteristic
(ROC) analysis on our predictions and achieved an AUC = 0.9
(Fig. 6B). In addition, we separately analyzed whether we
could classify patients with TBIs that also had systemic inju-
ries from healthy controls (AUC = 0.94, N = 44) and patients
with TBIs that either had no or minor systemic injury from
healthy controls (AUC = 0.996, N = 37) (Fig. 6C and S9†).
These results demonstrate that our diagnostic is, in fact,
more successful at detecting TBI where there is no or minor
systemic injury. These results support our hypothesis that the
EVs that our chip analyzes are brain-derived. We note that
clinical samples used here were collected 0.4–120 hours after
injury (median = 41 hours), a heterogeneity which can be ob-
served in standard clinical settings. We compared the predic-
tive power of our diagnostic with that of digital ELISA, an
emerging gold standard in TBI blood-based diagnostics.57,58

Using the SIngle MOlecule Array (SIMOA; Quanterix) platform
we measured the protein biomarkers tau and NF-L. SIMOA al-
lows ultra-sensitive detection of individual proteins (LOD <

1.75 pg ml−1 for four protein markers) with 1000-fold more
sensitivity than conventional ELISA.57,58 We measured the
concentrations (pg ml−1) of four protein markers from N = 15
healthy controls and N = 36 TBI patients, a representative
subset of the same clinical cohort we used for our study.
Though average protein levels were higher in TBI patients
than in healthy controls for all four protein biomarkers, none
of the markers was significantly different between TBI pa-
tients and healthy controls (p > 0.05), likely due to the vari-
ability of the injury severity (AIS 2–5) and time elapsed since
the injury (0.4–120 hours) within our patient cohort (Fig.
S10†). The AUCs from the protein markers ranged from 0.66–
0.88, which were lower than what we have achieved (AUC =
0.9) using our EV diagnostic. Moreover, our machine learning
based analysis was unable to successfully combine the four
protein markers for an improved result (AUC ∼0.5) due to
the high variability of the protein concentrations (Fig. S10A†)
within each group (healthy control, TBI patients) measured
using the SIMOA platform, failing to create a representative
training set for algorithm development.

Discussion

In this work we demonstrate that brain-derived EVs contain
miRNA signatures that can be used to classify specific states
of traumatic brain injury and to identify possible signaling
pathways activated in the brain after injury. We showed that
the precision of nanofluidic immunomagnetic EV isolation
can be applied to the enrichment of brain-derived EVs di-
rectly from serum or plasma and that this method can be
successfully applied in both a murine model and human
samples. Importantly, this work serves as a demonstration of
the potential of identifying and using a panel of biomarkers
to define an injury signature rather than searching for a sin-
gle marker that can distinguish complex states of injury and
recovery with reasonable specificity. We believe that by
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building upon the approach described in this paper, there is
enormous potential to use this technique to better under-
stand subtypes of TBI-related injury, recovery, and therapeu-
tic response. Moreover, because our TENPO approach minia-
turizes EV isolation into a handheld device and speeds up
the isolation from half a day to less than an hour, there is
great potential to translate this technology into a point-of-
care device by pairing it with a miniaturized miRNA detec-
tion.32,33 In its most successful form, this technology can be
used in the home for monitoring recovery and treatment ef-
fectiveness.1 Additionally, a point-of-care device can be
deployed to military and sports settings where rapid evalua-
tion can help better evaluate and guide those with injuries to
the help that they need.

In comparison to prior work isolating EVs, our work has
several key advantages. Relative to size-based techniques,
TENPO can isolate subsets of EVs that originate from a spe-
cific tissue.18 In this paper, this ability allows us to enrich for
brain-derived nanoscale vesicles from the vast background of
other materials including other exosomes, microvesicles, and
cellular debris, and resolve the signatures of TBI injury and
recovery. The TENPO differentiates itself from prior
published34–37 and commercial work (e.g. Dynabeads,
ThermoFisher) where surface marker specific isolation of EVs
is used. Chiefly, prior works isolated EVs onto bulk function-
alized surfaces, where specificity is defined by the capture
antibody. In the TENPO, because the feature size matches
that of the EVs, we can emulate established microfluidics ap-
proaches to sort cells38,39 and precisely balance the drag force
and the magnetic capture force. Thus, analogous to flow cy-
tometry, we can define a threshold number of magnetic
nanoparticle labels above which an EV will be captured on

our device at a given flow rate. In comparison to previously
published work that measured protein or miRNA biomarkers
from serum or plasma to predict TBI injury states,13,45–48 we
can achieve comparable or improved diagnostic performance
(AUC of 0.9) on a more heterogeneous population of TBI pa-
tients (0.4–120 hours after injury), which better reflect clini-
cal use (Fig. S11†). Moreover, our device differentiates itself
in its capability to specifically classify the injury intensity,
time elapsed since injury, and the history of injury.

This work builds upon the work of others that have identi-
fied biomarkers to measure TBI.9–17 We believe that a robust
diagnostic could be developed by combining currently identi-
fied TBI biomarkers to generate a signature using machine
learning algorithms, rather than evaluating the performance
of each biomarker individually. Importantly, our method can
distinguish specific states of brain injury, both in terms of
intensity/mechanism and in temporal course. In our open-
ended search for biomarkers by performing RNA sequencing,
the best miRNA marker was unable to accurately classify indi-
vidual subjects due to a. the heterogeneity of GluR2+ EVs
within a patient and b. the heterogeneity of GluR2+ EVs
across patients. To accurately classify patients despite this
heterogeneity, we measured and combined multiple miRNAs
to find a signature that could correctly classify each subject
(AUC > 0.9). We believe that this work demonstrates the po-
tential of machine learning based diagnostics for accurately
predicting and tracking complex states of TBI. We note here
that we utilized one of the simplest learning methods due to
the limited sample sizes, but with more extensive data other
more complex machine learning models might be fitted with
greater prediction accuracy, especially for quantitative vari-
ables like time since injury.

Fig. 6 Diagnosis of TBI using clinical samples. A. The results of linear discriminant analysis on a user blinded test set (N = 60), including variable
injury levels (AIS 2–5), multiple time points after injury 0.4–120 hours after injury (median = 41 hours), and healthy controls. B. A receiver operator
characteristic (ROC) curve showing the tradeoff between sensitivity and specificity for this diagnosis. An AUC = 0.9 was achieved. Inset: A
confusion matrix summarizing the results of the study. C. AUC comparison of two different subgroups (#1: patients with no/minor systemic injury,
#2: patients with systemic injury) to total population (#3).
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This work demonstrated that GluR2+ EVs could be used to
classify specific states of injury. In future work, we plan to fur-
ther develop TENPO to isolate multiple subsets of EVs, based
on multiple surface markers, that can more comprehensively
sample the multiple, heterogeneous EV subpopulations emit-
ted by different cell types in the brain following an injury.77

For example, ACSA-2+ expression can be used to enrich for as-
trocyte derived EVs75 and CD184+/CD44+ for glial cells.76

In this study, we used miRNA biomarkers identified from
a single murine injury to identify miRNA implicated in injury
and recovery. The TENPO framework we describe can be
adapted to examine multiple sub-populations of EVs,
allowing an increasingly comprehensive picture of the in-
jured and recovering brain to be captured. Building upon this
work, we plan to sequence a variety of injury types, severities,
and states of recovery in both cohorts of mice and humans.
Our method combines three different components—novel
isolation technology for brain-derived EVs, biomarker discov-
ery via small RNA sequencing, and machine learning based
diagnostics—which enabled us to develop potential diagnos-
tics for TBI. Additionally, performance of TENPO isolation
can be further enhanced by increasing the magnetization,
and the specificity, of the magnetic labels, by doing a combi-
nation of: a. use MNPs with 10× larger saturation magnetiza-
tion moments ms (e.g. MnFe) rather than iron oxide,67 b. use
smaller MNPs d < 30 nm rather than the 50 nm diameter
particles used in this study,68 to overcome steric hindrance
and allow a greater number of particles to bind to each EV, c.
use a magnetic amplification to increase the number of
MNPs per EV at the cost of increased assay complexity.69

Since EVs are shed from almost all types of cells, our plat-
form could be further utilized in different brain-related, or
non brain-related, diseases.

Materials and methods
Experimental design

The main objective is to isolate specific EV sub-populations
from clinical samples and to analyze their miRNA cargo to di-
agnose traumatic brain injury. We evaluated the performance
of the TENPO using magnetic beads and finite element simu-
lation and validated the performance of RNA sequencing
using qPCR. The capability of the TENPO to isolate specific
EVs from complex samples and extract RNA for downstream
analysis was first tested using cell culture models and sham
serum and plasma. Subsequently, the capability to use our
platform for the diagnosis of traumatic brain injury was first
tested using the blast injury mouse model and subsequently
a cohort of clinical samples. All the test sets for the machine
learning algorithm were blinded and independently created
to prevent overfitting and truly evaluate the performance of
our platform.

TENPO fabrication

The TENPO membranes were fabricated using thermal evapo-
ration. On the surface of a track-etched polycarbonate mem-

brane with 600 nm pores (Whatman), 200 nm layer of
permalloy (Ni80Fe20) was thermally evaporated (Kurt Lesker
PVD-75, Singh Nanofabrication Facility, University of Pennsyl-
vania) and then 30 nm layer of gold was subsequently depos-
ited to prevent oxidation. Moisture-resistant polyester film
(McMaster-Carr, 0.004″ thick) and solvent-resistant tape
(McMaster-Carr) were cut using laser micromachining (Uni-
versal Laser VLS 3.50) to incorporate TENPO membranes into
a microfluidic device. An optically clear cast acrylic sheet
(McMaster-Carr) was used as a reservoir for the input, and a
polydimethylsiloxane (PDMS) piece was used for the output,
pressure-fit to Tygon tubing to connect to a negative pressure
supply (programmable syringe pump, Braintree Scientific).

Dynamic light scattering (DLS)

To obtain size distribution of nanoparticles (EVs), we used
DLS (Zetasizer, Malvern) where we loaded 300–400 μl of sam-
ples with the correct settings (e.g. refractive index, viscosity).
All the measurements were performed as triplicates.

RNA sequencing

NEBNext Small RNA Library Prep Set for Illumina (BioLabs)
was used to make a library. We first isolated RNA on chip
using Total Exosomal RNA Isolation Kit (Life Technologies).
Then, we measure the RNA amount using Qubit (Life Tech-
nologies) and as recommended by the protocol, the samples
with more than 100 ng of RNA were selected for usage. Then,
quality control check was performed on a BioAnalyzer using
a DNA 1000 chip. For size selection, AMPure XP beads were
used (Beckman Coulter). 140–150 bp sizes were selected
using the beads and the sizes were confirmed by the Bio-
Analyzer using High Sensitivity Chip. The RNA-seq libraries
were pooled together and the final concentration was quanti-
fied using a KAPA Library Quantification Kit (KAPA Bio-
systems). The libraries were sequenced using a NextSeq 500/
550 kit (FC-404-2005, Illumina) on a NextSeq500 (75 base pair
length).

Small RNA-seq analysis

miRNA expression was found with mirDeep2 (ref. 40) and
Bowtie41 (mm10), using miRBase version 21.42 Read counts
from miRNA families (miRNAs with the same seed sequence)
were combined. Quantified miRNA expression values were
normalized by DESeq2.43 Using DIANA mirPath v. 2.0,44 we
identified the pathways of target genes regulated by miRNAs.

qPCR

miScript SYBR Green PCR kit (Qiagen) and miScript primers
(Qiagen) were used. Master mix that consists of miScript
SYBR Green, miScript primer, universal primer, and water
were made at 5 : 1 : 1 : 2 ratio and 9 μl of the master mix was
added to each well, followed by 1 μl of cDNA. 40 cycles were
run with a default setting using CFX384 Touch Real-Time
PCR machine (Bio Rad). Triplicates were done for each
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sample and negative template control (NTC) was used to
check any contamination. The melting curves were first
checked before the analysis.

Linear discriminant analysis (LDA)

Using Matlab (R2015b), multiple features (genes) from multi-
ple groups (intensity of injury, time points after injury, his-
tory of injury) were simplified for classification using LDA.
The confusion matrix and the LDA plot were made using re-
sults from Matlab. Leave-one-out cross validation (N-1)
method was used for analysis of the training set data. An in-
dependent de novo user blinded test set was used for the final
evaluation. For stepwise regression, we used combntns func-
tion in MATLAB to generate every single combination from
the panel of biomarkers.

EV isolation (TENPO)

Anti-biotin ultrapure microbeads (Miltenyi Biotec) and bio-
tinylated antibodies were used for magnetic labeling. For
the antibody, biotin anti-human, mouse GluR1/GluR2 anti-
body (Bioss) was used. First, biotinylated antibodies were
added to the sample and incubated for 20 min at room
temperature with shaking. Then, anti-biotin ultrapure
microbeads were added to the samples and incubated for
20 min at room temperature with shaking. Then the sam-
ples were added to the reservoir of the TENPO chip and
negative pressure was applied by a programmable syringe
pump (Braintree). As the samples were pulled through the
chip, magnetically labeled EVs were captured at the edge of
the pores of the chip.

EV miRNA isolation

The second part of the ExoRNeasy serum/plasma kit (Qiagen)
was used for RNA extraction from isolated EVs. We isolated
EVs on chip using TENPO, then directly applied QIAzol lysis
reagent (Qiagen) on chip. We collected the lysate then used
the second part of the ExoRNeasy serum/plasma kit to extract
RNA from the lysate off chip. The EV miRNA was eluted in a
small volume (∼30 μl) and it was stored at −80 °C or
processed immediately for further analysis.

Blast injury

Adult male (12–14 weeks old) C57BL/6J mice (Charles River,
MA) were exposed to a blast overpressure insult that mim-
icked blast-induced traumatic brain injury.24 Anesthetized
mice (isoflurane 3.0% induction, 1.5–2.0% maintenance)
were used as sham controls. Anesthetized mice were pre-
pared for injury by placing sound insulating foam into each
ear canal. Mice were loaded into a holder positioned 1 cm
away from the end of the shock tube, positioned with their
snouts facing the shock tube. Head motion was limited with
a metal rod encircling the snout and placing a cervical collar
between the occiput and shoulders. A single overpressure of
either 215 ± 18 kPa or 415 ± 41 kPa was delivered and the an-

imal was immediately removed from the holder assembly.
Throughout these experiments, we adhered strictly to the
guidelines from the University of Pennsylvania office of Uni-
versity Laboratory Animal Resources (ULAR) using approved
protocols, and animal care and use was in accordance with
the guidelines specified by the Institutional Animal Care and
Use Committee (IACUC) of the University of Pennsylvania.

Human sample collection

Clinical samples were collected under Institutional Review
Board approved protocols at the University of Texas South-
western and the University of Pennsylvania. Blood samples
were drawn from consented patients within 120 hours of
their injury. Serum samples were immediately aliquoted and
frozen at −80 °C until further analyses.

Scanning electron microscopy (SEM)

We fixed the EVs captured on TENPO using a fixing reagent
(2.5% glutaraldehyde, 2.0% paraformaldehyde in 0.1 sodium
cacodylate buffer, pH 7.4). SEM images were taken at the
Electron Microscopy Resource Laboratory, University of
Pennsylvania.

Western blot analysis

Lysates from mouse EVs were analyzed using Western blot
analysis as we described.49–51 Briefly, proteins were resolved
on a 10% sodium dodecyl sulfate (SDS) polyacrylamide gel
and transferred to a polyvinylidene difluoride membrane
using transfer buffer (5.8% tris-base, 29% glycine, 20% meth-
anol, 45.2% distilled water) for 1 hour. Blots were blocked for
1 hour at room temperature in 5% bovine serum albumin
(BSA) dissolved in TBST (500 mM tris-base, 60 mM KCl and
2.8 M NaCl, pH 7.4 with 0.1% Tween). Blots were then incu-
bated with primary antibodies diluted in TBST containing
3% BSA overnight at 4 °C. ALIX and GluR1/R2 primary anti-
bodies were used at a dilution of 1 : 500 and TSG101 and CD9
primary antibodies were used at a dilution of 1 : 1000. Blots
were incubated with secondary antibodies at 1 : 5000 dilution
in TBST containing 5% milk for 1 hour at room temperature.
Membranes were developed using the enhanced chemilumi-
nescence system (GE Healthcare; Piscataway, NJ) and Syngene
G:BOX iChemi XR system and GeneSnap software (Version
7.09.a, Syngene, Frederick, MD). Primary antibodies included
purified anti-ALIX antibody (634502, BioLegend, San Diego,
CA), anti-TSG101 antibody (ab125011, Abcam, Cambridge,
MA), biotin anti-mouse CD9 antibody (124804, BioLegend,
San Diego, CA), GluR1 + GluR2 polyclonal antibody, biotin
conjugated (bs-10042R-Biotin, Bioss, Woburn, MA). Secondary
antibodies included Goat anti-Rat IgG (H + L) secondary anti-
body, HRP (31470, Thermo Fisher), anti-rabbit HRP (Jackson
labs, 711-036-152), and anti-mouse HRP (Jackson labs, 715-
035-150).
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Statistical analysis

To generate a predictive model in our analysis of both human
and blast injury mouse subjects, we used a cohort of training set
data and linear discriminant analysis, carried out using Matlab.
We tested our predictive models using an independent, user
blinded test set to avoid the effects of data overfitting. We evalu-
ated the predictive value using Fisher's exact test. No outlier
analysis was performed. Sample size was chosen using Fisher's
exact test to measure the p-value of our device's classification.

Data availability

In this study, we include all raw data to both allow others to
confirm our findings (ESI† Data 1) and to encourage the com-
munity to use our data to further improve TBI diagnostics.
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