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Abstract

The diagnosis and prognosis of traumatic brain injury (TBI) is complicated by variability in the type and severity of

injuries and the multiple endophenotypes that describe each patient’s response and recovery to the injury. It has been

challenging to capture the multiple dimensions that describe an injury and its recovery to provide clinically useful

information. To address this challenge, we have performed an open-ended search for panels of microRNA (miRNA)

biomarkers, packaged inside of brain-derived extracellular vesicles (EVs), that can be combined algorithmically to

accurately classify various states of injury. We mapped GluR2+ EV miRNA across a variety of injury types, injury

intensities, history of injuries, and time elapsed after injury, and sham controls in a pre-clinical murine model (n = 116), as

well as in clinical samples (n = 36). We combined next-generation sequencing with a technology recently developed by

our lab, Track Etched Magnetic Nanopore (TENPO) sorting, to enrich for GluR2+ EVs and profile their miRNA. By

mapping and comparing brain-derived EV miRNA between various injuries, we have identified signaling pathways in the

packaged miRNA that connect these biomarkers to underlying mechanisms of TBI. Many of these pathways are shared

between the pre-clinical model and the clinical samples, and present distinct signatures across different injury models and

times elapsed after injury. Using this map of EV miRNA, we applied machine learning to define a panel of biomarkers to

successfully classify specific states of injury, paving the way for a prognostic blood test for TBI. We generated a panel of

eight miRNAs (miR-150-5p, miR-669c-5p, miR-488-3p, miR-22-5p, miR-9-5p, miR-6236, miR-219a.2-3p, miR-351-3p)

for injured mice versus sham mice and four miRNAs (miR-203b-5p, miR-203a-3p, miR-206, miR-185-5p) for TBI

patients versus healthy controls.
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Introduction

A key hurdle to improving the treatment of traumatic brain

injury (TBI) is the current lack of molecular biomarkers that

can be used to accurately diagnose a patient’s injury, track their

recovery, and guide their treatment.1–4 While there has been great

interest in the discovery of TBI biomarkers and enormous progress

made in the development of ultrasensitive platforms to detect

sparse molecular markers in blood and cerebral spinal fluid,4–12 the

development of clinically useful blood test has been confounded by

the variability in both injuries and in individual patients’ response

to injury.7

Much work has been done to discover biomarkers inspired by

existing knowledge of the neuropathology of TBI. For example,

degenerating axons and neurons are known to release neurofila-

ments and other proteins such as ubiquitin C-terminal hydrolase L1

(UCH-L1) into the cerebrospinal fluid and blood, and reactive astro-

cytes release calcium-binding protein B (S100B) and glial fibrillary

acidic protein (GFAP) into the same fluid compartments.4,6,10,11,13,14

Additionally, various microRNA (miRNA) biomarkers have been

clinically evaluated, including miR-21, miR-93, and miR-191.5,7–9

Currently discovered biomarkers have demonstrated positive

predictive values for identifying injured patients versus healthy

controls4–7,10,11,13,14 and limited effectiveness at predicting states

of injury5–7 and recovery.5,7–9 Several groups have measured

multiple markers and combined these multiple measures algo-

rithmically to diagnose TBI.4,15 Recently, protein biomarkers

(UCH-L1, GFAP) were approved as a diagnostic by the U.S. Food
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and Drug Administration (FDA) that can identify patients with in-

tracranial lesions following a head injury without the need for a

computed tomography (CT) x-ray scan (FDA, 2018).

However, despite these recent successes, because of the wide

variety of injury types and severities endemic to TBI, and the

unique and dynamically changing combination of multiple en-

dophenotypes of an injured and recovering brain—including

axonal shearing, inflammation, glial cell damage, brain edema,

and vascular injury16—it has remained challenging to adequately

map any biomarker or sets of biomarkers to an individual’s unique

state of injury and recovery to improve clinical outcomes.

To address this challenge, we present an open-ended approach

for the development of a highly multiplexed TBI biomarker panel.

Rather than relying solely on previous knowledge of the degener-

ative changes in the brain following a TBI, we have instead com-

bined three technologies to identify combinations of markers to

classify specific states of injury. We use Track Etched Magnetic

Nanopore (TENPO) sorting17–20 to isolate brain-derived GluR2+
extracellular vesicles (EVs) directly from plasma, next-generation

sequencing to map the miRNA biomarkers packaged inside these

EV biomarkers, and statistical machine learning algorithms to al-

gorithmically combine these biomarkers to classify the specific

injury state. Here, our goal is to enrich for a subset of brain-derived

EVs that express GluR2 protein that can provide a signature for

various states of brain injury, rather than to isolate a pure brain-

derived EV population. Our previous work in this area demonstrated

the value of using the RNA cargo of EVs to diagnose specific injury

states, but the discovery of these RNA marker was limited to only

injured versus sham subjects using a murine blast model.17

In this work, we sequenced the brain-derived EV miRNA cargo

in murine TBI models (n = 116) with a variety of injury types

(controlled cortical impact [CCI] and Blast), multiple injury in-

tensities, history of injuries, and time elapsed since the injury (1 h to

14 days). We also sequenced the brain-derived EV miRNA cargo in

clinical samples (n = 36), to accomplish the following goals:

1. We generated a map of biomarkers that follow injury, both

in the acute phase and days to weeks after the injury, which

we used to classify specific states of injury.

2. We identified candidate brain-derived EV activated signal-

ing pathways present in the GluR2+ EV miRNA, shared

between the murine model and the clinical cohort, to connect

the miRNA biomarkers to underlying mechanisms of TBI.

3. We evaluated and validated strategies to apply statistical

machine learning on the EV RNA biomarkers to classify

injury types, intensities, history of prior injury, and time

elapsed since injury.

4. We validated that this machine learning–based biomarker

panel approach has the potential for translation to clinical use.

Methods

Mouse plasma collection

All mouse work was approved by Institutional Animal Care and
Use Committee (IACUC). Blood was collected from mice by car-
diac puncture and collected in sodium citrate BD Vacutainer blood
collection tubes (BD Biosciences). Blood was centrifuged at 1500 g
for 10 min and plasma was recovered, followed by a second spin at
3000 g for 10 min to minimize cellular contamination.

Human sample collection

TBI subjects and healthy control subjects were enrolled in a
prospective biorepository study at the University of Pennsylvania.

The study was approved by the Institutional Review Board of the
University of Pennsylvania (IRB Protocol # 825783; initial ap-
proval 10/16/2016; most recent approval 10/7/2018). All TBI
subjects required admission to Penn Presbyterian Medical Center,
the Level 1 trauma center of the University of Pennsylvania, for
their traumatic injuries. All TBI subjects included in this analysis
had: 1) high clinical suspicion of non-penetrating acute TBI, de-
termined by the treating physicians for which a head CT scan was
performed; 2) age ‡18 years; 3) interval between time of injury and
enrollment <24 h; and 4) ability to obtain informed consent from
the subject or a legally authorized representative. The majority of
the TBI subjects sustained mild TBIs, as defined by a post-
resuscitation Glasgow Coma Scale (GCS) score of 13–15. For this
study, we analyzed plasma samples that were collected <24 h from
injury and were immediately aliquoted and frozen at -80�C until
further analyses.

CCI

CCI experiment was performed on adult male (12–14 weeks old)
C57BL/6J mice (Charles River, MA). All CCI injuries were per-
formed as previously described.71 Anesthetized mice (isoflurane
3.0% induction, 1.5–2.0% maintenance in medical grade air: 21%
oxygen, 78% nitrogen) were placed in a stereotaxic frame.
A manual craniotomy was performed on the right parietotemporal
region of the skull midway between bregma and lambda using a
4 mm diameter trephine (CMA7431058, Harvard Apparatus, Hol-
liston, MA). The skull flap was removed and the animal was loaded
into the CCI machine. Isoflurane was stopped 30 sec before CCI.
A moderate injury was produced at an average impact velocity of
2.4 m/sec with an impact depth of 1.0 mm, centering the impact at
approximately -2.5 mm bregma. Sham control animals underwent
craniotomy, placed in the stereotaxic holder, but no CCI was de-
livered. Following the CCI, the exposed area was sutured and mice
were allowed to emerge from anesthesia in a heated cage.

Blast injury

Adult male (12–14 weeks old) C57BL/6J mice (Charles River,
MA) were exposed to a Blast overpressure insult that mimicked
Blast-induced traumatic brain injury.23 Anesthetized mice (iso-
flurane 3.0% induction, 1.5–2.0% maintenance) were used as
sham controls. Anesthetized mice were prepared for injury by
placing sound insulating foam into each ear canal. Mice were
loaded into a holder positioned 1 cm away from the end of the
shock tube, positioned with their snouts facing the shock tube.
Head motion was limited with a metal rod encircling the snout and
placing a cervical collar between the occiput and shoulders.
A single overpressure of either 215 – 18kPa or 415 – 41 kPa was
delivered and the animal was immediately removed from the
holder assembly. We strictly followed the guidelines from the
University of Pennsylvania office of University Laboratory Animal
Resources using approved protocols, and animal care and use was in
accordance with the guidelines specified by the IACUC of the
University of Pennsylvania.

TENPO device

Using thermal evaporation, 200 nm layer of permalloy
(Ni80Fe20) and 30 nm layer of gold were sequentially deposited
(Kurt Lesker PVD-75; Singh Nanofabrication Facility, University
of Pennsylvania) on a track-etched polycarbonate membrane with
600 nm pores (Whatman). Moisture-resistant polyester film
(McMaster-Carr, 0.004† thick) and solvent-resistant tape (McMaster-
Carr) were cut using laser micromachining (Universal Laser VLS
3.50) and used to make layers of TENPO device. A reservoir was
made using an optically clear cast acrylic sheet (McMaster-Carr) and
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an output was made using a polydimethylsiloxane piece. A tygon
tubing was connected to the output and a negative pressure supply
(Programmable Syringe Pump; Braintree Scientific).

EV capture using TENPO device

Biotin anti-human, mouse GluR1/GluR2 antibody (Bioss) was
incubated with the sample for 20 min at room temperature with
shaking and anti-biotin ultrapure microbeads (Miltenyi Biotec) was
incubated with the sample for 20 min for room temperature sub-
sequently. The sample was loaded to the reservoir of the TENPO
device and a programmable syringe pump (Braintree) was used to
apply negative pressure.

RNA isolation

Second part of the ExoRNeasy serum/plasma kit (Qiagen) was
used for RNA extraction. We first added 700 lL of QIAzol lysis
reagent (Qiagen) on chip and then collected the lysate using a
negative pressure and used the second part of the ExoRNeasy se-
rum/plasma kit. The exosomal RNA was stored at -80C or pro-
cessed immediately for further analysis.

RNA sequencing

QIAseq miRNA library kit (Qiagen) was used to make a library
of exosomal RNA. BioAnalyzer was used to quantify RNA. The
library was sequenced using a HiSeq 2500 kit (Illumina, Next-
Generation Sequencing Core; University of Pennsylvania).

Sequencing data and Kyoto Encyclopedia of Genes
and Genomes pathway analysis

Expression was quantified using a modified version of the UPenn
SCAP-T RNA-Seq expression pipeline (Fisher, S A., ‘‘Sa-
fisher/Ngs.’’ GitHub, 2017), aligning to the hg38 and mm10 ge-
nomes for human and mouse, respectively. The minimum fragment
length allowed past the TRIM module was reduced to 16 bases.
STAR72 version STAR_2.4.0h1 was used, and was allowed to map
as few as 16 bases in a read by setting ‘‘—outFilterMatchNmin 16’’
and ‘‘—outFilterMatchNminOverLread 0.’’ The number of allowed
mismatches was capped at one using ‘‘—outFilterMismatchNmax
1,’’ and ‘‘—alignIntronMax 1’’ was set to prohibit calling unanno-
tated splices. Expression counts were normalized by DESeq273
and quantified using VERSE74, using Gencode 25 and UCSD
mm10 gene annotations, combined with MirBase v21 annotations
for 3p and 5p microRNA. For Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis, DIANA mirPath v. 3.0 was
used to identify the pathways of target genes regulated by exosomal
miRNAs.

Machine learning data analysis

Using Matlab (R2016b), we performed an averaging of scores
generated by five different built-in statistical learning algorithms
(KNN, SVM, LDA, Logistic regression, Naive Bayes). To prevent
overfitting, we performed 5-fold cross-validation and averaged the
performance from 500 repeated runs for the classification with
small sample sizes. For the classification with enough sample sizes,
we created a separate training set and an independent blinded test
set to better prevent overfitting.

Results

RNA sequencing of the EV RNA cargo from TBI mouse
models and a clinical cohort

We used two different murine models of traumatic brain injury

in this study, CCI and Blast, allowing us to control the injury and

the time-point elapsed between injury and sample collection with a

precision that is not possible in clinical samples.21 Our murine

study was designed to include mice with a diverse set of injuries and

recovery times. The study included 116 mice, of which 56 were

given a CCI, 60 given a Blast injury,22,23 and 36 given sham con-

dition (Fig. 1A). For each of these injury types, we used two dif-

ferent injury intensities. For the CCI injuries, we performed both

mild (n = 20) and moderate injuries (n = 19).24 For the Blast in-

juries, we performed both low (n = 20, 215 kPa) and high (n = 20,

415 kPa) Blast pressure injuries. For repetitive injuries, we per-

formed the second injury 24 h after the first injury, including mild

CCI followed by mild CCI and low Blast followed by low Blast.

For each of these injury conditions, we collected samples at

t = 1 h, 1 day, 4 days, and 14 days after injury. Due to the limited

volume of mouse plasma, we performed terminal blood collection

for each combination of injury condition and time-point after in-

jury, rather than perform longitudinal sample collection from the

same animals. For each condition and time-point after injury, four

to five biological replicates per condition were analyzed. For each

condition and time-point after injury, we measured sham controls

(n = 36) that were processed identically to the injured mice, with the

exception of the injury itself. Additionally, we sequenced 16 TBI

patients with an Abbreviated Injury Score (AIS) = 1–5 and 20

healthy controls. Healthy controls were used rather than orthopedic

controls, as has been the standard in previous studies.5,25,26 For

each sample, we used our recently developed magnetic nanopore

device (TENPO) to specifically enrich for GluR2+ EVs from 1 mL

of plasma from the human samples and 0.5 mL of plasma for the

mice samples.17

Comparison of the EV RNA profile in mice
with clinical samples

To validate that our animal models present EV RNA biomarkers

representative of what is found in clinical samples, we first com-

pared signaling pathways activated in brain-derived EVs of TBI

mouse models (CCI, Blast) with those of TBI patients with various

injury intensities (AIS = 1–5). We identified 56 significantly acti-

vated pathways in brain-derived EVs for TBI patients compared

with healthy controls. Of these 56 pathways, 41 homologous

pathways were co-identified in our TBI mouse models (Fig. 1B).

The high percentage of co-identified pathways between mouse and

human indicates the potential that the biomarkers that we find in our

mouse model can be translated to clinical study, which encouraged

us to use our mouse models to study the capability of our platform

to identify specific injury states. In the sequencing data for the

samples from the murine models and the clinical samples, we were

able to measure a total of 451 miRNA and 109 miRNA (average

normalized counts >10), respectively.

Dynamics of brain-derived EV miRNA cargo
following injury

To track the dynamic changes in EV miRNA biomarkers at time-

points following injury, we calculated the average fold changes of

EV miRNA between injury states and their corresponding sham

controls generated for each time-point. In these analyses, we in-

cluded all EV miRNA biomarkers (n = 396) that were significantly

differentially expressed in at least one injury state (adjusted

p < 0.05), compared with its appropriate sham control (Fig. 2A, 2E).

By profiling EV miRNAs from different injury states, we first

identified four major trends:
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1. Higher injury intensities (Fig. 2C, 2G) generate more dif-

ferentially expressed miRNAs than lower injury intensities

(Fig. 2B, 2F) for both Blast injury and CCI.

2. There are time-points after the injury with no significantly

different miRNAs compared with sham controls.

3. The molecular signatures of both Blast injury intensities and

repetitive Blast become similar over time to those of sham

controls (Fig. 2B-D), whereas the molecular signatures of

both CCI intensities (Fig. 2F, 2G) indicate two different

stages—acute response and a longer-term response to the

injury.

4. Repeat injuries appear to suppress the acute response (< 4

days) for both Blast (Fig. 2E) and CCI injuries (Fig. 2H), and

more significantly for CCI.

Mice with repetitive mild CCI injuries had a pattern distinct

from that of a single injury. For mice with a previous CCI, the EV

miRNAs biomarkers in the acute phase were notably suppressed

compared with mice with a single CCI (Fig. 2H). Notably, at 1 h,

there was not a single EV miRNA that had a significant fold change,

in contrast to the mice with only a single injury where there were 72

miRNA markers that had a significant fold change. At 14 days, the

EV miRNA profile of the mice with repeat CCI was no longer

suppressed and resembled that of mice with a single CCI at the

same time-point.

Correlation analysis of brain-derived EV miRNA cargo
following injury

To study the dynamics of the biomarkers associated with dif-

ferent injury states, we characterized the similarity of EV RNA

cargo between mice with different injury types and intensities over

time. We found that the GluR2+ EV miRNA profiles for CCIs and

Blast injuries were more different from one another than were the

differences between subjects with different injury intensities or

times elapsed after injury (Fig. 3A-D). In particular, in the acute

phase for all four time-points post-injury, the Blast and CCI injuries

had no or poor correlation with one another (R values from -0.5 to

0.5; Fig. 3A). Different injury intensities of the same injury type

were similar to one another at short times after the injury (1 h;

FIG. 1. RNA sequencing to map the molecular changes in brain-derived extracellular vesicles (EVs). (A) A schematic of various
injury states designed for this study. The injury states for mice include different types (CCI, Blast), different intensities within each type
(mild CCI, moderate CCI, low Blast, high Blast), different histories of injury (single, double), and various time-points post-injury (1 h, 1
day, 4 days, 14 days) for all the states including sham controls. The injury states for human include traumatic brain injury (TBI) patients
with Abbreviated Injury Score 2–5 and healthy controls. (B) We compared signaling pathways that were activated in brain-derived EVs
of TBI mice to those of TBI human patients. A total of 56 pathways were found to be significantly activated ( p < 0.05) in TBI patients,
and of these 56 pathways, 41 pathways were detected to be significant ( p < 0.05) in TBI mouse models. SPRP, signaling pathways
regulating pluripotency; GB, glycosaminoglycan biosynthesis. Color image is available online.
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Fig. 3A) and at long times after the injury (14 days; Fig. 3B; R

values from 0.5 to 1) but not at intermediate times (1 day, 4 days;

Fig. 3C, 3D; R values from -0.25 to 0.75). For each of these ana-

lyses, we calculated the Pearson correlation coefficients (R) for

pair-wise comparison of the EV RNA profile from each different

injury types and intensities at different time-points post-injury.

For repetitive injuries, each injury type (CCI, Blast) showed a

distinct trajectory of their correlation with a single injury over

time. A single mild CCI and the repetitive CCI were highly

correlated with one another at the acute phase (1 h), but then

became less correlated over time at the 1-day and 4-day time

periods. However, at 14 days we observed the most correlation

between single and repeat injury (R = 0.91; Fig. 3E). A single

low Blast and our repetitive Blast were the most correlated at

the acute phase (1 h) and the correlation decayed gradually

over time.

FIG. 2. Significantly different microRNAs (miRNAs) from different injury states. (A) The mean fold changes calculated using
miRNA expression level changes of two different intensities of Blast injuries (low-215 kPa, high-415 kPa) and two different histories of
Blast injuries (single, double) to their own sham controls at four time-points post-injury (1 h, 1 day, 4 days, 14 days). Error bars
represent standard error from 396 extracellular vesicle (EV) miRNA biomarkers. (B) Differentially expressed miRNAs over time (1 h, 1
day, 4 days, 14 days) for low Blast injury. (C) Differentially expressed miRNAs over time (1 h, 1 day, 4 days, 14 days) for high Blast
injury. (D) Differentially expressed miRNAs over time (1 h, 1 day, 4 days, 14 days) for repetitive Blast injury with two injuries. (E) The
fold changes calculated using miRNA expression level changes of two different intensities of CCI (mild, moderate) and two different
histories of CCIs (single, double) to their own sham controls at four time-points post-injury (1 h, 1 day, 4 days, 14 days). Error bars
represent standard error from 396 EV miRNA biomarkers. Color image is available online.

FIG. 3. Correlation of molecular changes of different injury states. The Pearson correlation coefficients calculated using microRNA
expression level changes from different types (Blast vs. CCI) of injuries and different intensities (mild/low, moderate/high) of injuries
within the types at (A) 1 h, (B) 1 day, (C) 4 days, (D) 14 days. (E) The Pearson correlation coefficients between single injury and
repetitive injury (double) over time for Blast and CCI. Color image is available online.
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Enriched signaling pathways in brain-derived EV RNA
cargo following TBI

To evaluate whether the identified molecular signatures in brain-

derived EVs relate to underlying mechanisms of TBI, we per-

formed KEGG pathway analysis using significantly differentially

expressed miRNAs for each injury state. We identified 50 pathways

that were universally significantly activated (adjusted p < 0.05)

across all injury states compared with controls, which include

glutamatergic synapse, axon guidance, PI3K-Akt signaling path-

way, and mitogen-activated protein kinase (MAPK) signaling

pathway. Notably, proteoglycans in cancer pathway was the most

activated pathway for both low and high intensities of Blast injury

and moderate CCI (Supplementary Fig. S1).

Several interesting patterns emerged from the KEGG pathway

analysis. Blast and CCI share more pathways in their acute response

(1 h) than they do for their persistent response (14 days; Supple-

mentary Fig. S2A, S2B). Mild and moderate CCI (Supplementary

Fig. S2A) shares more pathways between their acute and persistent

responses than either Low or High Blast does (Supplementary

Fig. S2B). Mild and moderate CCI shares more pathways between

their acute and persistent responses (Supplementary Fig. S2C) than

Low or High Blast does (Supplementary Fig. S2D). Additionally,

the pathways activated by Blast decays more over time while CCI

has more pathways that persist out to the 14-day time period.

Classification of TBI using statistical learning–based
classification on the brain-derived EV miRNA cargo

To identify combinations of miRNA biomarkers that can predict

specific states of injury in individual patients, we apply statistical

(i.e., machine) learning algorithms. These machine learning–de-

fined biomarkers algorithmically combine individual EV miRNA

into a composite marker that can be more accurate than its con-

stituent features. To diminish the effects of overfitting, which can

plague the application of machine learning to relatively small da-

tasets (M < 100),27 we used an ensemble of machine learning al-

gorithms (linear discriminate analysis, logistic regression, Naive

Bayes, SVM, K-nearest neighbor). By averaging the prediction of

multiple models, a more accurate prediction can be achieved than

with any single model, because the fitting of each model to noise is

averaged out across the multiple models.

The work flow of our application of machine learning to our EV

miRNA data is as follows:

1. On a training set of data, we use a least absolute shrinkage

and selection operator (LASSO) to reduce the number of

features from the entire sequencing dataset to a number of

markers appropriate for a portable assay (k < 10). Perfor-

mance is benchmarked by receiving operating characteristic

analysis to map the tradeoff between sensitivity and speci-

ficity, wherein we calculate the area under the curve (AUC).

We also report model accuracy (True Positives/Total Sub-

jects). The input into our feature reduction algorithms were

the normalized counts of 451 miRNAs (average raw counts

>10) from the sequencing data (Fig. 1A).

2. We then train a machine learning model using this discov-

ered panel of biomarkers to classify the intended states of

injury using a training set of data. To evaluate the models at

this stage, we use k-fold cross-validation in which a single

set of data is partitioned many times into a training and a test

set and the accuracy averaged over these many combinations

to guard against the effects of overfitting.

3. We finally evaluate the models that we have created by

testing them on a user blinded test set.

We first applied this workflow to the classification of mice with

heterogeneous injury conditions (different time-points, intensities,

types) from sham-injured mice. We included subjects with a di-

versity in injury severity, type, and time elapsed since injury to

model the injuries observed in a clinical setting. We selected fea-

tures and trained our machine learning model using a training set

(n = 20 sham, n = 47 injured) and evaluated the classification using a

separate user-blinded test set (n = 16 sham, n = 32 injured; Fig. 4A)

Here, we included all the injuries except for the repetitive injuries.

Using LASSO, we selected a panel of eight miRNAs (miR-150-5p,

miR-669c-5p, miR-488-3p, miR-22-5p, miR-9-5p, miR-6236,

miR-219a.2-3p, miR-351-3p; Supplementary Fig. S3A) and

achieved an AUC = 0.87 on the training set (Fig. 4B). When we

applied this model to classify the injury state of the mice in the

independent blinded test set, we achieved AUC = 0.79 (Fig. 4C). To

confirm that the performance is specific to the set of miRNA that

we had selected, we compared this result to a control wherein

we evaluated n = 5 sets of eight randomly selected biomarkers

(AUC = 0.63). To confirm that the performance is specific to the

miRNA signature identified by training our machine learning al-

gorithm on our training set, we performed a negative control ex-

periment in which we randomly shuffled class labels to create a

random classifier. This control experiment resulted in an AUC =
0.47, equivalent to random guessing. The performance of our

classifier was significantly better than using randomly selected

features ( p < 0.01) or using a randomly shuffled labels ( p < 0.01).

To consider the effect of the heterogeneity of the underlying data

on the performance of our classifications, we additionally evaluated

the performance of classifying injured versus uninjured using the

same panel of miRNA, but training and evaluating the machine

learning to classify Blast versus Blast sham and CCI versus CCI

sham separately. We found that when we used a separate training

for Blast versus Blast sham (AUC = 0.81) and CCI versus CCI sham

(AUC = 0.89), versus training them all together, we achieved a

significantly improved performance ( p < 0.01). When we addi-

tionally identified sets of features for Blast versus Blast sham and

CCI versus CCI sham, we achieved AUC = 0.88 for Blast versus

Blast sham using five miRNAs (miR-669c-5p, miR = 708-5p, miR-

141-3p, miR-6538, miR-8112; Supplementary Fig. S3C) and

AUC = 0.94 for CCI versus CCI sham using three miRNAs (miR-

351-5p, miR-219a.2-3p, miR-409-3p; Supplementary Fig. S3D).

We found that when we identified features and trained our model

for Blast versus Blast sham and CCI versus CCI sham separately,

versus using a single panel and training them all together, we

achieved a significantly improved performance ( p < 0.01).

We next applied our machine learning workflow, using the same

dataset, to classify the type of injury that the mice were subject to

(i.e., CCI vs. Blast; Fig. 4D). To validate our machine learning

approach, the mice with CCI and Blast had purposefully hetero-

geneous injury conditions (different time-points, intensities). We

created a training set (n = 24 Blast, n = 23 CCI) and validated the

classifier using an independent blinded test set (n = 16 Blast, n = 16

CCI). Using LASSO, we selected a panel of four miRNAs (miR-

143-3p, miR-219a.2-3p, miR-1191a, and miR-708-5p; Supple-

mentary Fig. S3B) and achieved AUC = 0.97 on the training set

(Fig. 4E). When we applied this model to classify the type of injury

in the independent blinded test set, we achieved AUC = 0.87

(Fig. 4F). We compared the performance of this classifier to

classification using n = 5 sets of four randomly selected miRNA
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FIG. 4. Machine learning detected microRNA (miRNA) signatures for the diagnosis of traumatic brain injury (TBI) states. (A) Using
machine learning, we classified injured mice versus uninjured mice (sham) in a heterogeneous set of mice with different injury
intensities, post-injury times, and injury types, and sham mice with different post-anesthesia times. (B) We screened for miRNA panels
using least absolute shrinkage and selection operator on the Training Set. The best performing panel based on its area under the curve
(AUC) using cross-validation, was selected. (C) We used this panel of eight miRNA biomarkers on the user-blinded test set to classify
injured versus uninjured. A receiver operating characteristic (ROC) curve is shown for this classifier, which achieved an AUC = 0.79.
We compared this result to a control wherein we used five sets of randomly selected sets of eight randomly selected biomarkers
(AUC = 0.63) and a control wherein we randomly shuffled the class labels (n = 5) to confirm the specificity of the TBI classifier
(AUC = 0.47). (D) We classified CCI mice from Blast mice using the same workflow as above. (E) A panel of four miRNA biomarkers
were selected. (F) An AUC = 0.87 was achieved, compared with AUC = 0.53 using randomly selected (n = 5) sets of four miRNA
features, and AUC = 0.52 using (n = 5) randomly shuffled class labels. (G) We performed a four-way comparison to classify different
elapsed time post-injury (1 h, 1 day, 4 days, 14 days) for high Blast, low Blast, mild CCI, and moderate CCI. (H) We classified repetitive
Blast injury from sham controls with 5-fold cross-validation and screened different number of miRNA panels with their corresponding
AUCs. (I) We classified repetitive CCI from sham controls with 5-fold cross-validation and screened different number of miRNA panels
with their corresponding AUCs. Error bars in all plots represent Standard Error. In all ROC plots, for control analyses where multiple
classifiers are considered, one example ROC curve is shown. Color image is available online.

2430



(AUC = 0.53) and to classification using randomly shuffled class la-

bels (AUC = 0.52). Our classifier achieved significantly better per-

formance than these controls ( p < 0.001 and p < 0.001, respectively).

We next separately attempted to classify the time elapsed after

injury for animals that were injured with high Blast (415 kPa), low

Blast (215 kPa), moderate CCI, and mild CCI injuries. We achieved

accuracies of 98%, 89%, 75%, and 84%, respectively (Fig. 4G). In

this analysis, because there were not enough subjects for an inde-

pendent test set, we instead used 5-fold cross-validation. First, we

evaluated the value of selecting features by comparing the perfor-

mance of the features identified using LASSO to n = 5 sets of

randomly selected features (random miRNA). Second, we included

a negative control experiment wherein we randomly shuffled the

labels on the training data (control). The accuracies of the TBI

classifiers of all four groups were significantly different from their

control tests (high Blast: p = 0.003 for random miRNA, p < 0.001

for control; low Blast: p < 0.001 for random miRNA, p < 0.001 for

control; moderate CCI: p = 0.001 for random miRNA, p < 0.001

for control; mild CCI: p = 0.001 for random miRNA, p < 0.001 for

control).

Additionally, we attempted to classify repetitive injuries from

sham controls. For repetitive Blast injury, we achieved a classifi-

cation with an AUC = 0.88 using seven miRNAs (miR-10a-5p,

miR-154-5p, miR-669c-5p, miR-30c.1-3p, miR-199a-5p, miR-

27a-3p, let-7e-3p; Fig. 4H). For repetitive CCI, we achieved an

AUC = 0.84 using eight miRNAs (miR-1843a-5p, miR-219a.2-3p,

miR-467c-5p, miR-181c-3p, miR-669c-5p, miR-1968-5p, miR-

378b, miR-203-5p; Fig. 4I).

To demonstrate the translatability of the biomarker discovery

methodology of our work using TBI mouse models to clinical di-

agnosis, we applied the same approach to human patient samples.

We sequenced miRNAs packaged in GluR2+ EVs from n = 16 TBI

patient samples and n = 20 control samples (Fig. 5A). With 109

detected miRNAs (average normalized counts >10), we used ma-

chine learning to classify injure patients versus controls (n = 20

controls, n = 16 TBI patients). We used k-fold (k = 5) cross-

validation to guard against the effects of overfitting. We achieved

an AUC = 0.84 classifying injured versus healthy (Fig. 5B). The

panel of biomarkers to achieve this classification comprised of

GluR2+ enriched EV miRNA, including miR-203b-5p, miR-203a-

3p, miR-206, miR-185-5p (Supplementary Fig. S4). To confirm

that the performance arises from a signature of injury and not to an

artifact in the data, we performed a negative control experiment

where we random shuffled the labels on the training data, which

resulted in an AUC = 0.43, equivalent to random guessing.

Discussion

We developed an open-ended approach to identify multiplexed

biomarkers for TBI that can classify specific injury states for in-

dividual subjects. To this end, we performed a multidimensional

mapping of GluR2+ enriched EV miRNA using a recently devel-

oped magnetic nanopore based TENPO EV isolation technology

and next-generation RNA sequencing. We sequenced the miRNA

cargo of EVs from mice subjected to a variety of established models

of TBI, with samples collected at multiple time-points elapsed after

the injury. The profiles of EV miRNA for each injury state and their

distinct dynamic change in the time after injury allowed us to

classify the specific injury status of individuals using supervised

machine learning. We have tested the potential translatability of our

approach by applying it to a small cohort of TBI patients with

different injury levels, as well as healthy controls, and demon-

strated the ability to discriminate injured patients from healthy

controls. Due to the differences between the rodent and human

central nervous system and mechanisms of traumatic brain injury,28

we focused on testing the translatability of our methodology rather

than discovering biomarkers from animal models and applying the

same markers to TBI patients.

As has been done in previous studies,17,18 the biomarkers iden-

tified in this study can be implemented as a quantitative polymerase

chain reaction (qPCR¢A)-based test. In previous work by our lab,

we showed that cancer could be diagnosed using QPCR measured

RNA signatures present in EpCAM+ extracellular vesicles, which

could not be resolved in the total extracellular vesicle population.18

To classify specific states of injury, we isolated a subset of the

miRNA that has been sufficiently enriched to be brain-derived by

FIG. 5. Clinical diagnosis of traumatic brain injury (TBI) using microRNA (miRNA) signatures from brain-derived extracellular
vesicles. (A) TBI patient data is included that specifies orthopedic injury score, injury severity score (ISS), Abbreviated Injury Score
(AIS), and Glasgow Coma Scale (GCS). Sample IDs are blinded and labeled as numbers. (B) Classification of TBI patients and healthy
controls using a machine learning algorithm. Randomly shuffled labels were created for random classifier. The receiver operating
characteristic curve, the truth table, and the miRNA panel are included.’ Color image is available online.
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targeting GluR2+ EVs. For future studies, it will be informative to

compare the miRNA content derived from EVs to miRNA from

cell-free plasma or serum.

The pathways that we identified in the GluR2+ EV miRNA,

isolated from both clinical and pre-clinical samples, overlapped

with several commonly explored and well documented changes in

the brain after traumatic injury. Certainly, alterations in synaptic

plasticity and maintenance of synaptic strength underlie the recovery

response29–41 after injury, and our evidence shows that these path-

ways are likely present across both human and mouse sequencing

data. Likewise, the putative involvement of dopaminergic, cho-

linergic, and glutamatergic synaptic signaling pathways are also

consistent with past studies in pre-clinical42–45 and, in some cases,

clinical studies.46,47 The involvement of these synapse subtypes also

explains why several addiction and reward pathways appeared in our

pathway analysis, as some of these synapse subtypes play key roles

in different types of addiction. A number of intracellular signaling

pathways consistent with past TBI studies also appeared in our

profiling of brain derived exosomes, including those related to

maintaining cytoskeletal integrity, key second messenger systems

that include MAPK,48–50 PI3K-Akt,51–56 and cAMP,57,58 and both

transcriptional and translational regulation (mTOR,59–64 FoxO65).

There are several aspects of the TENPO that can be further

developed to expand the system’s functionality to better improve

diagnostics for TBI and to better study TBI’s underlying mecha-

nisms. In this study, we isolated brain-derived EVs using GluR2

expression on their surface, enriching for EVs shed from neurons.66

As the brain consists of multiple cell types, expanding the surface

markers to separately target astrocytes and microglia, for example,

can provide an increasingly comprehensive view of how these

various cell types respond to injury.67–69 Additionally, the activated

signaling pathways measured in this study can be further related to

existing and emerging treatments to provide additional information

on drug targeting and treatment guidance. Moreover, by collecting

a larger and more diverse set of clinical samples from patients with

TBI, we will be able to apply this technique to answer practical

questions in clinical diagnostics. For example, we can profile the

EV miRNA of TBI patients that develop secondary brain injury and

those that do not, to better understand the multidimensional cascade

of secondary brain injury and guide multiple therapeutic options for

personalized and targeted therapies.70
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