
Relationship between structural modeling and hyperelastic

material behavior: application to CNS white matter

D. F. Meaney

Abstract Recent measurements of the material properties of brain tissue allow an examination of the
underlying microstructural basis in both physiological and pathophysiological conditions. The pur-
pose of this study is to develop a mathematical relationship between microstructurally based models
of the central nervous system (CNS) white matter and equivalent hyperelastic material models. For
simplicity, time dependent material behavior is not included in this formulation. The microstructural
representation is used to formulate structural property relationships for highly oriented white matter,
and is mathematically compared to one isotropic and two anisotropic hyperelastic formulations. For
the anisotropic characterizations, the population of axons in the white matter is assumed to align
along one preferred direction of the material, yielding a transversely isotropic formulation. Relatively
simple strain–energy functions incorporating material anisotropy provide sufficient flexibility to
model the nonlinear behavior predicted from structurally based models, although the tangential
stiffness of the hyperelastic approaches does not follow completely the behavior of the structurally
based formulations. This analysis is an initial step towards linking microstructural aspects of the tissue
to material models commonly used for large deformations, and may be an important step in relating
predicted tissue deformation to the deformation and stress of cellular and subcellular structures.

1
Introduction

Most poor neurologic outcomes in survivors of brain or spinal cord injury result from damage to the
axonal process of neurons. Mild axonal damage appears as only a faint swelling of the axonal process,
while severe axonal damage appears as a physical tear of the axonal process. Despite its significance,
the in vivo mechanical parameters responsible for the traumatic white matter damage have been
established only recently (Bain and Meaney 2000). It is not yet known, however, how macroscopic
deformations and stresses that occur at the mechanical threshold levels are transferred to the
underlying cellular structures of the white matter to cause injury.

Recent in vitro models demonstrate the importance of particular injury mechanisms for axonal
damage and allow a better comparison of cellular deformation and response. These models do not
contain the organotypic architecture present within the brain, however, and some axons only remain
viable for hours following injury. Stretch studies on the myelinated fiber (Gray and Ritchie 1954;
Saatman and Thibault 1993; Rydevik et al. 1990; Wall et al. 1991) indicate changes in fiber mor-
phology, action potential propagation, and failure thresholds as the amount and rate of elongation are
changed. These fiber preparations, though, are from peripheral nerve bundles and are difficult to
maintain. Dynamically stretching an unmyelinated squid giant axon (Galbraith et al. 1993) causes a
change in the resting membrane potential, and can elicit action potentials along the axon if the stretch
is sufficiently large. Although important for mechanism studies, it is difficult to evaluate treatments
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in this model since even an uninjured axon survives for only a few hours in the saline bath. New
cell culture models of axonal injury (for a review, see Morrison et al., 1998) offer promise in
understanding more basic mechanisms of cell injury, but presently do not contain myelinated axons,
mixed cell populations, or offer good measures of functional outcome.

A new in vivo model using the guinea pig optic nerve offers many advantages because it has the
organotypic nature of in vivo central nervous system (CNS) tissue, can be quantifiably deformed in
vivo, and reproduces the morphology of traumatic axonal damage in humans (Gennarelli et al. 1989).
The nerve contains axonal processes from the retinal ganglion cells, astrocytes, oligodendrocytes, a
vascular network, and is surrounded by a pia/arachnoid/dura sheath. A recent study using this model
established the mechanical parameters associated with the onset of axonal injury in the optic nerve
after a single, dynamic elongation (Bain and Meaney 2000). In this paper, structurally based material
models of the optic nerve are developed that relate tissue strain to the deformation and stress of
subcellular elements that occur during simple elongation of the optic nerve. It is envisioned that a
continuum approximation to a structurally based model of white matter behavior will allow one to use
computationally inexpensive material formulations to predict the response of the brain to impact, yet
maintain a link to the microstructural aspects of the tissue and enable future predictions on the
biological response of the cellular structures from impact or other forms of mechanical loading.

2
Development of the models

Of the many different approaches available for modeling soft tissue behavior, two approaches were
used for this study: (a) an energy based hyperelastic approach to model the continuum properties,
with a specific extension for modeling material anisotropy, and (b) a structural model approach to
model the deformation of cellular structures within the material. Both approaches were used for
modeling white matter tissue, since each has distinct advantages. Some common hyperelastic models
are readily available in commercial finite element packages and therefore offer a means to rapidly use
measured material properties in finite element simulations of the brain subjected to impact. Moreover,
material anisotropy is readily incorporated into these models to model the anisotropic properties of
brain tissue (Prange and Margulies 2002). In contrast, structural models are particularly useful to
estimate thresholds for axons within the optic nerve, since these models are used to predict how
individual axons within the optic nerve elongate during the in vivo tests. Moreover, these structural
models will allow us to examine the thresholds in different regions of the brain by accounting for the
geometric differences between two separate anatomic regions.

For simplicity, each model is formulated without time dependent material behavior. Future studies
will incorporate viscoelastic behavior to improve the fidelity of each material model.

2.1
Hyperelastic formulations

For finite deformations, we consider a general state of deformation described by the deformation
gradient tensor (F):

FiR ¼
oxi

oXR
; i;R ¼ 1; . . . ; 3 : ð1Þ

From this deformation gradient tensor, we define the right (C) and the left Cauchy-Green tensor (B).
Thus,

C ¼ FT � F ; ð2Þ

and,

B ¼ F � FT ; ð3Þ

which have the following specific components:

CRS ¼
oxi

oXR

oxi

oXS
¼ FiRFiS ; ð4Þ

and,
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Bij ¼
oxi

oXR

oxj

oXR
¼ FiRFjR : ð5Þ

To incorporate material anisotropy, the approach used in this paper considers reinforcing fibers
that are oriented along a specific direction in the undeformed state of the material (Spencer 1984). If
the orientation of the fiber population is described by a unit vector (ao), it can be shown that the fiber
stretch (kfiber) as a result of the applied deformation is:

k2
fiber ¼

oxi

oXR

oxi

oXS
aoR

aoS
¼ CRSaoR

aoS
¼ ao � C � ao : ð6Þ

The strain–energy function is unchanged with a rigid body rotation of the reference state; as such, the
strain–energy can be described as a function of the invariants:

I1 ¼ trC ; ð7Þ

I2 ¼
1

2
trCð Þ2�trC2

� �
; ð8Þ

I3 ¼ detC ; ð9Þ

I4 ¼ ao � C � ao ; ð10Þ

and,

I5 ¼ ao � C2 � ao : ð11Þ

One approach for developing a strain–energy function, W say, to describe an anisotropic material is
splitting the function into distinct parts:

W ¼ WðI1; I2Þ þWðI4Þ þWðI5Þ ; ð12Þ

where the first component (W(I1,I2)) describes the isotropic response of the material, and the
remaining two terms describe the directional properties introduced by the reinforcing fibers. An
alternative approach is to express the isotropic response in terms of the principal stretches (k1; k2; k3),
and describe the directional behavior separately through the fourth and fifth invariants:

W ¼ Wðk1; k2; k3Þ þWðI4Þ þWðI5Þ : ð13Þ

For a strain–energy function expressed only in terms of the five invariants, it has been shown
(Spencer 1984) that the Cauchy stress tensor (r) for an incompressible material is expressed as:

r ¼ 2
oW

oI1
B� oW

oI2
B�1 þ I4

oW

oI4
a� aþ I4

oW

oI5
a� B � aþ a � B� að Þ

� �
� pI ð14Þ

and p is a reaction pressure due to the material incompressibility. If the alternative approach (Eq. 13)
is used, the stress tensor assumes a slightly different form:

r ¼ risotropic þ 2 I4
oW

oI4
a� aþ I4

oW

oI5
a� B � aþ a � B� að Þ

� �
� pI ; ð15Þ

where

rij;isotropic ¼ 2FiRFjS

X3

a¼1

oW

oka

oka

oCRS
; ð16Þ

and a ¼ F � a0 denotes the fiber direction in the deformed configuration.
From the Cauchy stress description, the first Piola-Kirchhoff stress tensor (T) can be computed

directly:

Tij ¼ ria
oXj

oxa
: ð17Þ
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Simple tension gives ðk1 ¼ k; k2 ¼ k3 ¼ k�1=2Þ

½F� ¼
k 0 0
0 1=

ffiffiffi
k
p

0
0 0 1=

ffiffiffi
k
p

2

4

3

5 ; ð18Þ

where the material is considered incompressible. The axons represent the reinforcing ‘‘fibers’’ in an
anisotropic formulation, are elongated along the axis of stretch, and, therefore, have the preferred
direction:

a ¼ ao ¼ x1 þ 0 � x2 þ 0 � x3 ¼ 1 0 0½ � : ð19Þ

Under simple extension along the x1 axis, there are no shear forces (T12 ¼ T23 ¼ T13 ¼ 0) and
the surfaces normal to the x2 and x3 axis are traction free (T22 ¼ T33 ¼ 0).

In this analysis, three hyperelastic formulations are examined:

1. The Mooney–Rivlin formulation with no material anisotropy:

WðI1; I2Þ ¼
l1

2
I1 � 3ð Þ þ l2

2
I2 � 3ð Þ ; ð20Þ

yielding,

T11 ¼ l1 k� 1

k2

� �
� l2

1

k3 � 1

� �
: ð21Þ

For this formulation, three ratios of l1/l2 will be used to reflect the range that has been used in
other studies of CNS tissue (l1/l2 ¼ 0.10, l1/l2 ¼ 1.0, l1/l2 ¼ 10.0 (Mendis et al. 1995)).

2. A simple anisotropic formulation described by Fung for soft tissues (Fung 1981):

WðI1; I4Þ ¼ C expðC1ðI1 � 3Þ þ C2 I4 � 1ð Þ2Þ � 1
� �

; ð22Þ

which yields the following stress along the x1-axis:

T11 ¼ 2C expðC1ðI1 � 3Þ þ C2ðI4 � 1Þ2Þ C1 k� 1

k2

� �
þ 2C2k k2 � 1

� �
� �

: ð23Þ

In this description, the ratio of C2/C1 is set to emphasize the stiffness of the axons relative to the
surrounding isotropic matrix (C2/C1 ¼ 10.0).

3. A first order Ogden description (Ogden 1984) for both the isotropic glial matrix (g) and the
reinforcing axonal fiber network (a):

W ¼
2lg

a2
g

kag þ 2k�ag=2 � 3
� 	

þ 2la

a2
a

I
aa=2
4 þ 2I

�aa=4
4 � 3

� 	
; ð24Þ

where li and ai are material parameters. The strain–energy function in Eq. (24) yields the following
first Piola–Kirchhoff stress (engineering stress) in the direction of the axonal fibers:

T11 ¼
2lg

ag
kag�1 � k

ag
2�1

� 	
þ 2la

aa
kaa�1 � k

aa
2�1

� 	
: ð25Þ

Recent tests using the isotropic first order Ogden formulation (la ¼ 0 in Eq. 25) show that the
shear modulus of the material can change along different shear testing directions, but the nonlinear
behavior of the material (a) is not sensitive to the test direction. From these observations, the stress–
stretch relationship is adjusted accordingly (aa ¼ ag ¼ a).

2.2
Structural model formulations

In a traction-free state, the axonal segments within the optic nerve appear compressed, or undulated to
varying degrees (Bain et al. 1996; Fig. 1). Due to the initial undulated appearance of axons in the optic
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nerve, only a portion of the axonal population will experience tensile strains during elongation. To
estimate the strain experienced by an axon within an elongated nerve, structurally based models of the
optic nerve can be developed along similar lines to the structural models formulated for other soft
tissues (see, for example, Frisen et al. 1969; Haut and Little 1972; Comninou and Yannas 1976; Lanir
1979; Kastelic et al. 1980; Decraemer et al. 1980; Shoemaker et al. 1986; Kwan and Woo 1989; Belkoff
and Haut 1991; Cohen et al. 1992; Spilker et al. 1992; Woo et al. 1993; Zhu et al. 1994; Skaggs et al. 1994).

We will define the undulation of an axon within the tissue by an undulation parameter (U):

U ¼ lt

lo
; ð26Þ

where lo is the distance between two points at the beginning and end of the axon section (Fig. 1), while
lt is the ‘‘true’’ length of the axon if it were straightened to eliminate the undulations. Note that lo is an
updated/current length, hence U does not contain deformation information. For U values greater than
1.0, the axon is undulated in the tissue and bears no tensile force. In contrast, U ¼ 1.0 indicates that
the axon is completely straight and can support a tensile force.

All axons in a longitudinal section of the optic nerve tissue will not show the same undulated
appearance (Fig. 1). For this reason, three simple population distribution functions will be used to
describe the variation in the undulation parameter (U):

1. The axonal population shows a uniform distribution between two values of undulation – Umin and
Umax. The population density function for axons at a given undulation value (U) is a, where

f ðUÞ ¼ a ¼ 1

Umax � Umin
; ð27Þ

given that Umin < U < Umax. The probability density function is zero elsewhere.
2. The axonal undulation parameter shows a normal statistical distribution, similar to the assump-

tions for collagen fiber in connective tissue (Decraemer et al. 1980), and therefore has the prob-
ability density function (f(U)):

f ðUÞ ¼ 1
ffiffiffiffiffiffiffiffi
2pr
p exp

�ðU � lÞ2

2s2

 !

: ð28Þ

A mean undulation factor (l) and standard deviation (r) for distribution can be developed by
using measurements from histologic sections.

Fig. 1. Microstructural geometry of myeli-
nated CNS axons within a white matter
tract, the guinea pig optic nerve. Axons are
visualized using neurofilament immuno-
histochemistry, and appear ‘‘wavy’’ or
undulated under in situ length conditions.
Undulation (U), defined as the ratio of the
true axonal length (lt) to the end-to-end
distance (lo), is used to characterize the
microstructural appearance of the axons at
a point in the white matter
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3. The axonal undulation parameter is measured directly from histological sections, and the exper-
imental probability density function, f(Ui), is developed at discrete points over the undulation
interval Umin < Ui < Umax. In this description, the subscript i denotes a specific value of the
undulation parameter over the measured range.

By elongating a section of optic nerve tissue by an amount d, the axons in each of these three
populations described above begin to straighten and the undulation distribution changes in pro-
portion to the applied displacement. An axon (undulation, U) stretches when the tissue stretch ratio
(k) is greater than the undulation value. The axon stretch ratio (ka) is given by:

ka ¼
k
U

: ð29Þ

The axial force generated by the axon during elongation is given by the product of the engineering
stress, (Taxon) say, and the undeformed axon area (Aaxon):

Faxon ¼ TaxonAaxon : ð30Þ

The exact constitutive relationship for a single axon in the optic nerve is not known. Therefore, it is
assumed that (Taxon) for an axon stretched a known amount (ka) follows a simple neo-Hookean
relationship:

Taxon ¼ C ka �
1

k2
a

 !

; ð31Þ

which applies for ka > 1.0. In (31) C denotes a stress-like material parameter. The total force from the
axons in the white matter is a summation of the forces generated within each axon:

Faxons;total ¼
ZU¼Umax

U¼1

N � Aaxon � f ðUÞ � C
k
U
� U2

k2

� �
dU ; ð32Þ

where f(U) is a probability distribution function for the axonal undulation of the population and N is
the number of axons in the tissue. For simplification, it is assumed that the axons in the population are
spread across a narrow diameter range, and therefore the axon cross-sectional area is considered
approximately constant across the population.

Previous work has shown that the matrix surrounding myelinated axons in CNS tissue – i.e., the
supporting glial cells and the capillary network – has an approximately three-fold lower complex
compliance at low strain values (Arbogast and Margulies 1999). Additionally, the surrounding matrix
represents approximately 10% of the total volume of tissue in the optic nerve. Assuming the glia is
represented as a neo-Hookean material (Cglia ¼ 0.33 Caxon ¼ 3C) and is 10% of the cross-sectional
area, the force generated in the glia during simple extension is:

Fglia ¼ 0:33C k� 1

k2

� �
0:1 Anerveð Þ ¼ 0:033C k� 1

k2

� �
Anerve : ð33Þ

As a result, the total force in the optic nerve is a summation of the forces from the individual axons
and the glia:

Tnerve ¼
Fglia þ Faxons;total

Anerve

¼
0:033AnerveC

k
U
� U2

k2

� �
þ N � Aaxon �

RU¼Umax

U¼1

f ðUÞ � C k
U
� U2

k2

� �
dU

Anerve
:

ð34Þ

Since the axons represent 90% of the cross-sectional area in the optic nerve, the engineering stress
relationship simplifies to:

Tnerve ¼ 0:033C
k
U
� U2

k2

� �
þ 0:9

ZU¼Umax

U¼1

f ðUÞ � C k
U
� U2

k2

� �
dU : ð35Þ
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The computed stress in the nerve at a specific applied stretch ratio (k) will assume three general forms
based on the three distinct distributions assumed for the axons appearing within the nerve:

1. The axons display a uniform undulation distribution between Umin and Umax. Since there may be
values of tissue stretch where not all axons are elongated, this stress–stretch relationship assumes
three forms:
For k < Umin:

TðkÞ ¼ 0:033C
k
U
� U2

k2

� �
; ð36Þ

For Umin < k < Umax:

TðkÞ ¼ 0:033C
k
U
� U2

k2

� �
þ 0:9

ZU¼k

U¼1

a � C k
U
� U2

k2

� �
dU ; ð37Þ

or, equivalently,

TðkÞ ¼ 0:033C
k
U
� U2

k2

� �
þ aC kln

k
Umin


 �
� 1

3

k3 � U3
min

� �

k2

" #

: ð38Þ

For k > Umax:

TðkÞ ¼ 0:033C
k
U
� U2

k2

� �
þ aC kln

Umax

Umin

� �
� 1

3

U3
max � U3

min

� �

k2


 �
: ð39Þ

2. The undulation of the axons follows a normal distribution. In this case, an integral expression
describing the resulting stress–stretch relationship is obtained:

TðkÞ ¼ 0:033C
k
U
� U2

k2

� �
þ
Z U¼k

U¼1

f ðUÞ � C k
U
� U2

k2

� �
dU ; ð40Þ

which is computed numerically over the interval.
3. The undulation of the axons follows a distribution measured experimentally in a series of longi-

tudinally sectioned axons (Bain and Meaney 2000). Assuming the probability distribution function
(fi(Ui)) is described over M subintervals, the stress–stretch behavior is calculated directly:

TðkÞ ¼ 0:033C
k
U
� U2

k2

� �
þ
XM

i¼1

fi Uið Þ � DUi � C
k
Ui
� U2

i

k2

� �
: ð41Þ

2.3
Comparison of continuum models with structural models

With continuum and structural representations now developed for the uniaxial testing configuration,
attention is placed on the similarities and differences between these two classes of models. Com-
parisons are made to determine the equivalence between the continuum models and the structural
models, and to quantify the differences that occur when a continuum approach is used.

To draw parallels between the continuum and structural models, constants for the hyperelastic
material descriptions are computed using a least squares minimization procedure (IgorPro, Wave-
metrics, Inc.) that best fit the recruitment phenomena appearing in the structural model. Constants
are constrained to ensure positive definiteness for the strain–energy function under tensile, com-
pressive, and shear loading conditions. For the structural models, parameters describing the axonal
undulation were selected to provide representations of undulations measured in histologic sections
(average undulation ¼ 1.131, standard deviation ¼ 0.0633). For the uniform representation, a mini-
mum undulation of 1.0 was used, with a maximum undulation of 1.262.

Since it is likely that the continuum and structural models will not match exactly, we introduce a
normalized error term that describes the relative difference between the two approximations at an
applied stretch level (k):
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er ¼
rcðkÞ � rsðkÞj j

rsðkÞ
ð42Þ

where c denotes the continuum (hyperelastic) formulation, s indicates the structural
model formulation and er is the error residual. From the best fits, we determine the residual terms
across the range of stretch levels below and above the threshold associated with axonal injury
caused by simple extension (k < 1.5).

3
Model results

With these formulas as background, the methods are applied to a realistic representation of a highly
oriented white matter tract, the guinea pig optic nerve. Previous work has shown that the axons are
undulated in this white matter tissue (Bain et al. 1996), and that measured undulation is approximated
as a gamma distribution. Modeling this exact statistical distribution is beyond the scope of this paper;
rather, we will either approximate or use these recent measurements of axonal geometry in each of our
structural models to draw comparisons with ‘‘equivalent’’ hyperelastic models.

Typically, an average undulation for the entire population of axons within the optic nerve is
Ua ¼ 1.13. Using this as the midpoint in a uniform distribution (Umin ¼ 1.0; Umax ¼ 1.26), Fig. 2a
shows the resulting structural model response, along with the ‘‘equivalent’’ Mooney–Rivlin, Fung, and
generalized Ogden formulation. With this structural model formulation, a gradual change in stress
occurs as an increasing fraction of the axons are elongated. Once all axons are ‘‘recruited’’ into tensile
loading (k > 1.26), the structural models show a slightly softening behavior in the ‘‘straightened’’
phase. Table 1 shows the hyperelastic constants associated with the structural model predictions,
indicating the Mooney–Rivlin model is the least precise of the continuum approximations, while the
remaining continuum models offer a substantial improvement to this formulation. Both the first order
Ogden material and the Fung formulation are sufficiently flexible to model the nonlinear stress–stretch
relationship predicted for the optic nerve.

Using the second structural modeling approach where the axon undulation shows a normal dis-
tribution, estimates of the distribution parameters (lu ¼ 1.13, ru ¼ 0.063) are used from measure-
ments on longitudinal sections of the optic nerve. Figure 2b contains the predicted response from this
structural model, as well as the equivalent hyperelastic models. Much like the first structural model,
there is a nonlinear phase where the number of recruited axons increases with applied stretch to
produce a nonlinear engineering stress–stretch relationship, followed by a more linear phase. With the
increasing complexity of the structural model, the correlation to the equivalent material model
improves over other approaches (Table 1).

For the third structural modeling approach, direct measurement of the axonal geometry in the
resting in situ state was utilized to predict the resulting engineering stress–stretch relationship
(Fig. 2c). The nonlinear response observed over the entire range reflects the increasing fraction of
axons stretched as the applied tensile deformation increases. Similar to previous structural models, the
generalized Ogden and Fung material approximations are more reasonable estimates of the predicted
structural response (Table 1) than the isotropic Mooney–Rivlin formulation.

Across the three structural models, the recruitment of axons during the early phase of
stretching accounted for the most significant difference among the three model formulations
(Fig. 3). For the uniform distribution, the stress built up quickly as a linearly increasing fraction
of axons were elongated at the lowest stretch levels. In contrast, the approximate normal and
measured statistical distributions of axonal geometry indicated only a small fraction of the
axons were experiencing tensile loads, and therefore the resulting force at lower elongation levels
(k < 1.2) was significantly different than the uniform distribution condition. Interestingly, the
difference in engineering stress–stretch responses using the approximate normal distribution and
the actual measured axonal geometry varied by less that 5% across the entire range. The close
agreement between the approximated normal distribution and measured microstructure population
suggests that the axonal population can be approximated as normally distributed without signif-
icant loss in precision, an assumption that has been used by investigators examining other soft
tissues (Lanir 1979).

Of the three continuum approximations, the Mooney–Rivlin was the poorest approximation to
the stress–stretch predictions from all structural model formulations, showing a significant error
term at all elongation levels (Fig. 4a). The Mooney–Rivlin formulation was not capable of
modeling both the recruitment of axons during the early phase of elongation, nor the relatively
straight stress–stretch relationship that occurred once the complete axonal population supported
tensile loading. Indeed, adjusting both the shear constant and the nonlinear behavior with
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stretch were necessary to provide a reasonable continuum approximation to the results from
the structural models, as shown by the approximation of the Fung and first order Ogden
materials (Fig. 4b, c). Normalized errors with both anisotropic formulations were substantially less
than the Mooney–Rivlin approximations, and the errors were minimized across the entire
elongation range.

Each structural model showed an initial increase in the slope of the stress–stretch curve, described
as the tangential stiffness, until all axons began to assume some level of tensile stress (Fig. 5a). The
tangential stiffness range was similar across the three structural formulations, but was not matched
well by the computed tangential stiffness characteristics for the continuum models (Fig. 5b). Simple
continuum models (neo-Hookean, Mooney–Rivlin) showed a decreasing stiffness over the entire
stretch range, while the generalized first order Ogden and Fung materials displayed an increasing
stiffness across the elongation interval. Additionally, tangential stiffness was not sensitive to the ratio
of Mooney–Rivlin shear constants used in the continuum approximations. The disparity between the
tangential stiffness characteristics of continuum approximations and the structurally based models
was consistent across the three structural models, with little differences noted across the elongation
range studied.

Fig. 2a–c. Comparison of structurally
based models (solid line) with continu-
um models (symbols) based on hyper-
elastic descriptions. Assuming distinct
frequency distributions (a uniform fre-
quency; b normal distribution; c mea-
sured empirical distribution) for the
axonal microstructure (U), the nonlinear
engineering stress–stretch relationship is
consistently best modeled using either a
first order Ogden strain–energy function
or the exponential strain–energy
function proposed by Fung
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4
Discussion

In this paper, relationships between simple structural models of a white matter tract were compared
with equivalent continuum approximations using hyperelastic material formulations. Both isotropic
and anisotropic hyperelastic formulations were developed, with reinforcing axonal fibers producing a

Table 1. Comparison of structural models and continuum approximations

Population
description for

Continuum model approximation
(Constants (Pa), average error residual eave

r )
axonal microstructure

Mooney–Rivlin Fung formulation Generalized Ogden

Uniform
f(U)=a l1/l2=10, l1=514.36 (Pa),

eave
r =3.54

C=1,573.61 (Pa), l=290.82 (Pa),
a=6.19

For U1<U<U2 l1/l2=1, l1=315.7 (Pa),
eave

r =3.93
C2=10l2 eave

r =1.722

f(U)=0 elsewhere l1/l2=0.1, l2=647.6 (Pa),
eave

r =4.42
l2=5.61·10–3

eave
r =1.53

Normal
f ðUÞ ¼ 1ffiffiffiffiffiffi

2pr
p e�ðU�lÞ2=2r2

l1/l2=10, l1=510.19 (Pa),
eave

r =2.71
C=1,200.1 (Pa), l=279.27 (Pa),

a=6.36
l1/l2=1, l1=313.02 (Pa),

eave
r =3.00

C2=10l2 eave
r =1.28

l1/l2=0.1, l2=641.8 (Pa),
eave

r =3.36
l2=7.19·10–3

eave
r =1.17

Measured
l1/l2=10, l1=511.52 (Pa),

eave
r =5.84

C=1,255.5 (Pa), l=281.84 (Pa),
a=6.33

l1/l2=1, l1=313.84 (Pa),
eave

r =6.46
C2=10l2 eave

r =1.28

l1/l2=0.1, l2=643.5 (Pa),
eave

r =7.22
l2=5.61·10–3

eave
r =2.64

Fig. 3a, b. Relative comparison of the
three structural model formulations. a At
lower elongation levels, differences
among the three structural models
appeared, with the uniform distribution
model showing the most rapid increase
in the stress generated within the optic
nerve. b At higher elongation regions,
relatively small differences appeared
among the three formulations, each
reaching similar peak stress levels at the
highest elongation levels
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transversely isotropic hyperelastic material. All three structurally based models of the CNS white
matter under simple extension loading showed similar stress–stretch characteristics at larger elon-
gation levels (k > 1.2). Moreover, each structurally based model showed an initial phase of rapidly
increasing tangential stiffness, followed by a phase of decreasing stiffness at higher elongation levels.
Only a more generalized hyperelastic model used in this study – a first order Ogden model and Fung
formulation – was capable of providing a reasonable approximation of the structural model responses
over the elongation range studied (k < 1.5). However, neither the generalized form of the Ogden
formulation nor the Fung formulation could model the complete tangential stiffness behavior
predicted by the three structural modeling approaches.

Recent studies of the material properties of brain tissue have used isotropic hyperelastic material
descriptions to model the measured response of the CNS tissue to shear, compression, or combined
loading, reflecting an increasing interest in moving from phenomenological approaches to material
formulations that are readily available in commercial finite element packages. Mendis et al. (1995)
were the first to apply a hyperelastic energy based approach to model the constitutive behavior of
brain tissue under compression (Galford and McElhaney 1970), yielding a reasonable approximation
of the response under compression and showing the sensitivity of the compression response to the
two material constants in the Mooney–Rivlin formulation. However, the same formulation was not
successful in modeling the response of white and mixed gray/white matter samples to shear
deformation (Prange et al. 2000). Rather, a generalized first order Ogden material proved more
capable of modeling the tissue response under shear and compression (Prange et al. 2000). When
combined with a time dependent description of the material shear modulus, the Ogden charac-
terization could be extended to accurately model the response of tissue under both dynamic shear
and compression conditions.

Although there is recent information describing the response of brain tissue under finite strains,
only recently has the material anisotropy of brain tissue been clarified. In a series of shear testing

Fig. 4a–c. Error residual comparison
between continuum approaches and
structural model descriptions of white
matter behavior. The Mooney–Rivlin
formulation (a) showed the least consis-
tent match with structural model pre-
dictions (noted as symbols) over the
range examined. The Fung (b) and first
order Ogden (c) formulations showed the
closest agreement to the structural
models
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experiments using gray matter, mixed gray matter/white matter, oriented white matter (corpus
callosum), and randomly oriented white matter (corona radiata) samples, Prange and Margulies
(2002) reported that highly oriented tissue samples could exhibit shear properties that varied
significantly with testing direction. For the highly aligned corpus callosum samples, the shear
moduli in a direction along the fiber direction was nearly double the shear modulus measured
transverse to the fiber direction. For other less aligned white matter samples, as well as all gray
matter samples, no effect of testing direction was observed. These experimental data emphasize the
importance of developing hyperelastic formulations that account for preferred fiber orientations,
and the two anisotropic formulations in this paper attempt to examine how a structural
representation of the white matter translates into hyperelastic formulations that are capable of
modeling anisotropic behavior. The formulations in this study were restricted to transverse
isotropy caused by a single population of axonal fibers aligned uniformly along one direction.
Extending these formulations to include a more heterogeneous population of directional fibers is
possible, and could be useful to understand the directional properties of less organized regions of
the white matter such as the corona radiata. Moreover, the utility of the relative simple Ogden
and Fung material formulations in describing a structurally based material response, in addition to
the previous use of the Ogden formulation to model measured brain material properties, points to
an opportunity for further using the simple anisotropic characterization to relate continuum
properties to, ultimately, estimates of the cellular response that occurs within the white matter
tissue.

Although there was a reasonable match between the stress–stretch relationships developed from
the generalized Ogden and Fung formulations and all three structural models, there was less
agreement among the approaches when examining the tangential stiffness response of the models
across the loading regime. Differences in the tangential stiffness between the two approaches may
lead to significant differences in stress predictions over more complex loading profiles, and
therefore should be minimized if possible. In the current study, the tangential stiffness of the
structural models uniformly decreased beyond the transition point where no additional axons were
‘‘recruited’’ into the stress–stretch relationship (k � 1.26). However, the decreasing tangential
stiffness noted in the structural models is linked directly to the underlying constitutive relationship
assigned to individual axons within the white matter tract. Only an approximation of the single
axonal constitutive relationship was used in this study, and therefore an accurate measure of the
tangential stiffness of the structural model remains to be determined. For example, a preliminary
examination of structural models using stress–stretch relationships derived from the myelinated

Fig. 5a, b. Comparing the tangential
stiffness behavior for structural models
(panel a) and continuum approximations
of the white matter (panel b). a Similar
tangential stiffness values appeared over
the entire range of stretch for the struc-
tural models. b Only the generalized
Ogden and Fung formulations (symbols)
were capable of modeling the initial in-
crease in tangential stiffness observed in
a. At higher elongation levels, the Moo-
ney–Rivlin was the only continuum ap-
proximation to show a decline in
stiffness similar to the decrease observed
in the structural models
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peripheral nerve fiber (rfiber ¼ C(k)1)2; Saatman and Thibault, 1993) show that the tangential
stiffness increases over the entire regime with this new relationship, with little effect on the ability
of the generalized Ogden formulation to fit the response over the entire loading range (Fig. 6).
Significant structural differences exist between peripheral nerve fibers and myelinated CNS axons –
the cytoskeletons are distinct, the myelinating cell types are different, and the node of Ranvier is
protected in the peripheral nervous system (PNS) nerve fiber with a surrounding matrix while the
node is exposed in the CNS (Waxman et al. 1995) – and therefore precludes using this fiber
constitutive relationship directly in the current study. However, as more specific information on
individual CNS axonal properties becomes available, the comparisons of the tangential stiffness
between continuum and structurally based modeling approaches will become increasingly mean-
ingful and predictive of the ability to match a structural model response over more complex
loading regimes.

The underlying finding of the structurally based models of the white matter used in this report –
i.e., increasing the applied tissue elongation results in an increasing fraction of individual axons
‘‘sensing’’ tensile loading – suggests that the resulting pathophysiological response of axons within the
tissue experiencing a specific stretch would not be uniform. Indeed, the spectrum of axonal stress
levels that occur at a specific elongation level provides a potential explanation for the scattered
appearance of injured axonal fibers among a much larger population of uninjured axons in the white
matter tract. At higher levels of applied strain, the relative fraction of injured to uninjured axons
increases proportionally (Bain et al. 1996), again consistent with the prediction that more axons will
experience a tensile load above a pathophysiological limit. However, the mechanical recruitment
phenomena should not be considered the sole factor responsible for this nonlinear injury response.
Recent in vitro studies using cultured axons shows that exposing unmyelinated axons to the same level
of applied stretch does not result in a uniform pathophysiological response – some axons display
significant ionic shifts, while others in the same population show very little overt change from baseline
values and little long term morphological changes (Wolf et al. 2000). Thus, it appears that axonal
populations also need to be modeled more explicitly to account for potentially different mechanical

Fig. 6a, b. Influence of axonal constit-
utive relationship on tangential stiffness.
a By replacing the axonal constitutive
relationship with an expression mea-
sured for single, myelinated PNS axons
(r=C(k–1)2), the tangential stiffness be-
havior for the structural model changed
to reflect an increasing stiffness across
the entire elongation range (solid line),
a trend that was matched with an
appropriately fit generalized Ogden
formulation (dashed line). b General
agreement for the engineering stress–
stretch response was obtained between
this revised structural model and the first
order Ogden model
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and biological characteristics, both of which dictate the injury response relationship observed in white
matter tissue.

In closing, comparing hyperelastic models and structurally based models will be important to
consider when predicting the circumstances that cause axonal injury in the white matter in humans.
By comparing the structural model with an appropriate continuum model, fairly powerful finite
element models can be used quickly to predict better the motions and tissue movements that are
associated with injury. Perhaps more importantly, we will be positioned to solve the ‘‘hierarchical
problem’’ – estimating deformations of cellular and subcellular structures from the deformations
predicted using continuum material models. Together, these parallel efforts will allow us to use
computationally less expensive continuum formulations to model more accurately the structural
response of the brain during impact, yet retain a relationship to the underlying structural elements
that will form the basis for the next generation of models to predict the biological response of the
tissue to applied mechanical loading.
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