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Traumatic brain injury (TBI) is a significant public health problem, on pace to become
the third leading cause of death worldwide by 2020. Moreover, emerging evidence link-
ing repeated mild traumatic brain injury to long-term neurodegenerative disorders points
out that TBI can be both an acute disorder and a chronic disease. We are at an important
transition point in our understanding of TBI, as past work has generated significant
advances in better protecting us against some forms of moderate and severe TBI. How-
ever, we still lack a clear understanding of how to study milder forms of injury, such as
concussion, or new forms of TBI that can occur from primary blast loading. In this
review, we highlight the major advances made in understanding the biomechanical basis
of TBI. We point out opportunities to generate significant new advances in our under-
standing of TBI biomechanics, especially as it appears across the molecular, cellular,
and whole organ scale. [DOI: 10.1115/1.4026364]

Introduction

Traumatic brain injury (TBI) presents a significant public chal-
lenge in today’s society. Approximately 1.7� 106 people in the
U.S. each year suffer some form of TBI that requires at least a
visit to the hospital [1]. The relative fraction of severe TBI
patients—estimated as 3% of the total annual cases—requires the
most intensive medical care and is often complicated by injuries
to other body regions. Moderate brain injury represents 22% of
the annual incidence and commonly leaves patients with persistent
deficits that they carry for the remainder of life. Mild TBI has the
highest incidence rate in the population (75% of total injuries) and
may be even higher than reported in epidemiological studies,
owing to substantial underreporting in young populations, ath-
letes, and members of the military [2,3]. In aggregate, the socioe-
conomic toll is significant—TBI remains the most prevalent cause
of death in adults aged less than 45 years and is also the highest
cause of long-term disability [4,5]. As the population ages, we are
also seeing the relative incidence rise in the elderly population,
where it is now only second to cancer as a cause of death in peo-
ple aged 65 and over [4]. With the growing awareness of TBI in
both the civilian and military population, TBI is no longer a silent
epidemic.

With the longstanding knowledge of neurodegenerative
changes in boxers now expanding to include repeated TBI in other
professional athletes and soldiers [6–8], it is also clear that TBI is
both an acute disorder and, for some patients, a chronic neurologi-
cal disease. This awareness, however, also exposes the need for
far more clarification on many issues in the scientific literature
because it brings to light many questions that center on defining
the exposure for possible at-risk populations that include civilians
(e.g., athletes in contact sports) and members of the military. As
we answer these questions, we will have the opportunity to use

some of the same tools we describe below to tackle the looming
challenge of mitigating the chronic effects of trauma to the brain.

The focus of this review is to provide a summary of past efforts
to understand key points in the TBI neurophysiological injury cas-
cades, which include:

• defining the environments in which these injuries occur
• understanding how mechanical loads are transferred to the

brain structures during the loading conditions that occur in
these environments

• using the mechanical, physiological, and pathophysiological
response of the brain—at multiple length scales—to identify
the critical mechanisms for damage, including necessary
interspecies scaling between animal models and humans

• identifying the key acute mechanisms of injury that cause the
most significant functional impairments, and testing if these
primary mechanisms contribute to the long-term changes
associated with injury

We present both past and ongoing work addressing these cen-
tral questions. We also identify several areas that need more
study. Several excellent reviews provide some historical context
and additional information on efforts across the length scale; we
refer the reader to these articles for further detail [9–14]. We
structure the review by (a) reviewing the existing knowledge to
define when traumatic brain injuries occur in the civilian and mili-
tary environments and (b) the separate work identifying how im-
mediate mechanism(s) of injury mediate acute impairments after
injury.

An Integrated, Multiscale Approach for Understanding

Traumatic Injury to the Brain

Drawing on several decades of research with applications pri-
marily in producing protective headgear, developing head protec-
tion standards, and designing of safety systems in motor vehicles,
there is a considerable literature that has defined the scenarios
causing TBI. The work spans multiple scales and forms a natural
research cycle (Fig. 1)—from population-based surveys
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identifying significant injuries [15–17] down to tissue/single cell-
based work for detecting key molecular signatures of the injury
[18–20]. The work begins with the clinical environment to define
injury incidence, transitions to the laboratory environment to rep-
licate and study both injury mechanisms and tolerance, and pro-
ceeds to the translational environment for developing effective
countermeasures to reduce or eliminate injury incidence. A central
component in this past work is using experimental and analytical
tools to draw relationships between the physical input (accelera-
tion, impact force, duration, etc.), the resulting mechanical
response of the brain/skull, and to integrate thresholds for damage
to the brain and its coverings to identify the mechanical loading
scenarios most often associated with injury. Ongoing work to
study blast-induced traumatic brain injury is following a similar
trajectory, although the tolerance criteria for blast loading are in
the early developmental stages [21–23]. A defining characteristic
of this research cycle is to address the most significant injuries
occurring in the population, to implement new technologies for
reducing the incidence of these injuries, and generate new surveys
of the population for focusing future research efforts.

In general, the primary mechanical response of the brain to ei-
ther impact, impulsive, or blast loading is driven on the macro-
scale by the brain/skull geometry, the partitioning of the brain
within the skull, and the material properties of the cranial tissues.
Although general principles of the brain response to mechanical
loading can be developed, an important caveat is that every trau-
matic brain injury occurs under unique mechanical loading condi-
tions. Perhaps one of the greatest challenges is to consider how
the unique mechanical inputs associated with each injury can be
coalesced into a single, universal approach for determining when
injuries occur in the population.

To date, the most complete approach for predicting the inci-
dence of TBI in humans requires several key steps: (1) defining
the external mechanical loads experienced by the head during sit-
uations that cause injury, (2) using models of the brain (either
physical, analytical, or computational) to estimate how these
external mechanical loads transfer to mechanical conditions (e.g.,

stress, strain, etc.) in the brain at the tissue and cellular scale, and
(3) using tissue and cellular tolerance criteria to determine the
regions of the brain that will be injured or impaired as a result of
the external applied loading. In the remainder of this paper, we
will review the work in support of this approach and discuss
emerging areas of research that will significantly extend the abil-
ity to predict TBI incidence in the future.

Characterizing the Causal Environments of TBI. Histori-
cally, motor vehicle crashes were a primary environmental focus
for TBIs because they consistently ranked as the most frequent
cause of TBI-related deaths in civilians [24,25]. However, a
broader view of TBI across the severity spectrum (Fig. 2(a))
shows that falls are the leading cause of emergency department
visits and hospitalization stays related to TBI; the second leading
cause is where the individual is struck by or strikes another object
[1]. For visits that require either hospitalization or only an emer-
gency department visit, motor vehicles are the third leading cause
of injury [1,2]). The loading scenarios for head impacts occurring
in the automotive environment are well developed and embedded
into vehicle safety testing protocols used in the U.S. and else-
where [26]. These testing procedures specify collision speeds and
impact directions that are linked to common accident scenarios
associated with death and disability in motor vehicle crashes. As
the focus of the field shifts to more moderate and mild TBIs, we
must continue to expand our test conditions and include more
scenarios associated with the injuries that occur in nonvehicular
environments (Fig. 2(b)) [27]. In particular, concussions in
sports, including youth, need better biomechanical testing
scenarios.

Recent evidence of a large risk of mild/moderate TBI in mili-
tary scenarios associated with blasts (bTBI; Fig. 2(a)) [22,28,29]
(i.e., blast-induced traumatic brain injury (bTBI)) lacks a compa-
rable level of epidemiological detail. For example, recent work
shows many of the scenarios causing TBI in the military are
from the motor vehicle crashes, falls, and the head striking
another object, similar to the civilian population (e.g., Ref.
[30].). Of course, the initiating event for injury is different from
the civilian population: �67% of the TBI injuries requiring hos-
pitalization in U.S. military operations in Iraq and Afghanistan
were from explosions (Fig. 2(b)), with direct blunt trauma con-
tributing �19% and penetrating injuries contributing �11% of
the injuries. Even within the injuries attributable to explosions,
many are linked with low rate blunt trauma following the blast
event [31].

Although this may initially downplay the importance of pri-
mary blast in military TBI, there is other evidence showing a sub-
stantial number of injuries occur with direct blast exposure,
including primary blast exposure of dismounted service members
(Fig. 2(b)) [31,32]. Recent evidence suggests that civilians
exposed to large blasts also have the potential for sustaining bTBI
without pulmonary injury [22,33]. Together, these reports demon-
strate that our perspective on the mechanisms of TBI in the mili-
tary population is still evolving. Some confusion on the relative
role of blast-induced traumatic brain injury may arise because the
classification system for bTBI was designed to encompass any
physical phenomena that could cause brain injury [34]. Primary
blast injury, defined as the damage occurring as the blast wave
travels through the brain, is unique to bTBI. However, the sec-
ondary and tertiary forms of bTBI—in which the injury is
caused by direct laceration of the brain from fragments or
shrapnel (secondary) or the head moves suddenly and may
strike another object (tertiary)—shares a common mechanistic
base with injuries observed in the civilian population. There-
fore, mechanisms of blast-induced TBI may have a mixture of
mechanisms from primary, secondary, and tertiary blast injury.
Unknown, though, is how effects of the primary blast wave
interact with the injury mechanisms caused by the secondary
and tertiary phases.

Fig. 1 The research cycle of reducing the societal burden of
traumatic brain injury. Epidemiological evidence collected from
clinical studies, and analysis of motor vehicles crashes, forms
part of the first tier for defining where the most significant brain
injuries occur and if these injuries change over time (red). The
work transitions to the research laboratory (green) for defining
how these injuries occur, establishing key relationships between
the physical inputs in these environments and their resulting
injuries. The inevitable translation of this new knowledge into the
next generation of protection technologies completes the cycle
and also triggers the next research cycle for focusing efforts on
the most significant injuries in the population. One broad
research cycle has already occurred for moderate and severe
brain injuries, resulting in advances in helmet protection technol-
ogies and passive safety systems. Emerging efforts have now
shifted to include more focus on mild TBI, which occurs across
both the civilian and military population.
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Defining the Injuries in the Clinical Context. From a clinical
standpoint, brain injuries are often categorized as either focal or
diffuse [35]. These general descriptions apply for both the civilian
and military environment. Focal injuries are readily visible using
standard imaging techniques (CT; MR). Primary vascular injuries
that cause bleeding within the brain (intracerebral hematomas; tis-
sue tears), on the surface of the brain (acute subdural hematoma;
subarachnoid hemorrhage; extradural hematoma), or in the corti-
cal gray matter (cerebral contusion) are common examples of
focal brain injuries that appear in the severely and moderately
head-injured population. With the exception of subarachnoid hem-
orrhage, these focal injuries do not appear in the mild TBI popula-
tion. Moreover, the number of mild TBI cases with subarachnoid
hemorrhage is rare. Therefore, diffuse injuries are considered the
predominant category of injury in mild TBI.

Diffuse brain injuries are, as the name implies, not localized to
one area of the brain but are more distributed throughout the
brain. Diffuse brain swelling is one form of injury that can appear
over time following the injury and is not often the focus of studies
for predicting how the mechanical forces can cause subsequent
injury throughout the brain. An ongoing discussion in the bTBI
literature suggests that diffuse brain swelling may be a more com-
mon component of the injury pattern after bTBI [36,37].

The most common diffuse brain injury receiving attention for
TBI biomechanics is diffuse axonal injury (DAI), which is the
appearance of axonal injury at the microscopic scale in selected
regions of the brain [38]. The mechanisms and progressive
changes to the cytoskeleton, organelles and membrane within the
axonal compartment is an ongoing area of study with DAI, as this
would point towards possible therapeutic intervention [39].
Strictly defined as an entity that appears in humans, DAI is often
the subject of study in mild traumatic brain injury (mTBI) patients
because of the widespread disruption of brain networks that can
appear in these patients without any other sign of brain damage.
The continuum of DAI in humans is well described, and the gen-
eral conditions that cause DAI in the human are providing a

template for studying these same types of injures in animal mod-
els. There is some evidence of diffuse injury to axons in primary
blast TBI models [21,22,40,41], but a complete description of
DAI in human primary blast TBI is not yet available. The closest
demonstration of DAI in blast TBI shows alterations in directional
diffusion within white matter measured by diffusion tensor imag-
ing [42], changes that are presumed to reflect areas of microscopic
axonal injury based on earlier work in animals [43,44]. However,
the distribution of DAI patterns in humans following blast expo-
sure, similar to the definition of DAI in human patients after falls,
assaults, and motor vehicle accidents [45], would help shape
future biomechanical studies to understand primary blast TBI
more completely.

Emerging Key Issues. With the dramatic change in the passive
safety technologies for motor vehicles, there is a shift in the distri-
bution of the types of specific brain injuries observed in the mod-
erate and severely brain injured population [46,47]. The most
extensive clinical study that detailed the distribution of severe
head injuries is over three decades old [15], and an updated set of
data would point toward specific populations that are potentially
at risk for different types of brain injuries, and also different sce-
narios leading to these injuries. Perhaps most significantly, the
distribution of these injuries in the military population is
extremely vital as it can shape priorities for the next decade, yet
this distribution is not completely defined. Moreover, there is a
well-recognized paucity of assessment techniques for mild TBI
that achieve both good sensitivity and specificity over the time
course of TBI. Without these specific and sensitive measures to
record the accurate incidence of mild TBI, the overall fraction of
mild, moderate, and severe TBI in either the civilian or military
population remains to be defined.

For military injuries associated with blast, there are potentially
large numbers of exposed personnel, especially for mild bTBI. It
is unclear for mild severities how to differentiate between bTBI

Fig. 2 (a) The relative incidence of TBI in the civilian and military population, and
their causes. Excluding penetrating TBI and unclassified injuries, the relative inci-
dence rates for the military and civilian population appear distinct. However, the
possible underreporting of mild TBI in the military may alter the relative incidence
rates significantly. (b) Within each population, the causes of TBI span a broad
range. Primary blast TBI is unique to the military environment.
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and common, potentially comorbid, syndromes such as posttrau-
matic stress syndrome (PTSD) with similar symptomology [48].

Estimating the Primary Mechanical Response: Modeling
the Structure. Knowing the accurate size and shape of the brain,
the brain deformation, and the brain movement relative to the
skull during an exposure is a critical factor in developing an abil-
ity to accurately predict when injuries will occur. The human
brain varies in size across the population, across age, and across
gender. In particular, the brain size decreases over the latter part
of the lifespan and, therefore, the subdural space may increase to
increase the risk of TBI with age [49]. The variation in size and
shape alone means there is a broad range in the primary brain me-
chanical response to blunt, acceleration-based, or blast loading.
Although there is a well-developed anatomical description of the
human brain, less clear is how these anatomical regions vary
among individuals. Recently, magnetic resonance imaging (MRI)
technologies make it possible to explore the variation in size,
shape, and organization of the brain across any desired population,
especially using imaging techniques without ionizing radiation
(i.e., MRI). Alternatively, existing public data sets2 provide high-
resolution images that can be used for any subsequent biomechan-
ical examination.

Perhaps the most important new element to consider in the
brain structure is its organization across regions, i.e., the connec-
tome. Imaging technologies to examine the direction of white
matter tracts, in combination with techniques to measure local
blood flow changes in the brain, provides a way to connect brain
regions and assess how the brain connection map changes follow-
ing TBI [50]. Public data sets of the human connectome are avail-
able3. This technology presents interesting opportunities for
understanding the biomechanics of TBI, as it could provide
insight into the regions of the brain damaged in mild TBI patients.
Not only will we need to consider the distribution of stress and
strain throughout the brain during an impact/blast exposure, we
will also need to predict if these patterns of acute changes in the
brain may be influenced greatly by the initial connection map in
the brain at the moment of injury [50]. Therefore, understanding
the evolving relationship between functional networks and struc-
ture is critical to making progress in understanding neurotrauma.

The physical properties of the brain tissue within the cranial
vault are a critical determinant of how the brain moves and
deforms during impact. Some physical properties are either well
characterized and do not appear to vary across the population [51]
or they likely do not contribute to the motion of the brain during
blast/acceleration/impact conditions. The most critical factors
contributing to the mechanical response are the mechanical prop-
erties of skull, brain parenchyma, brain coverings, and the sup-
porting vessels. Estimates of the scalp properties stem back
several decades and include estimates for the failure limits during
impact [52]. The mechanical impedance of the scalp to an incom-
ing blast wave, though, is not defined. Similarly, the mechanical
properties of dura are also known [53–57] but the dynamic proper-
ties are not well described, especially for high rate loading.
Although there is some discussion on the relative importance of
the cerebrovascular network providing mechanical integrity to the
brain [58], only the mechanical properties and failure limits of the
parasagittal bridging veins are known [58–63].

Brain tissue, by far, is the most extensively characterized of
these tissues, but unfortunately has large unresolved differences
among reported values (overview of the range in material proper-
ties shown in Fig. 3). Early work on brain tissue stiffness showed
that it was primarily elastic and nearly incompressible under
cyclic, dilatational loading up to 100 kHz. Although initial esti-
mates of shear properties revealed a moderately compliant, visco-
elastic material with a complex modulus of� 20 kPa at loading

frequencies up to 120 Hz [64,65], these studies are now replaced
with a larger complement of studies that demonstrates brain is one
of the softest biological solid tissues measured (complex modulus
�.3–2 kPa), can be nonlinear viscoelastic, and varies across spe-
cies (recent reviews: [66,67]). A remarkable characteristic is that
the brain material softens at finite strains and that this softening
response is repeatable across many consecutive loading cycles.
Less clear, though, are the properties of brain, including the crite-
ria for functional failure of brain tissue, at the much higher strain
rates associated with blast loading [68,69]. Measures of bulk elas-
tic properties at ultrasonic frequencies produce estimates that are
nearly 1000 x stiffer than shear properties at much lower loading
frequencies, and the stiffness of the brain at these loading rates is
under ongoing examination [70]. Where possible, direct measures
of brain material properties in vivo are complementing past stud-
ies. For example, recent results using brain MR elastography pro-
vides estimates of the changes that occur in vivo and are in the
range of properties derived from previous in vivo and in situ
measurements [11,71–75].

In selected studies, the regional and local anisotropic variation
in brain material properties was examined [76–81]. At small
strains, the relative stiffness of highly oriented brain stem samples
showed modest anisotropy [81]. Gray matter properties show less
directional dependence but more heterogeneity than previously
appreciated, even within anatomical structures with several fold
differences at large strains [82]. Moreover, white matter and gray
matter show some significant differences in their relative shear
properties, although these changes are within twofold to threefold.
The regional properties for blast loading conditions are virtually
absent from the literature, although it remains an active area of
study. In work motivated by blast-TBI, a key concern is how to
measure these material properties under high strain rate condi-
tions. Hopkinson bar-based methods are now scaled to examine
shear properties at very high rates, but the soft nature of brain tis-
sue makes this a very challenging set of experiments [83–85].
Though values are reported at high strain levels (to 50% engineer-
ing strain, an overwhelmingly destructive loading condition), the
experiments lack sufficient resolution to estimate the response at
more realistic strain levels associated with primary blast injury
(�1% strain).

The development of macroscopic material properties, combined
with recent advances in computer modeling capabilities and a
desire to know which components of the brain are injured in
response to a macroscopic loading conditions, now provide an op-
portunity to develop more precise material models of the brain that
reflect both the underlying cellular structure of the material and the
unique macroscopic material behavior. Anatomical descriptions of

Fig. 3 Large variance in reported white matter and brain mate-
rial properties by study. Early work estimated both bulk and
shear modulus. In the past two decades, work has shown that
brain is one of the softest biological tissues, more than ten
times more compliant than the earliest measurements.

2Allen Brain Atlas: http://www.brain-map.org/: Visible Human Project: http://
www.nlm.nih.gov/research/visible/

3http://humanconnectome.org
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brain tissue are easily obtained using standard histopathological
techniques. In some cases, existing material models gleaned from
the composite materials community can help assist in interpreting
anisotropic material behavior [79,80]. Some models of the white
matter already suggest how different cell types may couple to each
other and propose how structural elements of the tissue interact in
complex manner to expose a subpopulation of axons to high me-
chanical loading [86–90]. Continuum-based nonlinear material
descriptions are also available to correlate with these structurally-
based material models [87,89]. With their continuum formulation,
the integration of these models into existing finite element software
packages is possible. Currently, though, there are no efforts to
model the complex mixture of cell types found in other areas of
the brain (e.g., hippocampus) and the relative change in the macro-
scopic/microscopic transformation that underlies any injury pat-
terns that occur in these areas. A recent set of measurements show
that material properties of the hippocampus in situ differ signifi-
cantly, yet the cellular mechanism(s) for this difference is not clear
[76–78]. Potential reasons for this difference include a change in
the relative balance of excitatory and inhibitory neurons, each of
which possess a different morphology that could contribute to a
difference in the kinematics of deformation at the cellular level.
Additionally, this difference may also reflect a change in the neu-
ron/glial ratio among the regions, given the material properties of
these two cell types are distinct. An inability to track different cell
types in living tissue over the microseconds to milliseconds time
scale remains a major technical impediment to validating any
structure-based model of the brain.

Emerging Key Issues. In comparison to our current knowledge
of the geometry and the multiscale structure of the brain, the ma-
terial properties are better known but vary in their magnitude over
a broad range (Fig. 4). The consistent use of these material prop-
erty measures, and not stiffer values from very early studies,
remains problematic. In addition, the specific material properties
in some, but not all, brain regions are known and the expansion of
this data set to include more brain regions and more anisotropic
properties would significantly help in the predictive ability of

models. Extending these properties to blast loading conditions
must be done, but we already have information that can be applied
to both the secondary and tertiary forms of bTBI. The bulk dilata-
tional response as the primary blast wave transmits through the
tissue is key, but may already be described with early work in the
field [52]. The associated deviatoric response under the high load-
ing rates associated with blast, however, is not fully described.
More insightful findings could come from studying the underlying
role of the vasculature in contributing towards the macroscopic
material properties of the brain conditions across the loading spec-
trum; early works suggest intriguing changes that could map the
macroscopic response to the underlying structural failure of the
vascular elements [58]. Additionally, there is evidence that mate-
rial properties of individual cell types within the brain are distinct
[91–96], and these variations may contribute greatly to our under-
standing of cell types within specific brain regions that would be
mechanically vulnerable. Extending the structural descriptions of
brain tissue to reflect the transmission of the macroscopic mechan-
ical input during blast loading may provide unique insights into
how the extremely rapid events during blast extend to the cellular
scale. Moreover, the heterogeneity of the macroscopic to micro-
scopic transformation will inevitably extend to the subcellular
scale—e.g., do synapses from the same neuron (or same dendrite
from within a neuron) show the same local deformation that is
applied macroscopically? Undoubtedly changes at the synaptic
scale will be important in decoding how the network function can
be compromised after injury.

Estimating the Primary Mechanical Response: Role of
Physical Models, Human Surrogate Models, and Computa-
tional Models. With a primary goal of linking an external me-
chanical input to injury patterns within the brain, investigators
have commonly used tools from both experimental and computa-
tional mechanics (Fig. 4). With such a complex geometry, though,
it is not surprising that the earliest efforts to achieve this overall
goal were experimentally based. Seminal studies by Holbourn
demonstrated the value of using simple photoelastic materials to
illuminate areas of a brain surrogate that experience high shear
strains during rapid rotational motions [97]. Holbourn’s models
highlighted that cortical regions were most vulnerable to injury
when the head was rapidly rotated about the sagittal plane (ante-
rior-posterior head motion), while structures deeper within with
the brain were more vulnerable with rotations along the coronal
plane. Subsequent studies using similar technologies highlighted
how high stresses can also appear at the craniocervical junction
[98]. Direct visualization of grid patterns or embedded markers
within a transparent silicone gel also provided direct evidence for
the unique patterns of deformations that occur with accelerations
imposed in different directions and the influence that different
skull/gel boundary conditions and ventricular structures have on
intracranial strains, showing that the ventricles can redistribute
and, in some regions, reduce the strains appearing within the brain
after impact [99–102]. In some instances, these models have been
used to assess the effectiveness of different animal models to recre-
ate the deformation patterns that appear during impact and have
led to a redesign of animal models to produce deformation patterns
that more closely resemble the strains within the hemispheres dur-
ing injury [103–105]. These same techniques are now extended to
blast loading conditions [102–109], where the efforts will yield
significant information on the manner that external blast waves
transfer to the brain simulant, how these pressures are distributed
throughout the surrogate, and how these pressures dissipate over
time. Although providing a direct window into the possible
response of the brain to any external mechanical loading condition,
it is worth noting that the highly elastic material properties of brain
tissue surrogates will need to be considered in extending or inter-
preting these results for the viscoelastic, nonlinear brain tissue.

Some of the disadvantages associated with physical models of
the brain within the skull are mitigated with human surrogate

Fig. 4 Multimodal modeling approaches for defining the struc-
tural response of the brain to applied mechanical loading. His-
torically, experimental approaches led to insight into the most
important types of mechanical loading associated with severe
brain injuries. These experimental approaches span both
human and animate models and use physical surrogates to
complement either scale. The most significant development in
the past decade is the growth of computational approaches to
examine the biomechanics of TBI in both experimental models
and humans. However, the need to validate these models for
numerical issues (e.g., mesh convergence, mesh quality) as
well as biofidelic output is even higher given their increased
complexity and proliferation.
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tests. By using cadaveric material with minimal material degrada-
tion, neutrally buoyant markers placed within the brain, and high
speed X-ray imaging technologies, one can track motions at any
point within the brain during an impact event [110]. Depending
on the location of the markers within the brain, these data can pro-
vide direct measures of the relative motion between the cortical
surface and the skull, the relative motion within the deep white
matter, and the differential motion across the hemispheres
[110–116]. Key results from these studies include the demonstra-
tion that the cortical surface of the brain can move relative to the
inner skull surface, thereby creating conditions that can cause
bridging vein rupture. Perhaps most significantly, Hardy and col-
leagues provided a well-characterized data set of neutrally buoy-
ant markers in the brain that illustrate how many points in the
brain move simultaneously during impact. In blast loading, these
same approaches can provide estimates of how the blast wave
transmits throughout the parenchyma. These data are critical in
bridging the physical models with more realistic in situ measure-
ments and linking computational models with the in vivo
environment.

To date, the only direct visualization of living brain motion in
humans has been accomplished with cyclical, noninjury motions.
Using a well-developed MR technology to place magnetic “lines”
within an anatomic plane, it is striking to see how much the brain
can move under a simple, repeated rotation in the horizontal plane
[117,118]. Estimates of the intracranial strains that appear during
physiological head rotations in volunteers show the shear strains
can reach 0.05 mm/mm, which is near the thresholds for axonal
damage but at much lower deformation rates. Until this work
appeared, it was not clear if there were any methods to cross-
correlate the experimental database on tolerance criteria for the
tissue with deformations that occur in vivo. These data provide
yet more validation data for finite element models of the brain
within the skull, especially since it is the only data available for
the in vivo brain response. Although these data are not for injuri-
ous situations, they will also provide an opportunity to match
skull/brain boundary conditions and assess the need for anatomic
detail and proper material descriptions for the brain.

The experimental work across physical models, human surro-
gates, and human volunteers forms an extensive database of infor-
mation for developing computational models of the brain response
to impact or blast exposure. An excellent set of reviews details the
early development of these models, which focused on modeling
impact testing in human surrogates and developing estimates of
tolerance under simple impact conditions [119,120]. These mod-
els quickly expanded into efforts for modeling the brain mechani-
cal response under more complex conditions, and the need to
accurately model the structure, material properties, and develop-
ing new material formulations for the soft brain material proper-
ties became evident. The extensive array of computational models
developed in the past decade for the study of injury in the human
brain is nothing short of remarkable [109,113,121–158].

Existing models can be roughly grouped into human and non-
human species. Human-based models contain different level of
complexity, depending on their purpose. A significant effort by
the National Highway Traffic Safety Administration to build a fi-
nite element model of the human brain/skull structure aims to
compute a solution to any impact condition within hours on a
desktop computer [159]. For this reason, the geometry is less
refined than other existing models. The reduction in complexity
suits the long-term goal of the model, which is to provide a tool
for evaluating brain injury specific risk in motor vehicle collisions
and, ultimately, inclusion of this tool in assessing passenger car
safety [157]. In comparison, models that use high resolution
images and details of the anatomy require more solution time but
offer more ability to interpret the predicted response and match
the multiscale aspects of TBI. For example, accounting for the
highly complex cortical gray matter and the underlying white mat-
ter structure yields insight into how the stress patterns can match
the exact patterns of injury observed in animal models and

patients [158,160]. In general, the material properties used in
these human-based models have migrated over the past decade
into estimates more consistent with the soft material characteris-
tics measured experimentally. A continuing effort to use accurate
material properties in these models is challenging, as the resulting
deformations can be large and the algorithms for computing the
forces at interfaces must be monitored carefully. Moreover, it is
well known that the soft material properties of the brain, when
coupled with its nearly incompressible dilatational behavior, pres-
ent significant computational challenges. Unanticipated mesh
warping must be carefully considered to avoid error propagation
in these models.

Investigators continue to use experimental data to validate the
models, complementing early data showing the pressures during
blunt impact with more recent data showing motions within the
brain during impact. Currently, publicly available models show an
increasing sophistication in their anatomical detail and their corre-
lation with available validation data. In the past five years,
these same models were extended to study blast exposure
[105,109,124,128,131,134–136,138–140,143,144,157,161–164].
In many cases, though, the absence of validation data remains a
key concern and must be addressed with each model before the
models can be meaningfully used to correlate blast exposure
with specific injury risk.

Given its importance as a linking process to accurately predict
the incidence of TBI, the process of validation needs better defini-
tion. Although the intent of validation is centered on the goal of
building virtual, computationally based models that accurately
describe the human mechanical response to impact, the specific
levels of validation for a model should always be considered in its
use for predicting injury. For example, finite element models
developed over two decades ago often used impact response data
from human cadaveric testing conducted by Nahum and col-
leagues to validate the model. This validation process is best
suited to evaluate the dilatational response of the finite element
model and is, therefore, a key step in evaluating finite element
models that use pressure as a metric for predicting injury. One
could view this as an initial validation level in the model develop-
ment process. However, injury mechanisms caused by deforma-
tion, and not pressure, would be more difficult to study with these
models validated at this level because the deformation response
can vary widely over a range of deviatoric material properties that
would not significantly influence the pressure distribution in the
brain during impact. The data on the displacements of points
within the brain during impact or, alternatively, the strains within
the living human brain during repeated, slower rotations form the
basis for a second validation level that concentrates on matching
the motion of the brain during impact. Given the relationship
between the displacement and resulting deformations in the brain,
models that achieve this validation level would improve the confi-
dence that the model could be used to study injuries in the brain
caused by different deformation mechanisms. However, there is
no standardized performance specification for a model matching
the data in this second validation level. Currently, the motion of
several points within the brain and the comparison to model pre-
dictions leads to a more generalized statement on the performance
of the model instead of a specific performance parameter. The
clear addition of more experimental data on the movement of
points within the brain under different impact conditions, direc-
tions, and with different-sized brains would significantly improve
the process of validation at this second level. A third validation
level to consider in the future would match patterns of damage
observed in human surrogate studies with predictions of damage
from the computational model. This validation level would test
the accuracy of applying a model to predicting some injuries
appearing in the moderate and severely head injured population.
This validation level, much like the first two levels, would need a
standardized scoring metric to assess the performance of the
model. Similar to how performance test criteria for protective
headgear resulted in a continuing improvement in performance
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over decades of development, including this validation level
would eventually ensure the improving correlation between com-
putational models and the injury patterns they are designed to
predict.

For nonhuman models, much of the work was an examination
of existing experimental models of TBI. Species include rodents
[109,128,135,138,140,143,144,161–167], pigs [168–173], and
sheep [174–176]. These experimental models offered a measure
that human physical models and human surrogate tests often could
not provide—an estimate of the injuries that occurred throughout
the brain as a result of the mechanical loading. Although some
vascular injuries can be captured in human surrogate tests, much
of the underlying pathobiology of TBI at the microscopic scale
must be examined directly in the living brain. Similar to the
human models, an extensive series of models appeared in the past
decade to provide insight into the relative risk of injury to the liv-
ing brain. Spatial descriptions of material properties may be nec-
essary to explain the relative injury risk in the hippocampus that
occurs commonly in rodent models of TBI [76,77,82]. Moreover,
the distribution of stress and deformation is key for predicting
areas of blood-brain barrier compromise, an injury often over-
looked in biomechanical investigations [177]. These models also
provide to opportunity to design new features into experimental
models of TBI—e.g., the shape of an impounder tip or the speed
of impact in the well described cortical impact model of TBI can
significant change the cortical lesion volume in this TBI model
[177]. These models offer a direct translational path for studying
blast exposure, and early results indicate that these models are
transferrable when attention to details such as mesh size and mate-
rial properties are made [22,164]. However, a systematic correla-
tion of model results with the histopathology of injury is
warranted to assess the efficacy of these models. Perhaps most
importantly, these models lack the extensive model validation
data sets that exist for the impact/acceleration-based models.

Linking the Physical Response to the Biological Response:
The Eventual Definition of Human Tolerance. With efforts to
identify the most common environments that cause TBI, the rele-
vant mechanical loading scenarios that occur in these environ-
ments, and the subsequent physical response of the brain during
these loading scenarios, one is faced with the next logical ques-
tion—when will these conditions cause injury to the brain? And,
relatedly, where will the injury occur? In some instances, the
direct correlation between the mechanical input and the resulting
pathobiological response will be made possible through a close
comparison of the computational/physical model and the histo-
pathological description of the injury pattern. However, the direct
comparisons between model and injury patterns will provide little
insight into the functional consequences of the injury patterns pre-
sented in any TBI. For example, although one may correlate
strains at the tissue level to different levels of axonal damage at
the microscopic level [178–182], an unanswered question is the
threshold of damage needed to cause impairment of electrophysio-
logical activity in the cell body, in the pathways connecting these
circuits, or any alterations in circuit plasticity that would be the
basis for impairments in learning and memory. Moreover, these
correlations do not provide insight into the direct mechanisms of
injury, an element that is critical for successful treatment.

Simplifying the Physical Inputs of the Injury for in Vitro
Study or “Reduced” in Vivo Models to Determine Injury
Mechanisms. With the clear need for coupling mechanical input
into functional consequences, work in the past decade has
responded and provided more direct insight into the mechanisms
that cause the resulting functional changes. Motivated by the early
work using physical models and finite element simulations, sev-
eral investigators developed microscope-based systems to study
directly the relationship between the mechanical deformation and
resultant biochemical signaling [183–189]. As a result, we now

know that both neural and glial cells respond to mechanical defor-
mation, that synaptically localized receptors are uniquely mecha-
nosensitive, show immediate alterations in their physiological
properties, and changes occur across both excitatory and
inhibitory neurons [190–195]. At higher loading conditions, an
additional mechanism of injury appears, which is the nonspecific,
transient opening of pores within the membrane
[183,186,196–202] after cellular deformation. In contrast to our
knowledge on the effects of mechanical deformation on neural
and glial cells of the central nervous system (CNS), the role of
dynamic pressures in affecting cellular function is not well
described. In nearly all cases of deformation-based mechanisms,
the in vivo evidence matches the in vitro observations. New mod-
els to mimic only the blast wave transmission in cell cultures open
up an entirely new opportunity for discovery in the blast loading
regime in which several potential mechanisms of injury can be
tested precisely with in vitro analogues [14,23,203–211].

Perhaps the most informative and relevant in vitro model for
directly coupling mechanical inputs into brain tolerance and
injury mechanisms will be the organotypic, in vitro models or the
reduced in vivo models [18,23,212–219]. Organotypic brain cul-
tures are sections of the brain isolated from the postnatal rodent
brain and cultured over days to weeks. With the isolation from a
living brain and without dissociation of the tissue common to
other culturing methods, the in vivo architecture is well preserved
in this model. Moreover, the combination of cell types within the
brain is also maintained. Although organotypic cultures can be
generated from different regions of the brain (cortex, thalamus,
hippocampus, cerebellum), the most complete data for tolerance
exists for the cortex and hippocampus [173,207,209,213,214,217].
Because these cultures are not vascularized, however, they do not
provide an estimate of the selective change in the tolerance in
cases where blood flow is compromised (ischemia; relative ische-
mia) or vascular damage occurs (blood-brain barrier breakdown;
vasospasm). The use of in vitro models to study the effects of blast
exposure is in its early stages, and estimates for blood-brain bar-
rier opening, alterations in glial signaling, and the recovery of
function are starting to appear in the literature [23,203]. A key
issue that will need more clarification is the correlation of these
loading conditions used in vitro to the loading environment in situ
during blast.

Reduced in vivo models are the next most informative method
for establishing links between input and resulting functional
impairment. The optic nerve is a highly aligned cranial nerve that
is part of the CNS, is accessible and can be injured directly to esti-
mate thresholds for tissue tolerance [181,182]. Similarly, dorsal
nerve roots are also accessible and provide a method to measure
directly the electrophysiolgical impairment after tensile stretch,
and data show that injury is linked to both the strain and strain
rate applied to the nerve roots [178–180].

Interspecies scaling to translate experimental model results to
the human from in vitro and in vivo testing plays a role on both
the macroscale and the microscale. Biomechanical scaling on the
macroscale is well established (e.g., Ref. [220].), but it is unclear
how brain scaling works on the microscale. Scaling principles for
bTBI are in their infancy (e.g., Refs. [22,221].), but investigation
is crucial to establish realistic exposures in models and scalable
endpoints for correlation with human clinical outcomes.

Key Emerging Issues. A growing concentration of efforts are
aimed towards understanding the tolerance of mild TBI, and these
efforts are critically reliant on defining conditions that will cause
some change in either the wiring of a neural network, a compro-
mise in the network’s mechanisms to adapt in response to an
incoming signal (plasticity), and the ability of the network to
shape or control activation patterns. Therefore, the mechanisms of
injury over the mild spectrum will span the cellular level—e.g.,
the direct changes to the plasma membrane, channels, and recep-
tors on the neuronal surface, the accompanying changes to sur-
rounding glial cells and the vascular cells—and the network level
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that includes both the neural circuit formed by neuronal ensem-
bles within a brain region and the coordination of signaling among
these brain regions. Based on current published work, the exten-
sion of these tolerance criteria and injury mechanisms in vitro to
functional impairment is limited [218,219,222,223]. These predic-
tions of network impairment will be facilitated with better
descriptions of the material behavior that embed neuronal and
glial connectivity and will also be very reliant upon measures of
impairment made in experimental models of TBI. In this way, the
prediction of function will be a significant and natural extension
of ongoing activities in the field.

Scaling network results, especially functional microscale
behavior from the models to humans, remains uncertain. Investi-
gation of this unexplored territory may increase relevance of mod-
els and lead to insights into the interface of structure, network and
functional outcome.

Estimating Human Tolerance Through the Playing Field.
Rather than using a coordinated series of physical surrogates,
computational simulations, and in vitro models of traumatic brain
injury, a new concept has surfaced in the past decade that uses a
profoundly different approach—using the sports playing field and
other sources of exposure to TBI as a “passive” biomechanics lab-
oratory where one collects data to eventually estimate the human
tolerance to mild TBI. Rather than relying on approximations
across several steps in the laboratory, accurate measures of indi-
vidual exposure will yield a direct estimate of the human tolerance
over time. In one approach, the effort is made possible by novel
monitoring technologies that allow one to estimate the key me-
chanical exposures that an athlete experiences over a practice or
game [224]. When a concussion occurs, the exposure that led
directly to the concussion would be archived and a distribution of
loading inputs would emerge over time to yield the aggregate
human tolerance. The most widely used monitoring technology
(head impact telemetry system, or HITS) allows investigators to
record the estimated exposures in an American football game
[225]. As of this writing, nearly 2� 106 exposures have been
recorded with this technology, and over 200 concussion events are
contained in this data set [226–228]. New recording technologies
are under active development, especially as the advantages of
microelectronic fabrication technologies make these sensors
smaller, less expensive, and potentially more widely available.

An alternative approach reconstructs the scenarios causing con-
cussion, as captured on videotape, using anthropomorphic test
dummies in a testing laboratory. Based on the pre- and postimpact
positions of the striking and struck test dummies, the most likely
loading conditions are estimated [149,152,229–231]. A compari-
son of the average peak accelerations associated with concussion
in this data set, compared to the concussion data set collected with
the helmet-based recording technologies, show reasonable agree-
ment, especially given the uncertainties involved in both
approaches.

A review of these approaches best puts into relief the challenges
presented with the “human laboratory.” At a broad level, neither
approach is designed to measure the unique tolerance for each
individual. Alternatively, measuring a range of conditions causing
concussion will inevitably raise the question of whether we can
conclusively assign a concussion risk function for an individual,
based on data from a population. From a simple biomechanical
viewpoint, normal variations in brain shape, material properties,
and loading direction can each produce significant variations in the
deformations at any point within the brain. With this variability,
even in the absence of any biological variability, the corridor of
conditions associated with concussion can be large. Even if this
concussion risk curve were constrained to a single individual, the
role that previous impacts occurring minutes, hours, or even days
prior to a given impact has given rise to great speculation about
the potential for repeated impacts leading to increased vulnerabil-
ity. Recently, the uncertainty of the measurements from the helmet

recording systems has shown to exceed earlier estimates, which
would further contribute to the range of conditions recorded for
concussions in the field [232,233].

Separate from developing human-based concussion thresholds,
one may choose to use exposure measurements to take players out
of a game or practice for medical evaluation or simple rest. Al-
ready, evidence shows that allowing players to self-report concus-
sion leads to a significant underestimate of the actual concussions
occurring in a game. Therefore, this monitoring system would
provide a possible approach to better capture participants that
should receive medical evaluation. Once again, though, the uncer-
tainty of a unique concussion threshold and the potential uncer-
tainty in the measurement accuracy could lead to both false
positive and false negative events.

Is this key concept of the human laboratory useful for other
injury situations, like blast? Technology is already developed for
detecting threshold blast overpressures in the field [234–236].
Acting as a sensor for deciding if a soldier warrants medical eval-
uation, this application is not designed as a precise recording tech-
nology. Even if such precise monitoring for blast overpressure
was available, though, one must also consider simultaneously re-
cording key mechanical parameters that contribute to secondary
and tertiary blast injury (e.g., linear and rotational acceleration) so
that a recording of the complete blast exposure is recorded. Many
of the same caveats applied to the use of helmet recording systems
in sports would apply equally to the blast environment. Helmet-
mounted systems present even more critical challenges for use in
assessing exposure in the military environment. Blast waves are
highly directional [22] and produce helmet motions with small
peak displacements with very high accelerations (>1000 g or
more in the helmet) [237,238] with much lower resultant accelera-
tions of the head (�200–300 g). It is not clear that a helmet to
head transfer function is even possible for omnidirectional blast
exposure. Understanding blast biomechanics of neurotrauma is
even more complicated because we are only beginning to under-
stand how these mechanical input conditions contribute to the pri-
mary injury response.

Using These Efforts to Reduce the Societal Burden of TBI.
With this collection of tools to examine how traumatic brain
injury occurs in both the civilian and military environment, it is
worth considering the broader impact of how new knowledge will
eventually ease the burden of this disease on society. Some of the
general benefits are clear, as a more detailed understanding of
injury causality will inevitably lead to better protective headgear,
automobiles designed to reduce TBI incidence, and even safer
sporting environments. With the current projections of the eco-
nomic consequences of traumatic brain injury and disability in the
U.S., these benefits can become more specific. For example, even
a 25% reduction in the incidence of TBI would translate to an eco-
nomic savings of 25� 109 U.S. dollars per year. The same reduc-
tion in incidence, if applied equally over the severity spectrum,
would save 10,000 lives annually and result in a decrease of
250,000 emergency department visits each year. The number of
lives saved would compare to almost halving the deaths due to
prostate cancer in the U.S., or reducing the overall accident-
related deaths by more than 10%.

Perhaps equally compelling is the potential long-term effects of
providing a safer environment. The potential link between TBI
and Alzheimer’s disease (AD) provides a useful case study. If
there is significant increase in the risk for developing AD in peo-
ple with a history of TBI, we could see a meaningful decline in
the incidence of AD over the ensuing decades with better protec-
tion against TBI. Developing a specific estimate of the benefit is
difficult, as there are a range of studies that show a clear link
between TBI and enhanced risk for AD, while others show no sig-
nificant increase in the risk [239]. Clearly, the net benefit of better
protection would be a product of the decreased incidence rate of
TBI and the relative enhanced risk of developing AD in people
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with a history of TBI. For example, assume 1/6 of a population
has a history of head injury and that the relative increase in risk
for developing AD in the TBI population is twice the risk for a
population with no prior TBI. If protection technologies led to a
50% reduction in the incidence rate of TBI, then 1/12 of the future
population would have a history of head injury and we would see
an approximate 7% reduction in the incidence of AD in society.
Although this may seem modest, the growing economic burden of
Alzheimer’s disease means this reduction in incidence would save
11–15� 109 U.S. dollars per year in healthcare costs. As the exact
relative risk for AD in patients with a history of TBI becomes
more fully developed, this illustrative case study will be replaced
with more specific estimates of how better protection technologies
in the future will not only save lives but also contribute towards
lowering the burden of diseases that could be triggered or acceler-
ated with a history of TBI.

Areas of Opportunity in the Future. Although foundations of
the mechanics of neurotrauma are over 70 years old, we still face
significant challenges in merging the structural mechanical
response and human pathophysiological response across the
length scales. This gap is especially true for mild TBI, in part
because we are just beginning to understand the mechanisms re-
sponsible for acute and long-term impairment for mild TBI. Using
the outline presented in this review, we identify several critical
unanswered questions that would accelerate our understanding in
the next decade.

For defining the environments associated with TBI, we see a
need to maintain a current working knowledge of the incidence
rates for focal and diffuse brain injuries, and to critically define
injury subgroups that are either declining in incidence or signifi-
cantly increasing in incidence in specific environments. Achieving
this goal would keep research foci relevant as the injurious envi-
ronment changes either through new threats or the consequences
of improved safety systems.

Similarly, we see a significant shortcoming in our clinicopa-
thological understanding of primary blast injury to the human
brain. Our definition of research priorities for brain injuries suf-
fered in motor vehicle crashes was made possible by a system-
atic description of the injuries in the human condition (e.g., skull
fracture, intraceberal hematoma, diffuse axonal injury), leading
to the replication and careful study of these injuries in the labora-
tory. A similar, systematic description of the key injury features
for primary bTBI in the human would significantly focus
research efforts and consequently accelerate our understanding of
their causation as well as how to protect against these types of
injuries.

In estimating the primary mechanical response, several open
areas of opportunity exist along the length scales:

• At the tissue scale, the continuum descriptions of material
behavior are maturing but the deviatoric properties at high
loading rates (>500 s�1) are lacking.

• At the cellular scale, the nonlinearity of material behavior is
nearly absent. Although we know some key transduction
events, we know far less about how these force transducers
and cellular inhomogeneities will affect the circuit function.

• At the molecular scale, some evidence shows key molecular
domains within receptors can control their mechanosensitiv-
ity, but detailed molecular-level study across all force-
responsive receptors and channels is lacking. Knowing these
key molecular and atomic scale interactions would reveal
potentially new insights into how forces are transduced
across the mechanical loading spectrum

• At the organ and organismal scale, there remains a strong
need to develop rational interspecies scaling relationships for
bTBI that account for the primary mechanical response, the
interspecies differences in the connectome, and any resulting
changes in behavior for networks across the phylogenic
spectrum

Finally, we also see an opportunity in the far term to move
these efforts for exploring two interrelated questions—how does
the acute injury progress into a chronic disease, and can we better
identify individual risk-curves instead of relying on estimates for
the population? As we learn more about the key biological events
or, alternatively, key brain regions that are important in the pro-
gression of some acute injuries into chronic impairments, we will
be positioned to develop more specific tolerance criteria and pro-
tection strategies to reduce the long-term burden of TBI. Addi-
tionally, as more data become available from the human
laboratory, we will see an opportunity to identify how the individ-
ual features—e.g., brain size, shape, the unique exposure profile,
etc.—can lead to a better estimate for customizing protection
technologies for an individual rather than relying on one design
for an entire population, akin to the emerging efforts to customize
treatment options based on genetic profiles in cancer patients.
These efforts, although admittedly in the distant future, would rep-
resent an important evolution in our efforts to reduce the burden
of TBI on the population by understanding it in each of us.
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