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Time-dependent homeostatic mechanisms underlie
brain-derived neurotrophic factor action on neural
circuitry
Kate M. O’Neill 1,2,10, Erin D. Anderson 3,11, Shoutik Mukherjee4,11, Srinivasa Gandu 1,5,11,

Sara A. McEwan1,6, Anton Omelchenko1,6, Ana R. Rodriguez1,2, Wolfgang Losert 7,8, David F. Meaney3,9,

Behtash Babadi4 & Bonnie L. Firestein 1✉

Plasticity and homeostatic mechanisms allow neural networks to maintain proper function

while responding to physiological challenges. Despite previous work investigating morpho-

logical and synaptic effects of brain-derived neurotrophic factor (BDNF), the most prevalent

growth factor in the central nervous system, how exposure to BDNF manifests at the network

level remains unknown. Here we report that BDNF treatment affects rodent hippocampal

network dynamics during development and recovery from glutamate-induced excitotoxicity

in culture. Importantly, these effects are not obvious when traditional activity metrics are

used, so we delve more deeply into network organization, functional analyses, and in silico

simulations. We demonstrate that BDNF partially restores homeostasis by promoting

recovery of weak and medium connections after injury. Imaging and computational analyses

suggest these effects are caused by changes to inhibitory neurons and connections. From our

in silico simulations, we find that BDNF remodels the network by indirectly strengthening

weak excitatory synapses after injury. Ultimately, our findings may explain the difficulties

encountered in preclinical and clinical trials with BDNF and also offer information for future

trials to consider.
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B iological systems tend toward maintaining homeostasis
after being perturbed1,2, which is especially true for neu-
ronal networks3. Indeed, permanently disrupted home-

ostasis in developing neurons may lead to neuropsychiatric
disorders (reviewed in ref. 4). Perhaps the most impressive aspect
of brain development is the seemingly paradoxical relationship
between rewiring activity and circuit stability, given how devel-
oping neuronal networks maintain appropriate function in the
midst of extensive rewiring (reviewed in ref. 5). Moreover,
homeostasis can occur at multiple levels, potentially resulting in
changes to individual neurons while maintaining similar activity
at the network level (reviewed in ref. 6).

Each of these physiological properties of homeostasis across
scales within the brain is challenged when the same stable neu-
ronal networks are injured. While the type and severity of injury
are most predictive of functional recovery, neuronal networks can
display a great amount of resilience7. In particular, the ability of
developing networks to recover after injury is likely due to
increased plasticity since both structural and functional plasticity
increase within and near the site of injury in vivo8. Similar to
developmental changes, an injured network must properly rewire
itself during the recovery phase, and the correct connections must
be remade9. Although developing networks and injured networks
demonstrate similar changes in protein expression10, the corre-
sponding properties of network-level function in neither devel-
oping nor injured networks have been investigated in depth. Our
broad goal is to study the principles of network homeostasis in
neural circuits by examining if the intrinsic molecular mechan-
isms of rewiring are capable of shifting the homeostatic set point.

Several molecules regulate homeostatic plasticity, and the first
secreted factor to be identified was brain-derived neurotrophic
factor (BDNF). BDNF plays an important role in synaptic scaling
by regulating the balance of excitation to inhibition (E/I) at
cortical synapses11. Application of exogenous BDNF prevents
alterations to miniature excitatory postsynaptic currents after
activity is blocked11, suggesting a role for activity-dependent
BDNF release in regulating synaptic scaling. BDNF is also
important for inhibitory synapse development12 with activity-
dependent release of BDNF being critical for synaptic scaling of
inhibitory neurons13. Despite evidence that BDNF is the most
prevalent growth factor in the central nervous system and can
regulate multiple features of connectivity at the single-neuron
scale, BDNF-promoted homeostasis has not been studied at the
network level. We seek to fill this gap in our knowledge and
determine how BDNF acts upon circuits. BDNF may help net-
works restore their intrinsic stability, and thus, BDNF treatment
may help to reassemble an injured circuit. However, BDNF may
mediate changes to network connectivity that impair the
rebuilding process, which may explain why BDNF has not shown
promising results in clinical trials14. Past work indirectly suggests
that both effects are possible, yet there is no systematic study of
networks at different scales that answers how BDNF affects cir-
cuits directly.

Here, we use microelectrode array (MEA) technology to record
spontaneous network activity from primary rat hippocampal
networks during development and after chemical injury. From
our data obtained at high temporal resolution, we build upon our
previous studies15–18 and use activity parameters for individual
electrodes (representing small groups of neurons) to measure the
functional network-level properties before and after remodeling
the network with BDNF treatment. To obtain a directional net-
work characterization of the MEA data, we use Granger causality
(GC) analysis, which statistically tests whether a source time
series significantly improves the forecasting of a target time series.
GC analysis has frequently been used for continuous neuroima-
ging data as an established functional network characterization

methodology19–23; here, we employ recent extensions that enable
its application to binary event data24,25 and, in particular, model
the sparse interactions that occur in neuronal networks25. We
additionally analyzed higher-order synchronous activity (i.e.,
simultaneous activity shared across more than two electrodes) to
complement the pairwise analysis offered by GC. Finally, to
inspect the circuit-level mechanisms that could underlie the
changes in functional networks, we developed a computational
model of neuronal network activity that examines specific
mechanisms of how the exogenous application of BDNF affects
remodeling in neuronal networks during recovery from injury.

Since BDNF is a well-known regulator of neuronal morphology
and synaptic activity11,12,26–30, we investigated whether BDNF
application alters the activity of developing networks. We treated
hippocampal networks with 25 or 50 ng/ml BDNF, two con-
centrations that affect the morphology of the dendritic tree in
neurons in our networks27,29. Only the higher concentration
decreases TrkB phosphorylation, an effect that lasts for 7 days
after treatment ends and demonstrates that the two concentra-
tions differ in their action. Both concentrations of BDNF alter the
local efficiency and synchronization of developing networks,
although with distinct effects and on different timescales.

Given the involvement of BDNF in neuroprotection when
applied prior to injury31,32, we then investigated whether treat-
ment with 50 ng/ml BDNF rescues injury-related changes caused
by glutamate-induced excitotoxicity. We found that BDNF
exacerbates injury-induced decreases in burstlet rate and local
efficiency while preventing injury-induced decreases to weak and
medium synchronized connections. Our results suggest that
BDNF acts on network activity in a manner that maintains much
of the synchrony between electrodes while allowing the overall
firing rate to decrease. Moreover, network-level properties infer-
red from higher-order synchrony and GC network analyses
corroborate these findings by revealing mixed effects of BDNF
treatment in injured networks. Finally, our simulated in silico
networks suggest that, although BDNF promotes inhibitory
neuron survival following injury, it remodels the network by
indirectly affecting excitatory synapses. Taken together, our
results demonstrate complex roles for BDNF in the regulation of
E/I balance during development and after injury.

Results
Sustained BDNF-promoted decreases in phosphorylated TrkB
expression in hippocampal networks depend on BDNF con-
centration. The concentration of BDNF used to treat neuronal
networks is important since it influences receptor activation and
downstream signaling. Similar to our previous work, we treated
hippocampal networks with 25 or 50 ng/ml BDNF27,29. The lower
concentration is thought to target TrkB specifically, whereas the
higher concentration likely also activates TrkA and TrkC27,29,33.
To determine whether these two concentrations distinctly affect
the TrkB receptor, we treated networks with 0, 25, or 50 ng/ml
BDNF (abbreviated 0B, 25B, and 50B, respectively) from day
in vitro (DIV) 7 to 10. Importantly, this treatment window
matches our previous work that quantified BDNF-mediated
effects on the dendritic arbor of hippocampal neurons27,29. We
then performed Western blot analysis and compared the ratio of
phosphorylated TrkB to total TrkB (p-TrkB/t-TrkB) before
treatment (“pre”), immediately after treatment (“0d post”), and
one week after treatment ended (“7d post”; developmental
timepoints indicated in Fig. 1a; all blots shown in Supplementary
Fig. 1) to allow for assessment of short- and long-term effects of
BDNF treatment. Repeated measures analysis of variance (RM
ANOVA) reveals that timepoint has a significant effect on the p-
TrkB/t-TrkB ratio (F= 20.5, p < 0.001; Supplementary Table 1).
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We then performed multiple comparisons analysis (i) based on
BDNF concentration for each timepoint separately and (ii) based
on the timepoint for each BDNF concentration separately. These
analyses reveal that treatment with either 25B or 50B causes
significant decreases in p-TrkB/t-TrkB ratio immediately after
treatment (0d post); however, this decrease in TrkB phosphor-
ylation is only sustained by the 50B treatment through 7 days
after treatment ended (7d post; Fig. 1b, c). Our results suggest
that these two concentrations of BDNF exert distinct effects on
hippocampal networks but only when timepoint is taken into
account.

BDNF treatment causes time-dependent changes to local net-
work efficiency in a concentration-dependent manner. We next
sought to investigate whether BDNF treatment alters network
activity during hippocampal network development. To this end,
we recorded spontaneous activity using microelectrode arrays at
the same developmental timepoints (experimental timeline
shown in Supplementary Fig. 2a) to assess short- and long-term
effects of BDNF treatment on network dynamics (Fig. 2; all data
points shown in Supplementary Fig. 3a–c). To achieve the most
complete analysis of our rich MEA data, we used RM ANOVA
and multiple comparisons to analyze changes within BDNF
treatment conditions over time (“changes within” on left sides of
plots; significance represented by asterisks) followed by estima-
tion statistics34 to quantify whether the changes over time differ
across treatment conditions (“differences between” on right sides

of plots; significance represented by p values). It is important to
note that, for MEA data, we are only interested in changes over
time because each in vitro network develops uniquely and, thus,
requires normalization. Therefore, all MEA data are expressed as
percent change (% change). We offer additional explanations of
statistics used in the “Methods” section (subsections: “Data
representation” and “Statistics and reproducibility”).

First, when using RM ANOVA analysis, we find that burstlet
rate (a measure of organized activity) is significantly affected by
timepoint (F= 21.7, p < 0.001; Supplementary Table 1). Multiple
comparisons testing further reveals (i) that burstlet rate does not
change significantly for any condition immediately after treat-
ment ends compared to pre-treatment (Fig. 2a, plots on left in top
panel, 0d post vs. pre) and (ii) that, regardless of condition,
burstlet rate significantly decreases by ~40% at seven days after
treatment ends compared to pre-treatment (Fig. 2a, plots on left
in bottom panel, 7d post vs. pre). Moreover, using estimation
statistics, we find that none of the treatment conditions
significantly differ from one another (Fig. 2a, distributions on
right in top and bottom panels, 0d post vs. pre and 7d post vs.
pre).

Since we did not observe differences between BDNF treatment
conditions in organized network activity (i.e., burstlet rate), we
next investigated whether spiking variability—as measured by the
Fano factor—is changed by BDNF treatment or during develop-
ment. RM ANOVA analysis reveals that timepoint significantly
affects spiking variability as measured by the Fano factor

Fig. 1 Changes in ratio of phosphorylated (p-TrkB) to total TrkB (t-TrkB) in cultured hippocampal neurons in response to BDNF treatment. a Schematic
illustrating timepoints for data acquisition. Pre timepoint is DIV 7. b Representative blot showing changes in p-TrkB (~140 kDa) and t-TrkB (~90 kDa) over
time. c Quantification of p-TrkB/t-TrkB over time. Treatment with 25 ng/ml BDNF (25B) or 50 ng/ml (50B) causes decreases in p-TrkB/t-TrkB at 0d post-
treatment compared to pre-treatment levels, but only treatment with 50B causes decreases at 7d post-treatment compared to pre-treatment levels
(*p < 0.05). 0B= no BDNF; 25B= 25 ng/ml BDNF; 50B= 50 ng/ml BDNF. p values calculated by repeated measures ANOVA, and * indicates significant
differences compared to pre-treatment levels. Solid black lines indicate the mean, and gray boxes indicate 95% CIs. Differently colored datapoints indicate
individual trials. N= 6 independent experiments.
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(F= 209, p < 0.001; Supplementary Table 1). After multiple
comparisons testing, we find that spiking variability does not
change at 0d post-treatment (DIV 10) compared to baseline for
any condition (Fig. 2b, plots on left in top panel, 0d post vs. pre)
but that it significantly increases at 7d post-treatment (DIV 17)
compared to baseline for all conditions (Fig. 2b, plots on left in
bottom panel, 7d post vs. pre; p < 0.001 for 0B, 25B, and 50B).
Spiking variability therefore appears to be a robust metric related
to network maturity since, compared to baseline, the Fano factor
increases by 46% in control networks at 7d post-treatment (and
by 56% and 57% in 25B and 50B networks, respectively).
Regardless of other changes that result from BDNF treatment,

such as TrkB phosphorylation levels, our results suggest that
hippocampal networks maintain homeostasis by following a
specific maturation program of gradually increasing spiking
variability.

We next examined whether network age or BDNF treatment
alters the local efficiency of hippocampal networks (Fig. 2c). We
calculate local efficiency as previously reported17, where we use
cross-correlation of binned spiking activity to generate functional
connectivity matrices (Fig. 2d); representative matrices are shown
for the control condition at all timepoints. RM ANOVA reveals
that BDNF treatment (F= 10.1, p < 0.001), timepoint (F= 47.6,
p < 0.001), and the interaction of BDNF treatment and timepoint

Fig. 2 BDNF treatment alters local efficiency but not network activity. a Changes in burstlet rate (Hz). e= 158 for 0B; e= 184 for 25B; e= 180 for 50B.
b Changes in Fano factor (A.U.). e=332 for 0B; e= 506 for 25B; e= 452 for 50B. c Changes in local efficiency (A.U.). e= 356 for 0B; e= 453 for 25B;
e= 387 for 50B. d Functional connectivity matrices used for calculating local efficiency. Shown are representative matrices at each timepoint for the
control condition. Colorbar represents the strength of cross-correlation. e Representative raster plots for each condition. 0B= no BDNF; 25B= 25 ng/ml
BDNF; 50B= 50 ng/ml BDNF. Data in a–c from N= 3 independent experiments. For a–c: y-axis indicates percent change from baseline (pre-treatment).
Top row compares pre-treatment to 0d post-treatment, and the bottom row compares pre-treatment to 7d post-treatment. Plots on the left indicate means
with 95% CIs, and p values calculated by RM ANOVA followed by Tukey–Kramer multiple comparisons test, where *p < 0.05, ***p < 0.001 indicate
significant differences between timepoints within the same condition. Distributions on the right with means (black squares) and 95% CIs (vertical lines)
show comparisons between conditions and were calculated via estimation statistics with p values calculated directly from CIs. N indicates the number of
experiments, and e indicates number of electrodes.
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(F= 14.1, p < 0.001) significantly affect local efficiency (Supple-
mentary Table 1). Multiple comparison testing reveals additional
details. Regardless of condition, all networks demonstrate the
same local efficiency immediately after treatment compared to
baseline (Fig. 2c, plots on left in top panel, 0d post vs. pre).
However, estimation statistics reveal that the 50B treatment
significantly decreases local efficiency (by 20%) at this timepoint
compared to control networks (Fig. 2c, p= 0.013 for 50B vs. 0B
distribution on right in top panel, 0d post vs. pre). Despite this
short-term difference between the 0B and 50B conditions, no
differences in local efficiency are observed between them at 7 days
after treatment: both show significantly increased local efficiency
(64% and 51% for 0B and 50B, respectively) compared to baseline
(Fig. 2c, plots on left in bottom panel, 7d post vs. pre; p= <0.001
for 0B and 50B). Treatment with 25B has no effect on local
efficiency (assessed by RM ANOVA), with estimation statistics
revealing that this lack of effect for 25B is significantly different
from the changes observed in 0B and 50B networks (Fig. 2c,
p < 0.001 for 25B vs. 0B and for 50B vs. 25B distributions on right
in bottom panel, 7d post vs. pre). We also quantified global
efficiency but found no differences over time or between
treatment conditions (data not shown).

Taken together, our results suggest that (i) network age is the
most consistent variable that changes network activity, (ii)
hippocampal networks are relatively resilient to treatment-
induced network-level changes during development (e.g., burstlet
rate and Fano factor), and (iii) any effects exerted by BDNF (e.g.,
on local efficiency) are concentration-dependent (Fig. 2e).

BDNF treatment alters synchronization in a concentration-
dependent manner. As in our previous work15,16, we calculated
the synchrony of firing (SF) between electrodes as a metric for
synchronization (Fig. 3; all data points shown in Supplementary
Fig. 3d–f), and it indicates how often electrodes show bursting
behavior at the same time (simultaneous organized activity). The
distributions of synchronization for all conditions are skewed
towards weaker connections, quantitatively indicating that our
in vitro networks do not demonstrate over-synchronization
during development (Fig. 3a). We separated synchronization
into three categories: weak (with values between [0.1, 0.4);
Fig. 3b), medium (with values between [0.4, 0.7); Fig. 3c), and
strong (with values between [0.7, 1.0); Fig. 3d), similar to what we
have previously reported15,16. Categorization allows us to reveal
how connections with specific initial strengths change over time
and with treatment. A value of 0 indicates no synchronization
between a pair of electrodes, and thus, we do not analyze initial
connection strengths below 0.1 to prevent the inclusion of
inflated positive changes after normalization15,16. We again use
the same strategy of RM ANOVA and multiple comparisons to
analyze changes over time within conditions and estimation
statistics34 to determine whether changes over time are different
across conditions when analyzing the data presented in Fig. 3.

All categories of synchronization significantly decrease in
strength over time, but BDNF treatment changes the timing and
extent of these decreases. RM ANOVA reveals that, for all
categories of synchronization (weak, medium, and strong), BDNF
concentration (F= 25.7, F= 14.4, F= 9.91, respectively; all
p < 0.001), timepoint (F= 435, F= 1790, F= 3210, respectively;
all p < 0.001), and the interaction between BDNF concentration
and timepoint (F= 40.9, F= 31.8, F= 58.7, respectively; all
p < 0.001) significantly affect each category of synchronization
(Supplementary Table 1).

Weak and medium strength connections demonstrate similar
changes as revealed by multiple comparisons testing. Treatment
with 50B decreases synchronization (73% and 83%, respectively;

p < 0.001 for both) to a greater degree than does treatment with
0B (54% and 67%, respectively; p < 0.001 for both) or 25B (50%
and 62%, respectively; p < 0.001 for both) immediately after
treatment compared to baseline (Fig. 3b, c, plots on left and
distributions on right in top panel, 0d post vs. pre; p < 0.001 for
50B vs. 0B and for 50B vs. 25B). At 7d post-treatment compared
to baseline, treatment with 25B causes greater decreases in weak
and medium synchronizations (60% and 82%, respectively;
p < 0.001 for both) compared to control (13% [p= 0.001] and
61% [p < 0.001], respectively) and 50B (33% and 71%, respec-
tively; p < 0.001 for both) networks (Fig. 3b, c, plots on left and
distributions on right in the bottom panel, 7d post vs. pre;
p < 0.001 for 25B vs. 0B and for 50B vs. 25B).

Strong connections demonstrate other changes. At 0d post-
treatment compared to baseline, estimation statistics reveal that
treatment with 25B partially attenuates the decrease in synchro-
nization observed in control (by 12%) and 50B (by 9.2%)
networks (Fig. 3d, p < 0.001 for 25B vs. 0B and for 50B vs. 25B
distributions on right in top panel, 0d post vs. pre). In contrast, at
7d post-treatment compared to baseline, estimation statistics
show that networks treated with 25B demonstrate a significantly
larger decrease in strong synchronization compared to control
(by 18%) and 50B (by 23%) networks (Fig. 3d, p < 0.001 for 25B
vs. 0B and 50B vs. 25B distributions on right in bottom panel, 7d
post vs. pre). Moreover, treatment with 50B partially attenuates
the decrease in synchronization (by 3.3%) observed in control
networks (Fig. 3d, p= 0.043 for 50B vs. 0B distribution on the
right in the bottom panel, 7d post vs. pre).

Thus, in the context of our study (Fig. 3e), BDNF treatment
and network age significantly affect all categories of synchroniza-
tion. Moreover, treatment with 25B attenuates changes to strong
connections in the short-term (immediately after treatment
compared to baseline), and treatment with 50B attenuates
changes to strong connections in the long-term (at 7d after
treatment compared to baseline).

Functional network-level analyses reveal concentration-
dependent effects of BDNF on developing networks. BDNF-
mediated changes in activity patterns and network efficiency
demonstrate that BDNF treatment can alter network properties
but offer no clear evidence on whether BDNF affects information
flow through hippocampal networks. To address this knowledge
gap, we adapted Granger causality (GC) analysis25 to infer
directed networks between MEA electrodes based on bursting
(organized) activity and examined how network connectivity
changes in developing networks over time and with BDNF
treatment (Fig. 4a). In our application, GC analysis determines if
predictions of the activity of one electrode are significantly
improved by the recent activity history of another electrode;
analyzing all electrode pairs in this manner yields a directed
functional network, where connectivity is summarized by the
number of detected GC links.

We find that control networks (0B) and networks treated
with 50B behave similarly, showing significant changes in the
number of GC links at 7 days after treatment (7d post)
compared to immediately after treatment (0d post; 0d post vs.
7d post, p < 0.01 for 0B and p < 0.001 for 50B) but no changes
between baseline (“pre”) and 0d post-treatment or between
baseline and 7d post-treatment. The number of GC links for
networks treated with 25B does not change over time,
indicating that treatment with 25B prevents long-term
decreases in Granger causal links, hence maintaining network
connectivity. The concentration-dependent effects of BDNF on
GC network connectivity mirror the effects on weak, medium,
and strong synchronization (Fig. 3b–d).
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While GC analysis describes pairwise interactions as networks
develop, it is unable to characterize the higher-order interactions
between groups of three or more electrodes. Hence, we adapted a
recently developed model of higher-order synchronized
spiking35,36 to further assess the effects of BDNF on bursting
(organized) activity. The model tests if all rth-order events
(simultaneous burstlets across exactly r electrodes) occurred at a
significantly high rate. We plotted frequency distributions of
detected orders of synchrony for all timepoints and all treatment

conditions; both cumulative distribution functions (CDFs) and
probability distribution functions (PDFs) are included (Fig. 4b).

No significant changes in distribution are observed between
baseline (“pre”) and 0d post-treatment for any condition (Fig. 4b,
left and middle columns). However, a difference emerges between
the control and BDNF treatment conditions at 7d post-treatment:
the frequency distribution of higher-order synchrony in control
networks appears bimodal, unlike in networks treated with 25B or
50B (Fig. 4b, right column and Table 1). We quantified the
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change in distributions by first binning the PDFs in Fig. 4b to
generate the histograms (Fig. 4c). After applying Tokeshi’s test for
bimodality37 (as described in “Methods” subsection “Tokeshi’s
test of bimodality”), we find the distribution of detected orders of
synchrony in control networks at 7d post-treatment to be weakly
bimodal, whereas the distributions for networks treated with 25B
and 50B are unimodal (Table 1). This finding indicates that
BDNF treatment, regardless of concentration, attenuates the
tendency of developing networks to become either globally or
locally synchronized, instead promoting heterogeneous higher-
order synchrony. These results, combined with GC findings,

suggest an inhibitory network-wide effect of BDNF that varies by
concentration.

Next, to characterize the spatial extent of BDNF-mediated
network-level effects, we analyzed the relationship between
degree of spatial localization of synchronized units (electrodes)
and orders of synchrony (i.e., the size of a group of synchronized
electrodes), both across time and across conditions. We
computed the distances of synchronized electrodes to their
centroids and compiled histograms of these relative distances,
thus, individually characterizing low-order synchronous electro-
des (of order 2–8; Fig. 4d1), intermediate-order synchronous

Fig. 3 BDNF treatment distinctly alters connection strength in a concentration-dependent manner. a Distribution of synchronization strengths for
cultures treated with vehicle (0B; left), 25 ng/ml BDNF (25B; middle), and 50 ng/ml BDNF (50B; right) over time. b Changes in connections with initially
weak synchronization (values of [0.1,0.4)). e= 1720 for 0B; e= 1454 for 25B; e= 2002 for 50B. c Changes in connections with initially medium
synchronization (values of [0.4,0.7)). e= 556 for 0B; e= 700 for 25B; e= 482 for 50B. d Changes in connections with initially strong synchronization
(values of [0.7,1.0)). e= 620 for 0B; e= 654 for 25B; e= 760 for 50B. e Summary schematic of synchronization changes during development with BDNF
treatment. Colors correspond to synchronization values, ranging from weak (dark blue) to strong (red). Data in a–d from N= 3 independent experiments.
For b–d: y-axis indicates percent change from baseline (pre-treatment). Top row compares pre-treatment to 0d post-treatment, and bottom row compares
pre-treatment to 7d post-treatment. Plots on the left indicate means with 95% CIs, and p values calculated by RM ANOVA followed by Tukey–Kramer
multiple comparisons test, where ***p < 0.001 indicates significant differences between timepoints within the same condition. Distributions on the right
with means (black squares) and 95% CIs (vertical lines) show comparisons between conditions and were calculated via estimation statistics with p values
calculated directly from CIs. N indicates the number of experiments, and e indicates the number of electrodes.

Fig. 4 Granger causality (GC) and synchrony analyses of BDNF treated networks. a All GC links in control (0B; left), 25 ng/ml BDNF (25B; middle), and
50 ng/ml BDNF (50B; right) treated networks. *p < 0.01 and **p < 0.001; *represents significant differences between timepoints of the same condition
based on two-sided Wilcoxon’s rank sum test. Solid black lines indicate the mean, and gray boxes indicate 95% CIs. b Higher-order synchrony frequency
distributions shown as PDFs and CDFs for 0B (top row), 25B (middle row), and 50B (bottom row) treated networks. c Binned higher-order synchrony
frequency distribution shown as PDFs for 0B (top row), 25B (middle row), and 50B (bottom row) treated networks. The distribution is weakly bimodal in
control networks 7d post (Tokeshi’s test of bimodality; see Table 1). d Spatial dispersion of synchronized electrodes grouped by low-order synchrony (d1),
intermediate-order synchrony (d2), and high-order synchrony (d3). Statistically significant p values for data in d included in Supplementary Material and
were determined by two-sample KS tests. Top row: control networks; middle row: 25B treated networks; bottom row: 50B treated networks. Data from
N= 7 independent experiments. 0B: n= 19 for pre; n= 15 for 0d post; n= 12 for 7d post. 25B: n= 21 for pre; n= 17 for 0d post; n= 14 for 7d post. 50B:
n= 17 for pre; n= 14 for 0d post; n= 12 for 7d post. N indicates the number of experiments, and n indicates the number of datapoints (MEA networks).
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electrodes (of order 9–15; Fig. 4d2), and high-order synchronous
electrodes (of order 16 or greater; Fig. 4d3). Distributions were
compared using two-sample Kolmogorov–Smirnov (KS) tests.

The distributions of low-order synchronous electrodes were
first compared at baseline and immediately after treatment
(Fig. 4d1, left vs. middle column). For networks treated with 50B,
the distribution becomes significantly more concentrated imme-
diately after treatment compared to baseline (p= 0.025). At 7d
post-treatment compared to 0d post-treatment (Fig. 4d1, middle
vs. right column), the distribution is significantly more concen-
trated for control networks but not for networks treated with 25B
or 50B (0B: p= 0.0186; 25B: p= 0.270; 50B: p= 0.140). Hence,
BDNF treatment at either concentration promotes the dispersion
of low-order connections at 7d after treatment.

Intermediate-order synchronous electrodes (Fig. 4d2, left
column) are more dispersed than low-order synchronous
electrodes (Fig. 4d1, left column) at baseline in control and
networks treated with 50B (0B: p < 0.001; 50B: p < 0.001), while in
networks treated with 25B, intermediate-order synchronous
electrodes are similarly spread as low-order synchronous
electrodes (p= 0.208). At 0d post-treatment (Fig. 4d2, middle
column), the distribution of intermediate-order synchronous
electrodes becomes more concentrated in all conditions (0B:
p < 0.001; 25B: p= 0.044; 50B: p= 0.011). At 7d post-treatment
(Fig. 4d2, right column), the distribution becomes significantly
more dispersed than at 0d post-treatment in control networks
(p= 0.013) and significantly less dispersed in networks treated
with 25B or 50B over the same period (25B: p= 0.001; 50B:
p < 0.001). These findings suggest that, at 7d post-treatment,
BDNF treatment at either concentration inhibits the dispersion of
intermediate-order connections.

High-order synchronous electrodes (Fig. 4d3, left column),
like intermediate-order synchronous electrodes, are more
dispersed than low-order synchronous electrodes (Fig. 4d1, left
column) at baseline (p < 0.001 for each treatment condition).
However, in neither control networks (first row) nor with 50B
treatment (bottom row) does the spread of high-order
electrodes change between baseline and 0d post-treatment
(0B: p= 0.101; 50B: p= 0.122. 0d post vs. pre) or between 0d
post- and 7d post-treatment (0B: p= 0.698; 50B: p= 0.168; 7d
post vs. 0d post). Treatment with 25B (middle row) causes an
absence of high-order synchronous electrodes at 0d post-
treatment, and only four groups of such electrodes were
detected at 7d post-treatment. Hence, our results suggest that
high-order synchrony during network development is disrupted
by low-concentration BDNF treatment (25B) but not by high-
concentration treatment (50B).

Summarily, our analyses of functionally directed networks and
higher-order synchrony suggest that, while concentration-depen-
dent, the network-level effect of BDNF treatment on developing
networks is functionally inhibitory. Low-concentration BDNF
treatment maintains network connectivity but inhibits high-order
synchrony in developing networks, while high-concentration

BDNF treatment maintains high-order synchrony but inhibits
network connectivity.

Treatment with 50 ng/ml BDNF preferentially protects inhi-
bitory over excitatory neurons from glutamate-induced exci-
totoxicity. Glutamate-induced excitotoxicity occurs after a
number of injury conditions, including traumatic brain injury,
stroke, and neurodegenerative disease38. To assess whether
treatment with BDNF is neuroprotective, 50 ng/ml BDNF was
applied to mature networks (DIV 14) after they were injured with
excess glutamate (Fig. 5a). Applying BDNF treatment after injury
represents a clinically relevant timeline. We first performed
experiments to identify concentrations of glutamate and the
length of injury that would result in sublethal injury of hippo-
campal networks (Supplementary Fig. 2b). Based on our results
(Supplementary Fig. 2c), we observed that concentrations of
100 μM glutamate and greater severely decreased network activ-
ity. Thus, we chose to injure networks for 30 min with 30 μM
glutamate. Furthermore, we chose to use BDNF at 50 ng/ml as the
recovery treatment since this BDNF concentration promoted
better maintenance of local efficiency and synchrony at 7d post-
treatment (Figs. 2c and 3d).

On DIV 14, no injury (vehicle; 0g) or a mild injury (30 μM
glutamate; 30g) was applied to mature hippocampal networks for
30 min. Then, networks were either treated with 0B or 50B for
72 hours (Fig. 5a). Prior to analyzing network activity, we
quantified whether post-injury treatment with BDNF prevents
cell death or loss of dendrites—both known to occur after
glutamate-induced excitotoxicity31,32—at 0, 24, and 72 hours into
the recovery period (“pre”, “24h post”, and “72h post”,
respectively). RM ANOVA analysis reveals a significant effect
of timepoint (F= 54.7 for cell death and F= 28.7 for dendrites,
both p < 0.001) but not of treatment condition or of the
interaction of treatment condition and timepoint. Multiple
comparisons testing confirms that, while differences exist among
timepoints, BDNF treatment does not ameliorate cell death or loss
of dendrites promoted by glutamate-induced injury (Supplemen-
tary Fig. 4), suggesting that the effects of BDNF on recovery are not
due to neuroprotection of these metrics. We dissected these results
further and determined how glutamate-induced excitotoxicity and
BDNF treatment affect the balance of excitatory-to-inhibitory (E/I)
neurons and E/I synapses at 72 hours into the recovery period
(schematic and representative images in Fig. 5b, c). We found that
treatment with BDNF significantly changes the balance of E/I
neurons (Fig. 5d, e), suggesting that BDNF treatment preferentially
protects inhibitory neurons. Moreover, we found that glutamate-
induced excitotoxicity significantly disturbs the balance of E/I
synapses and that BDNF helps partially restore E/I synapse balance
back to control levels (Fig. 5f). Our results further indicate that
inhibitory synapses are more sensitive to glutamate-induced
excitotoxicity (Supplementary Fig. 5d, e) and that the partially
restored E/I synapse ratio is instead due to the protection of
inhibitory neurons (Fig. 5d, e).

Treatment with 50 ng/ml BDNF does not prevent injury-
induced decreases to network activity. Given the effect of BDNF
on E/I neuron and E/I synapse ratios (Fig. 5), we next tested
whether BDNF can provide neuroprotection at the network level.
We recorded spontaneous activity prior to injury at DIV 14
(“pre”), at 24 hours into the recovery period on DIV 15 (“24h
post”), and at 72 hours into the recovery period on DIV 17 (“72h
post”; Supplementary Fig. 2d). Then we analyzed changes to
network dynamics (Fig. 6; all data points shown in Supplemen-
tary Fig. 6a–c). We did not record activity immediately after
treatment (0 h post) since there was no change in cell death at this

Table 1 Tokeshi’s test of bimodality.

Pc Pl Pr ρð3Þ
Uniform >0.05 – – –
Unimodal <0.05 <0.05 ≥0.9 –

<0.05 ≥0.9 <0.05 –
Strongly bimodal <0.05 <0.05 <0.05 –
Bimodal <0.05 <0.25 <0.25 –
Weakly bimodal <0.05 <0.5 <0.5 –

<0.05 ≥0.5 <0.05 <0.1
<0.05 <0.05 ≥0.5 <0.1

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05638-9

8 COMMUNICATIONS BIOLOGY |          (2023) 6:1278 | https://doi.org/10.1038/s42003-023-05638-9 | www.nature.com/commsbio

www.nature.com/commsbio


Fig. 5 Glutamate-induced excitotoxicity and BDNF treatment alter excitatory/inhibitory (E/I) neuron and synapse balance. a Schematic illustrating
timepoints for data acquisition; 00:30 indicates 30min glutamate exposure (orange arrow) before BDNF treatment (green arrow). BDNF treatment
persisted for 72 h. Pre timepoint is DIV 14. b Summary schematic of findings, illustrating that BDNF treatment ameliorates some aspects of injury with
glutamate. c Representative images for E/I cell death studies (square tiles, merged and separate channels; scale bar indicates 100 μm) and E/I synaptic
studies (rectangular tiles, merged only; scale bar indicates 10 μm). Hoechst stains nuclei; anti-GAD65/67 immunostains inhibitory neurons and synapses;
anti-MAP2 immunostains dendrites; and anti-VGLUT1 immunostains excitatory neurons and synapses. d The percentage of excitatory neurons in injured
networks treated with BDNF significantly decreases compared to control networks (p= 0.016) and untreated injured networks (p= 0.002). e The
percentage of inhibitory neurons in injured networks treated with BDNF significantly increases compared to control networks (p= 0.016) and untreated
injured networks (p= 0.002). f The E/I synapse balance increases significantly for injured networks (30g 0B and 30g 50B) compared to uninjured
networks (0g 0B and 0g 50B; p < 0.05 for all comparisons). Treated injured networks are also significantly different than untreated injured networks
(p= 0.041). 0g= no glutamate; 30g= 30 µM glutamate; 0B= no BDNF; 50B= 50 ng/ml BDNF. For d and e, p values calculated by the Kruskal–Wallis
test followed by the Tukey–Kramer multiple comparisons test (*p < 0.05, **p < 0.01), and n= 18 datapoints with each representing a field of view. For f, p
values calculated by one-way ANOVA followed by the Tukey–Kramer multiple comparisons test (*p < 0.05), and n= 7 datapoints with four fields of view
averaged per coverslip. For d–f, N= 3 independent experiments. Gray boxes represent 95% CIs, and solid black lines represent mean. N indicates number
of experiments, and n indicates the number of datapoints.
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timepoint (Supplementary Fig. 4c). We use the same strategies as
earlier when analyzing and presenting our MEA data. Moreover,
to simplify RM ANOVA analysis, we divided the treatment
conditions into one set of four categories (uninjured untreated 0g
0B, uninjured treated 0g 50B, injured untreated 30g 0B, and

injured treated 30g 50B) because we cannot discount common
signaling pathways between glutamate-induced injury and BDNF
recovery39,40.

When examining overall network activity via burstlet rate, RM
ANOVA reveals that treatment condition (F= 4.19, p= 0.006),

Fig. 6 BDNF treatment enhances injury-mediated decreases in network activity. a Changes in burstlet rate (Hz). e= 92 for 0g 0B; e= 85 for 0g 50B;
e= 91 for 30g 0B; e= 64 for 30g 50B. b Changes in Fano factor (A.U.). e= 266 for 0g 0B; e= 315 for 0g 50B; e= 265 for 30g 0B; e= 193 for 30g 50B.
c Changes in local efficiency (A.U.). e= 268 for 0g 0B; e= 259 for 0g 50B; e= 243 for 30g 0B; e= 236 for 30g 50B. d Functional connectivity matrices
used for calculating local efficiency. Shown are representative matrices at each timepoint for the control condition. Colorbar represents strength of cross-
correlation. e Representative raster plots for each condition. 0g= no glutamate; 30g= 30 µM glutamate; 0B= no BDNF; 50B= 50 ng/ml BDNF. Data in
a–d from N= 4 independent experiments. For a–c: y-axis indicates percent change from baseline (pre-injury). Top row compares pre-treatment to 0d post-
treatment, and bottom row compares pre-treatment to 7d post-treatment. Plots on left indicate means with 95% CIs, and p values calculated by RM
ANOVA followed by Tukey–Kramer multiple comparisons test, where *p < 0.05, **p < 0.01, ***p < 0.001 and indicates significant differences between
timepoints within the same condition. Distributions on right with means (black squares) and 95% CIs (vertical lines) show comparisons between
conditions and were calculated via estimation statistics with p values calculated directly from CIs. N indicates number of experiments, and e indicates
number of electrodes.
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timepoint (F= 12.2, p < 0.001), and their interaction (F= 2.51,
p= 0.021) all have significant effects (Supplementary Table 2).
Through multiple comparisons testing, we find that injury alone
has no effect on burstlet rate at 24h post-injury and significantly
decreases burstlet rate at 72h post-injury (44%, p < 0.001)
compared to baseline (30g 0B condition in Fig. 6a, plots on left
in both panels, 24h post vs. pre and 72h post vs. pre). Estimation
statistics reveal that combining injury with BDNF treatment (30g
50B condition) further decreases activity (over the untreated
injured condition 30g 0B) by an additional 75% (p= 0.013) at
24h post-injury and by an additional 36% (p= 0.017) at 72h post-
injury compared to baseline (Fig. 6a, 30g 50B vs. 30g 0B
distribution on right in both panels, 24h post vs. pre and 72h post
vs. pre). Thus, the combination of glutamate-induced injury and
BDNF treatment is worse than injury alone for network burstlet
rate at both 24h and 72h post-injury, However, BDNF treatment
of uninjured networks has no effect on burstlet rate when
compared to untreated control networks.

We next quantified how excitotoxic injury and BDNF
treatment affect spiking variability by measuring Fano factor
(Fig. 6b). Similar to developing networks, we find from RM
ANOVA that only timepoint significantly affects Fano factor
(F= 36.9, p < 0.001; Supplementary Table 2). From multiple
comparisons testing, we find that all networks demonstrate
significant increases (17% for 0g 0B, p < 0.001; 16% for 0g 50B,
p < 0.001; 14% for 30g 0B, p= 0.002; and 24% for 30g 50B,
p < 0.001) in spiking variability at 24h post-injury compared to
baseline (Fig. 6b, plots on left in top panel, 24h post vs. pre). This
increase is maintained for control networks (0g 0B; 20%,
p < 0.001) and for injured treated networks (30g 50B; 12%,
p= 0.003), but not for the other conditions, at 72h post-injury
compared to baseline (Fig. 6b, plots on left in bottom panel, 72h
post vs. pre). Underscoring these findings, estimation statistics
reveal that, compared to control networks, BDNF treatment of
uninjured networks causes Fano factor to shift towards baseline
levels at 72h post-injury (Fig. 6b, p= 0.006 for 0g 50B vs. 0g 0B
distribution on right in bottom panel, 72h post vs. pre).

The different treatment conditions also have distinct effects on
local efficiency (Fig. 6c). Indeed, both treatment condition and
the interaction of treatment condition and timepoint significantly
affect local efficiency (F= 25.8 and F= 11.3, respectively;
p < 0.001 for both; Supplementary Table 2). Representative
functional connectivity matrices at all timepoints are shown for
the control condition (Fig. 6d). Local efficiency does not change
over time in control networks (0g 0B; Fig. 6c). In contrast,
multiple comparisons testing reveals that local efficiency increases
in BDNF treated uninjured networks (0g 50B) by 36% at 24h
post-injury (p < 0.001) and by 33% at 72h post-injury (p < 0.001)
compared to baseline (Fig. 6c, left plots in both panels, 24h post
vs. pre and 72h post vs. pre). Moreover, estimation statistics
reveal that these changes are significantly different compared to
control networks at 24h post-injury (Fig. 6c, p < 0.001 for 0g 50B
vs. 0g 0B distribution on right in top panel, 24h post vs. pre).
Surprisingly, local efficiency does not change after injury (30g 0B)
but decreases significantly (56% at 24h post and 48% at 72h post;
p < 0.001 for both) when injured networks receive BDNF
treatment (30g 50B; Fig. 6c, left plots in top and bottom panels,
24h post vs. pre and 72h post vs. pre). When comparing 30g 0B
and 30g 50B networks using estimation statistics, changes in local
efficiency are significantly different when comparing these
conditions at 24h post-injury and 72h post-injury to baseline
(Fig. 6c, p < 0.001 for 0g 50B vs. 0g 0B and for 30g 50B vs. 30g 0B
distribution on right in both panels, 24h post vs. pre and 72h post
vs. pre). Taken together, our data suggest that BDNF treatment
causes a sustained increase in local efficiency in uninjured
networks and a sustained decrease in local efficiency in injured

networks. We also quantified global efficiency but found no
significant changes after injury or with BDNF treatment (data not
shown). Overall, treatment with BDNF enhances injury-induced
changes to network parameters (Fig. 6e).

BDNF treatment partially restores network synchronization
after excitotoxic injury. To further understand how BDNF
treatment affects network recovery from glutamate-induced
excitotoxicity, we again analyzed how synchronization between
electrodes changes during the recovery period (Fig. 7; all data
points shown in Supplementary Fig. 6d–f). First, we analyzed the
distribution of synchronizations for all conditions, and as we
observed in younger networks (Fig. 3a), we found a skew towards
weak connections in these more mature networks (Fig. 7a). We
again use the same analyses for our MEA data as in previous
sections.

RM ANOVA reveals that, for all categories of synchronization
(weak, medium, and strong), treatment condition (F= 58.9,
F= 102, F= 33.6, respectively; all p < 0.001), timepoint (F= 126,
F= 822, F= 416, respectively; all p < 0.001), and the interaction
between treatment condition and timepoint (F= 31.6, F= 62.9,
F= 26.6, respectively; all p < 0.001) significantly affect each
category of synchronization (Supplementary Table 2).

Multiple comparisons testing reveals that control networks (0g
0B) show decreased synchronization at 24 and 72 hours after
injury compared to pre-injury regardless of initial synchroniza-
tion strength (>20%, >40%, and >40%, respectively, for weak,
medium, and strong connections; p < 0.001 for all; Fig. 7b–d, left
plots in top and bottom panels; 24h post vs. pre and 72h post vs.
pre). Comparatively, using estimation statistics, BDNF treatment
of uninjured networks (0g 50B) (i) prevents decreases in
synchronization of initially weak connections for 72 hours
(Fig. 7b, 0g 50B vs. 0g 0B distribution on right in the top and
bottom panels; p < 0.001 for 24h post vs. pre and p= 0.020 for
72h post vs. pre), (ii) attenuates (by >10%) decreases in
synchronization of initially medium connections for 72 hours
(Fig. 7c, 0g 50B vs. 0g 0B distribution on right in top and bottom
panels; p < 0.001 for 24h post vs. pre and p= 0.006 for 72h post
vs. pre), and (iii) attenuates decreases in synchronization (by
26%) of initially strong connections for 24 hours (Fig. 7d, 0g 50B
vs. 0g 0B distribution on right in top panel, p < 0.001 for 24h post
vs. pre).

BDNF treatment after injury provides partial rescue of certain
connection strengths. Estimation statistics reveal that compared
to untreated injured networks (30g 0B), BDNF treatment of
injured networks (30g 50B) attenuates decreases in weak (by 22%,
p < 0.001) and medium (by 18%, p < 0.001) connections at 72h
post-injury compared to pre-injury (Fig. 7b, c, 30g 50B vs. 30g 0B
distribution in bottom panels, 72h post vs. pre). For initially
strong connections, BDNF treatment does not prevent decreases
at either 24 or 72h post-injury compared to pre-injury (Fig. 7d,
30g 50B vs. 30g 0B distribution in top and bottom panels, 24h
post vs. pre and 72h post vs. pre).

Taken together, our results suggest that synchronizations of all
categories are affected by treatment, timepoint, and their
interactions. Importantly, estimation statistics reveal that BDNF
treatment attenuates decreases of weak and medium connections
for both uninjured (at 24 and 72 hours) and injured (at 72 hours)
networks compared to baseline (Fig. 7e).

Functional network-level analyses suggest that BDNF exerts
mixed effects on injured networks. We next expanded our
analyses of the functional network-level effects of BDNF on
injured networks by using GC and higher-order synchrony ana-
lyses. We first estimated GC networks and counted the number of
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links as a measure of connectivity (Fig. 8a). We found no dif-
ference in connectivity across injury and treatment conditions at
baseline. The number of GC links in uninjured networks (0g 0B
and 0g 50B) also does not vary significantly across the recording
period, indicating that BDNF treatment does not affect home-
ostasis of network connectivity in uninjured networks. Untreated
injured networks (30g 0B) have significantly fewer GC links at

24 hours after injury than at pre-injury (p < 0.05, * symbol),
whereas this is not the case for BDNF-treated injured networks
(30g 50B). As this implies a possible dependency of the effect of
BDNF treatment on injury level, we used RM ANOVA to test for
such an interaction. Although the effect of time was confirmed
(p= 0.006), no significant interaction between injury and treat-
ment was found (p= 0.215). However, the number of injured
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in vitro networks that were sufficiently active to perform GC
analysis (13 in total, with 7 for 0B and 6 for 50B) was small
compared to the number of active uninjured cultures (32 in total,
with 15 for 0B and 17 for 50B cultures). Our results thus indicate
that, while excitotoxic injury disrupts homeostasis of network
connectivity, BDNF treatment may protect connectivity in
injured networks within 24 hours.

We next sought to characterize how BDNF treatment affects
higher-order synchrony in recovering injured networks. To this
end, we investigated how the spatial extent of synchronized
electrodes changed by condition and across time; these distribu-
tions were obtained by compiling over groups of synchronous
electrodes. We first considered untreated networks that were
uninjured (0g 0B) or injured (30g 0B), comparing spatial
distributions of low-order (Fig. 8b1), intermediate-order
(Fig. 8b2), and high-order (Fig. 8b3) synchronous electrodes
using two-sample KS tests.

For low-order synchronous electrodes (Fig. 8b1), spatial
distributions do not change significantly in either control or
injured networks over time (24h post vs. pre: p= 0.672 for 0g 0B
and p= 0.848 for 30g 0B; 72h post vs. 24h post: p= 0.672 for 0g
0B and p= 0.848 for 30g 0B). For control networks (0g 0B; top
row), the spatial distributions of intermediate-order synchronous
electrodes (Fig. 8b2) and high-order synchronous electrodes
(Fig. 8b3) become significantly more concentrated between pre-
injury and 24 hours after injury (p= 0.029 and p < 0.001,
respectively). Between 24 and 72 hours after injury,
intermediate-order synchronous electrodes become more dis-
persed (p= 0.005) whereas high-order synchronous electrodes
are not detected at 72 hours after injury. For untreated injured
networks (30g 0B, bottom row), similar to control networks, the
spatial distribution of intermediate-order synchronous electrodes
becomes more concentrated at 24 hours after injury (p < 0.001),
but in contrast to control networks, no intermediate-order
synchronous electrodes are detected at 72 hours after injury.
Moreover, no high-order synchronous electrodes are detected at
24 hours or at 72 hours after injury for damaged networks. These
results suggest that groups of synchronous electrodes are more
susceptible to excitotoxic injury as the size of the group increases.
Hence, we hypothesize that, if BDNF treatment were neuropro-
tective for this metric, then the spatial distributions of
intermediate- and high-order synchronous electrodes would be
more stable over time.

We next compared the spatial distributions of synchronous
electrodes in uninjured and injured networks that received BDNF
treatment (Fig. 8c). BDNF treatment does not change the spread
of low-order synchronous electrodes (Fig. 8c1) in uninjured
networks (0g 50B; top row) between pre-injury and 24 hours after
injury (p= 0.198) or between 24 hours and 72 hours after injury
(p= 0.133). For intermediate-order synchronous electrodes
(Fig. 8c2), there is a significant increase in the spread between

pre-injury and 24 hours after injury (p= 0.008) followed by a
significant decrease between 24 and 72 hours after injury
(p= 0.032), contrasting the trend for control networks (0g 0B;
Fig. 8b2, top row). However, for high-order synchrony (Fig. 8c3),
uninjured networks that received BDNF treatment (0g 50B; top
row) have no groups of high-order synchronous units at 24 hours
after injury and only one detected group at 72 hours after injury,
suggesting faster degradation of high-order synchrony than in
control networks (0g 0B; Fig. 8b3, top row).

BDNF treatment exerts mixed effects on synchronous electro-
des after excitotoxic injury. The spread of low-order synchronous
electrodes (Fig. 8c1) in injured networks (30g 50B; bottom row)
does not differ from pre-injury to 24 hours after injury
(p= 0.812), but only one group of low-order synchronous
electrodes is detected at 72 hours after injury, suggesting that
BDNF treatment is actually harmful for low-order synchrony in
injured networks (30g 50B). In contrast, for intermediate-order
synchronous electrodes (Fig. 8c2), there is no change in spread
between pre-injury and 24 hours after injury (p= 0.609), and at
72 hours after injury, there are no detected groups of
intermediate-order synchronous electrodes, mirroring the trends
in untreated injured networks (30g 0B; Fig. 8b2, top row) and
indicating that BDNF treatment had no effect on intermediate-
order synchronous electrodes. High-order synchrony (Fig. 8c3),
in contrast, is protected in the short term in BDNF-treated
injured networks (30g 50B; bottom row) because, compared to
untreated injured networks (30g 0B), high-order synchronous
units were detected at 24 hours after injury with similar spread as
at baseline (p= 0.171).

Together, GC and higher-order synchrony analyses show that
BDNF treatment exerts mixed effects on functional network-level
properties in recovering injured networks. First, GC analyses
reveal that BDNF treatment protects injured networks within
24 hours of injury. Moreover, in injured networks, BDNF
treatment disrupts low-order synchrony at 72 hours after injury,
has no effect on intermediate-order synchrony, and protects high-
order synchrony at 24 hours after injury. These results suggest
that BDNF treatment partially promotes network homeostasis
after injury by exerting complex actions that somewhat mitigate
the effects of excitotoxic injury.

In silico simulation of glutamate injury and BDNF treatment
suggests that BDNF indirectly influences excitatory synaptic
strength. To investigate the mechanism by which BDNF returns
injured networks to homeostasis, we developed an in silico neu-
ronal network model (Fig. 9a) based on the work of Masquelier
and Deco41. In particular, we modified and extended their model
and our previous work17 to better match the specific character-
istics of our in vitro neuronal cultures, including neuronal E/I
balance (Fig. 5d, e), synaptic E/I balance (Fig. 5f), and neuronal

Fig. 7 BDNF treatment attenuates glutamate-induced decreases in synchronization of weak and medium connections. a Distribution of connection
strengths for all networks over time. From left to right: control (0g 0B), 0g 50B, 30g 0B, and 30g 50B. b Changes in connections with initially weak
synchronization (values of [0.1,0.4)). e= 412 for 0g 0B; e= 528 for 0g 50B; e= 970 for 30g 0B; e= 482 for 30g 50B. c Changes in connections with
initially medium synchronization (values of [0.4,0.7)). e= 366 for 0g 0B; e= 398 for 0g 50B; e= 442 for 30g 0B; e= 266 for 30g 50B. d Changes in
connections with initially strong synchronization (values of [0.7,1.0)). e= 170 for 0g 0B; e= 224 for 0g 50B; e= 80 for 30g 0B; e= 26 for 30g 50B.
e Summary schematic of how synchronization changes during development and with BDNF treatment. Colors correspond to synchronization values,
ranging from weak (dark blue) to strong (red). Data in a–d from N= 4 independent experiments. 0g= no glutamate; 30g= 30 µM glutamate; 0B= no
BDNF; 50B= 50 ng/ml BDNF. For b–d: y-axis indicates percent change from baseline (pre-injury). Top row compares pre-treatment to 0d post-treatment,
and the bottom row compares pre-treatment to 7d post-treatment. Plots on left indicate means with 95% CIs, and p values calculated by RM ANOVA
followed by Tukey–Kramer multiple comparisons test, where ***p < 0.001 and indicates significant differences between timepoints within the same
condition. Distributions on the right with means (black squares) and 95% CIs (vertical lines) show comparisons between conditions and were calculated
via estimation statistics with p values calculated directly from CIs. N indicates the number of experiments, and e indicates number of electrodes.
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density (see “Methods” section: subsection “Primary neuronal
dissections and cell culture”). We modeled glutamate injury as
cell death in the excitatory and inhibitory compartments at a rate
of 30% and 25%, respectively, along with all their synapses, and
we further reduced the number of inhibitory synapses by 75%
(Supplementary Fig. 7a–c). This yielded a net reduction in inhi-
bitory synapses of 86% (Supplementary Fig. 8c, d), consistent
with our in vitro cultures (Fig. 5f and Supplementary Fig. 5). We
notably scaled back the level of cell death relative to in vitro
findings to compensate for cell loss associated with low plating
density (see the “Methods” section: subsection “Primary neuronal
dissections and cell culture”). We modeled BDNF as a 50%
recovery of inhibitory neurons, along with their original con-
nections, consistent with our in vitro findings. Because we
modeled BDNF as a recovery of previously injured neurons, we
did not simulate BDNF treatment in the absence of injury

(Fig. 9b, c), resulting in the simulated conditions Control, Injury,
and Injury + BDNF to match the in vitro conditions 0g 0B, 30g
0B, and 30g 50B, respectively.

By faithfully representing glutamate- and BDNF-mediated
structural changes to excitatory and inhibitory neurons and
synapses, we reproduced several of the functional activity
properties displayed by the in vitro networks (Fig. 9; all data
points shown in Supplementary Fig. 9). For all parameters
(burstlet rate, Fano factor, local efficiency), RM ANOVA reveals
that treatment condition, timepoint, and their interaction
significantly affects the post-treatment behavior of the networks
compared to pre-treatment (refer to Supplementary Table 3 for F-
statistics and associated p values). Multiple comparisons
additionally reveal a significant decrease in burstlet rate for
injury alone (“Injury”) and injury with BDNF treatment
(“Injury+ BDNF”), consistent with in vitro findings (Fig. 9d vs.

Fig. 8 Granger causal and synchrony analyses after glutamate injury and BDNF recovery treatment. a From left to right: all GC links in control (0g 0B),
0g 50B, 30g 0B, and 30g 50B networks. *, # p < 0.05. Asterisk symbols (*) indicate comparisons between timepoints of the same condition. Hash symbols
(#) indicate comparison to 0g 0B condition at same timepoint. Comparisons were made using a two-sided Wilcoxon’s rank sum test. Solid black lines
indicate the mean, and gray boxes indicate 95% CIs. b Spatial dispersion of synchronous units in 0B networks grouped by low-order (b1), intermediate-
order (b2), and high-order synchrony (b3). c Spatial dispersion of synchronous units in 50B networks grouped by low-order (c1), intermediate-order (c2),
and high-order synchrony (c3). For b and c, top row is control (0B) networks, and bottom row is injured (30g) networks. Statistically significant p values for
data in b and c are included in Supplementary Material and were determined by two-sample KS tests. 0g= no glutamate; 30g= 30 µM glutamate; 0B= no
BDNF; 50B= 50 ng/ml BDNF. Data from N= 11 independent experiments. 0g 0B: n= 19 for pre; n= 14 for 24h post; n= 13 for 72h post. 0g 50B: n= 13 for
pre; n= 8 for 24h post; n= 12 for 72h post. 30g 0B: n= 20 for pre; n= 14 for 24h post; n= 12 for 72h post. 30g 50B: n= 11 for pre; n= 9 for 24h post;
n= 8 for 72h post. N indicates number of experiments, and n indicates number of datapoints (MEA networks).
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Fig. 9 In silico networks that have similar activity compared to in vitro networks reveal BDNF-mediated remodeling of excitatory synapses.
a Simulation timeline showing the order and duration of treatment epochs. b Description of treatments at each interval for each condition. c Representative
raster plots for each condition showing the first 30 s of each interval. d Changes in burstlet rate (Hz). e= 292 for Control; e= 286 for Injury; e= 275 for
Injury+ BDNF. e Changes in Fano factor (A.U.). e= 354 for Control, Injury, and Injury+ BDNF. f Changes in local efficiency (A.U.). e= 354 for Control;
e= 341 for Injury; e= 340 for Injury+ BDNF. For d–f: y-axis indicates percent change from baseline (pre-treatment). Plots on left indicate means with 95%
CIs, and p values calculated by RM ANOVA followed by Tukey–Kramer multiple comparisons test, where ***p < 0.001 and indicates significant differences
between timepoints within the same condition. Distributions on the right with means (black squares) and 95% CIs (vertical lines) show comparisons
between conditions and were calculated via estimation statistics with p values calculated directly from CIs. g Mean ± SEM for cumulative distribution
functions for each condition, where ***p < 0.001 for comparison of all conditions via two-sample Kolmogorov–Smirnov test. h Average excitatory-excitatory
synaptic weight during the post-treatment epoch across all conditions, where ***p < 0.001 calculated via one-way ANOVA followed by Tukey–Kramer
multiple comparisons test. i Moving average ± SEM (window size= 250) for average excitatory-excitatory synaptic weight during the post-treatment
epoch minus average excitatory–excitatory synaptic weight during pre-treatment epoch as a function of average excitatory–excitatory synaptic weight
during pre-treatment epoch. For g–i: Total number of synapses s= 50523 for Control, s= 25011 for Injury, and s= 24762 for Injury+ BDNF. N= 6
independent simulations. For all data in d–i, s indicates number of synapses, and e indicates number of electrodes.
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Fig. 6a). While we observe a decrease in Fano Factor in injured
networks compared to control, the decrease we observe for
Injury+ BDNF networks compared to injury alone is incon-
sistent with in vitro findings (Fig. 9e vs. Fig. 6b). We attribute
these differences to the lack of asynchronous firing in our in silico
networks (Fig. 9c) compared to in vitro networks (Fig. 6e). When
comparing local efficiency, in silico we match the trend of
decreasing efficiency with Injury networks compared to Injury+
BDNF networks (Fig. 9f vs. Fig. 6c).
We next extended our computational model to understand

how BDNF affects synaptic-level remodeling in the network. To
that end, we examined spike-timing-dependent plasticity (STDP)-
mediated changes in excitatory-to-excitatory (e–e) synaptic
strength following injury with and without BDNF treatment. In
general, we found that both Injury and Injury+ BDNF modify
the cumulative probability distribution of excitatory synaptic
weight (Fig. 9g, p < 0.001 via two-sample Kolmogorov–Smirnov
test), narrowing the dispersion of synaptic weights and limiting
the number of synapses at the extremes. We additionally find that
injury increases the average excitatory synaptic weight post-injury
compared to control (Fig. 9h, mean value of 9.84 vs. 9.49;
p < 0.001 via one-way ANOVA followed by multiple comparisons
testing), as does injury with BDNF treatment (Fig. 9h, mean value
of 9.64 vs. 9.49; p < 0.001 via one-way ANOVA followed by
multiple comparisons testing). As a result, BDNF treatment
following injury partially restores the average excitatory synaptic
weight in the network back to control levels relative to injury
(Fig. 9h, mean value of 9.64 vs. 9.84; p < 0.001 via one-way
ANOVA followed by multiple comparisons testing). To under-
stand which synapses are affected by injury and BDNF, we
examined the change in excitatory synaptic weight as a function
of original excitatory synaptic weight (Fig. 9i). In the control
condition, weak excitatory synapses become weaker and strong
excitatory synapses become stronger over time, rather than weak
synapses becoming stronger, to drive the increase in overall
excitatory synaptic weight. We find that both injury alone and
Injury+ BDNF not only limit the ability of weak synapses to
become weaker but also prevent strong synapses from becoming
stronger, with BDNF treatment after injury more greatly limiting
changes to excitatory synapse weight. Following injury (with or
without BDNF), even weak synapses must be recruited to
maintain “normal” bursting activity. In particular, given that
BDNF treatment directly affects inhibitory neurons, it is striking
that it has this effect on excitatory-to-excitatory synapses
following injury. This finding suggests that, by protecting
inhibitory neurons, BDNF also protects important inhibitory-
to-excitatory synapses that indirectly allow BDNF to influence the
excitatory-to-excitatory synapses that drive network activity.

Taken together, these results suggest that when we directly
simulate the structural effects of injury and BDNF on excitatory
and inhibitory neurons and synapses, we can reproduce the key
finding that BDNF has a limited therapeutic effect on network-
based measured activity in injured networks. In turn, we further
find that this limited therapeutic effect may be related to the
indirect effect of BDNF on excitatory remodeling to prevent
extreme synaptic weights and maintain weak excitatory synapses.

Discussion
In this work, we employ MEA analysis, imaging, and simulations
to perform a detailed study of how developing and injured net-
works respond to treatment with BDNF. In general, we find that
the additive effects of BDNF on injury are mixed: BDNF clearly
worsens some effects of injury but promotes homeostasis for
other aspects of network dynamics. On the one hand, BDNF
treatment preserves synchronization of weak and medium

connections at 72h post-injury, network connectivity at 24h post-
injury, and inhibitory neurons at 72h post-injury. On the other
hand, BDNF treatment enhances injury-induced decreases in
burstlet rate and disrupts low-order synchrony after excitotoxic
injury. It is, of course, possible that these short-term changes,
regardless of whether we interpret them to be “helpful” or
“harmful”, do indeed promote longer-term network homeostasis
and functional recovery (e.g., weeks or months after injury).

Are the mixed effects of BDNF treatment on the functional
recovery of hippocampal networks due to inherent plasticity in
our networks? Although in vitro neuronal networks are con-
sidered to be mature by DIV 14—the time at which we induced
chemical injury—the networks are still developing. BDNF is
known to be a positive regulator of both dendritic and synaptic
plasticity12,26,28,42, and thus, it is possible that inherently plastic
networks that are both injured with excess glutamate and treated
with BDNF may result in “hyperplasticity,” causing an abnormal
network. Indeed, it has been suggested that excessive plasticity
could be disadvantageous for functional recovery43. However, our
imaging and modeling results suggest a more precise effect of
BDNF, preferentially preserving inhibitory neurons and affecting
excitatory synaptic plasticity through its protection of inhibitory-
to-excitatory synapses. Rather than a uniform effect of BDNF
across the circuit in vitro, our results demonstrate a more
nuanced remodeling process during development and after
injury. Moreover, since it was necessary to perform our imaging
studies at a much lower density than our MEA studies, it is
possible that the effects of glutamate-induced excitotoxicity on
cell death and on the excitatory-to-inhibitory neuronal and
synaptic balances are exaggerated.

What do our findings mean for BDNF as a treatment for
injuries or neurological disorders that are characterized by
glutamate-induced excitotoxicity? BDNF signaling has been
proposed as a mechanism for promoting synaptic repair in
neurodegenerative diseases (reviewed in ref. 44) because BDNF
levels are often lower in pathophysiological conditions45. Despite
promising initial studies, such as the successful restoration of
BDNF protein levels in mouse models of Alzheimer’s Disease46

and Parkinson’s Disease (reviewed in ref. 47), BDNF treatment
has not yet been successful clinically for patients suffering from
these or other neurodegenerative diseases48. Moreover, for spinal
cord injury, a combination of BDNF treatment with olfactory
ensheathing cell transplantation resulted in impaired motor
recovery49, indicating that the actions of BDNF are more complex
than only promoting synaptic plasticity. The differences in TrkB
receptor phosphorylation at 0d post- and 7d post-treatment
(Fig. 1b, c) may also explain some of the differences in BDNF-
promoted changes to network dynamics. The lower concentration
is thought to target TrkB specifically, whereas the higher con-
centration likely also activates TrkA and TrkC27,29,33. Future
work will investigate in more depth how time-dependent TrkB
activation affects hippocampal network function and may be
involved in recovery. Indeed, one study has indicated that net-
work recovery begins quickly, as soon as 15 min, after injury50.

To better elucidate the complex actions of BDNF during
development and after injury, we adapted a recently developed
likelihood model-based approach to infer higher-order network
synchrony35,36. Unlike model-free cross-correlational analyses
that are restricted to pairwise comparisons51, likelihood models
can characterize synchrony amongst more than two neurons52.
Previous approaches, however, lack an exact inference procedure
to identify the significance of higher-order synchrony in single-
trial data. Building on marked point process models52 for
ensemble spiking activity, the approach in our recent work35,36

establishes an exact statistical inference framework that is used to
identify significantly correlated activity between an arbitrary
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number of units. Characterizing network synchrony in addition
to GC analysis allows us to quantify network-level properties of
hippocampal neuronal networks more thoroughly as they develop
and recover from injury in vitro. Indeed, the combined GC and
synchrony analyses, which are novel for MEA data, allowed us to
reveal that the 25B and 50B treatments have opposite effects on
network connectivity and higher-order synchrony.

In this work, we also developed an in silico neuronal network
model to reproduce the in vitro findings and develop a more
nuanced view of how BDNF affects network homeostasis post-
injury. One limitation of our in silico model was the more pro-
minent bursting behavior in this model compared to in vitro
networks (Fig. 9c). Our groups previously showed that, despite
this “burstiness,” the network model can be tailored to success-
fully match activity metrics, such as burstlet rate and local effi-
ciency, but less faithfully reproduces metrics that measure subtle
variation in firing across electrodes, such as Fano factor17. Despite
this limitation, our model captures the important overall effects of
BDNF and glutamate application.

Our in silico model suggests that, in this system, BDNF
indirectly affects excitatory synapse remodeling and, in doing so,
can only partly restore network-level outcomes after injury. Given
that, in our in silico model, we modeled BDNF as only directly
affecting inhibitory neuron survival, consistent with our in vitro
data, its effect on excitatory-to-excitatory synaptic plasticity was
unexpected. It is possible that the effects BDNF exerts on syn-
chronization after injury—attenuating decreases in weak and
medium connections at 72h post injury—are related to these
findings: BDNF preserves weak and medium connections
between electrodes (groups of neurons), and the synaptic level
effect is to limit changes to excitatory synaptic weight after injury,
thus preserving network homeostasis. Through our modeling
process, we also noticed that if inhibitory synapse loss by injury
was too great, BDNF was unable to affect both the activity and
excitatory synapse plasticity, underscoring the importance of
minimum inhibitory tone in the network to support action by
BDNF (data not shown).

There is debate in the literature regarding which types of
connections BDNF affects and under which conditions. Although
studies demonstrate that BDNF application enhances inhibitory
neurotransmission13,26,53, others show that BDNF application
decreases the efficacy of inhibitory neurotransmission54,55.
Moreover, multiple groups have reported BDNF-mediated
increases in excitatory neurotransmission26,53,56. Some groups
have sought to reconcile these differences, examining the differ-
ences in BDNF overexpression compared to bath application56, in
treatment with pro-BDNF compared to mature BDNF57, or in
dose-dependence58,59 as we included in our study, but there is
still a large degree of uncertainty regarding the diverse effects
mediated by BDNF. Interestingly, glutamatergic synapse activity
has been shown to induce BDNF-dependent potentiation of γ-
aminobutyric acid (GABA)-ergic synapses60, supporting our
hypothesis that, in this system, BDNF increases inhibitory con-
nections. By virtue of our interdisciplinary approach, we are able
to weigh in regarding the current controversy of what types of
synapses BDNF acts upon, and we present data that shed new
light on how BDNF might directly affect inhibitory synapses and
indirectly affect excitatory synapses.

In addition to our hypothesis that BDNF primarily affects
inhibitory neurons and connections, there are several other
possible explanations we did not pursue. For example, as primary
neuronal networks develop in vitro, inhibition will emerge, and
neurons will undergo a “GABA switch” by DIV 761. In the
dose–response portion of this study (Figs. 1–4), it is possible that
our treatment of networks with BDNF from DIV 7–10 coincided
with this emergence of inhibition and presented some

confounding of our results. In particular, the “GABA switch”
could be responsible for the decreases in synchronization
observed between the pre-treatment timepoint (DIV 7) and the
first post-treatment timepoint (DIV 10). Because our goal was to
align the timing of this study with our previous work27, we did
not attempt to treat networks with BDNF definitively before or
after the “GABA switch”, as other studies have done62.

We were also intrigued by our finding that, over time, local
efficiency is increased compared to baseline levels in control
networks (Fig. 2c). A higher local efficiency means that local
neighbors can process information more effectively, which would
be advantageous as a network matures in vitro, and is char-
acteristic of the network becoming more small-world63–65. Our
results potentially indicate that increased local efficiency over
time is an intrinsic feature of in vitro neural networks that is
disturbed by the higher concentration of BDNF (immediately
after treatment ends) and by the lower concentration of BDNF (at
7 days after treatment ends). Conversely, global efficiency was not
an effective metric for our networks, likely due to the poor spatial
resolution of MEAs, but other work has shown that it could be a
warning for the decline of network function since an increase in
global efficiency has been shown to follow network injury66.

In summary, we show that network-level homeostasis can be
described by an array of features, ranging from characteristics of
electrode activity to the interactions across electrodes, each of
which is susceptible to disruption by glutamate-induced excito-
toxicity. Due to its prevalent roles in neural growth and synaptic
regulation, we investigated how BDNF treatment promotes
homeostasis in developing hippocampal networks by analyzing
the effects of treatment on network features. We found that
BDNF treatment limited widespread communication across net-
works and exerted mixed effects as a post-injury treatment.
BDNF-mediated effects were often insufficient to return injured
networks to their pre-injury states, as our GC and higher-order
synchrony analyses and simulations suggest that the network-
level effect of BDNF is to promote inhibitory connections. It is
possible that the subtle preservation of homeostasis elicited by
BDNF to high-order synchrony or the synchronization of weak
and medium connections—but not to burstlet rate or local effi-
ciency or low-order synchrony—are critical factors for the long-
term functional recovery of networks.

Here we used monolayer culture of primary rat embryonic
hippocampal neurons. Other studies have examined how physical
constraints affect functional organization67,68 or how aggregates
of neurons interact and display resilience after specific nodes are
removed69. Future work by our laboratory to investigate network
injury and recovery will take inspiration from these and other
recent studies70. Finally, we also intend to investigate longer-term
outcomes of BDNF treatment after injury. Importantly, this study
provides new insights into the complex molecular mechanisms
and interactions that underlie the functional properties char-
acterizing network homeostasis and suggests that shifting
homeostatic set points would require equally complex and subtle
interventions.

Methods
Primary neuronal dissections and cell culture. Neuronal cul-
tures were prepared from the hippocampi of Sprague Dawley rat
embryos at 18 days of gestation (E18) as described previously71.
The hippocampi were dissociated using manual trituration, and
we did not distinguish between hippocampi from male and
female embryos. For Western blot analysis and imaging experi-
ments, cells were plated onto PDL-coated plastic 35 mm dishes or
onto PDL-coated 12 mm glass coverslips within 24-well plates,
respectively, at a density of ~850 cells/mm2. For microelectrode
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array (MEA) experiments, cells were plated onto PDL- and
laminin-coated MEAs at a density of 1 × 106 cells per MEA
(3.5 × 103 cells/mm2) as we previously reported15–18. It was
necessary to plate cells at a much lower density for Western blot
experiments because of the number of conditions and timepoints
per experiment for imaging studies to ensure the analysis was
feasible. Cultures were kept in a humidified 37 °C incubator with
5% CO2 and maintained in NbActiv4 medium (Brain Bits, cat.
no. Nb4-500), which contains Neurobasal medium, B27, gluta-
mine, creatine, estrogen, and cholesterol72. Additionally, 1%
penicillin–streptomycin (Thermo Fisher, cat. no. 15140122) was
added to the culture medium to prevent contamination. Half of
the culture medium was changed every other day.

All studies involving animals were performed in accordance
with and received ethical approval by the Institutional Animal
Care and Use Committee (IACUC) at Rutgers University. We
have complied with all relevant ethical regulations for animal use.

Western blot analysis. Hippocampal neurons cultured in 35 mm
dishes were treated with BDNF according to the schedule in
Supplementary Fig. 2a. At the appropriate timepoint, cultures
were scrape harvested into RIPA buffer [50 mM Tris–HCl pH 7.4;
150 mM NaCl; 0.5% deoxycholate; 1% NP-40; 1 mM EDTA pH
7.4; 0.1% sodium dodecyl sulfate (SDS)] containing 1 mM phe-
nylmethylsulfonyl fluoride, 1× PhosSTOP phosphatase inhibitor
tablet (MilliporeSigma, cat. no. 4906837001), and 1× Protease
Inhibitor Cocktail (MilliporeSigma, cat. no. 11697498001). Pro-
tein concentrations were measured with the Pierce BCA Protein
Assay Kit (ThermoFisher, cat. no. 23225), and 20 μg of protein
extracts were resolved on 10% acrylamide gels by SDS–PAGE,
transferred to polyvinylidene difluoride membranes, and blocked
with 5% bovine serum albumin (BSA) in TBST (20 mM Tris pH
7.5; 150 mM NaCl; 0.1% Tween-20) for 1 h. Membranes were
incubated with rabbit anti-TrkB antibody (1:1000; Cell Signalling
Technology, cat. no. 4603T, clone 80E3), which detected both
TrkB (~90 kDa) and phospho-TrkB (~140 kDa), in 5% BSA in
TBST overnight at 4 °C. Membranes were washed with TBST and
incubated with goat anti-rabbit HRP-conjugated secondary anti-
body (1:250; Rockland Immunochemicals, Inc., cat. no. 611-
1302). Chemiluminescence signals were detected on the LI-COR
Odyssey Fc Imaging system (LI-COR Biosciences) with Immo-
bilon Western Chemiluminescent HRP Substrate (Milli-
poreSigma, cat. no. WBKLS0100). Phospho-TrkB quantification
was compared to total TrkB. Six separate trials were performed.

Cell death experiments: immunofluorescence, imaging, and
analysis. Hippocampal neurons cultured on 12 mm glass cover-
slips were subjected to glutamate injury and BDNF treatments
shown in Supplementary Fig. 2d and fixed in 4% paraformalde-
hyde in phosphate-buffered saline at the timepoints shown. An
additional timepoint immediately after injury (0 h) was added to
capture the initial effects of glutamate-induced excitotoxicity that
we were unable to observe with MEA recordings. After fixation,
the immunostaining protocol in our previous work was
followed27,29,30. The primary antibody was mouse anti-MAP2
(1:1000; BD Biosciences, cat. no. 556320, clone Ap20), and the
secondary antibody was donkey anti-mouse AlexaFluor 488
(1:250; Thermo Fisher, cat. no. A32766). Hoechst 33342 (at 2 μg/
ml; Millipore Sigma, cat. no. B2261) was used to mark nuclei, and
coverslips were mounted on glass microscope slides using
Fluoromount G (Fisher Scientific, cat. no. OB100-01).

Coverslips were imaged on an EVOS FL microscope (Thermo
Fisher) using a ×10 objective. Four images were taken per
coverslip of wavelengths at 488 and 405 nm, and each condition
had three coverslips. Three separate trials were performed. For

cell death quantification, the number of MAP2-positive cells was
counted per field of view and averaged for each condition and for
each trial. For dendrite quantification, the MAP2 images were
filtered using a rotating, two-dimensional Laplacian of Gaussian
filter to preferentially extract the long, thin structure of
dendrites73,74. The filtered MAP2 image was thresholded to
produce a binary image. The nuclei images were also thresholded
to produce a binary image. To remove nuclei from the dendrite
images, the thresholded nuclei image was subtracted from the
thresholded MAP2 image, leaving only the dendrites. The final
image was skeletonized using the MATLAB function bwskel.
The number of detected pixels represents the total dendrite length
and was compared across each of the conditions.

Excitatory/inhibitory neuron and synapse ratio experiments:
immunofluorescence, imaging, and analysis. As with our cell
death experiments, hippocampal neurons cultured on 12 mm
glass coverslips were subjected to glutamate-induced injury and
BDNF treatments shown in Supplementary Fig. 2d. Coverslips
were fixed in 4% paraformaldehyde in phosphate-buffered saline
at 72h post-injury timepoint (DIV 17). We again followed the
immunostaining protocol in our previous work27,29,30. The pri-
mary antibodies used were the following: polyclonal chicken anti-
MAP2 (1:1000; Novus Biologicals, cat. no. NB300-213), mouse
anti-VGLUT1 (1:250; Synaptic Systems, cat. no. 135 011, clone
68B7), rabbit anti-GAD65/67 (1:250; Abcam, cat. no. ab183999,
clone EPR19366). The secondary antibodies used were the fol-
lowing: goat anti-rabbit IgG AlexaFluor 488 (1:1000; Thermo
Fisher/Invitrogen, cat. no. A-11008), goat anti-chicken IgY
AlexaFluor 555 (1:1000; Thermo Fisher/Invitrogen, cat. no. A-
21437), donkey anti-mouse IgG AlexaFluor 647 (1:1000; Thermo
Fisher/Invitrogen, cat. no. A-31571). Hoechst 33342 (at 2 mg/ml;
Millipore Sigma, cat. no. B2261) was used to mark nuclei, and
coverslips were mounted on glass microscope slides using
Fluoromount G (Fisher Scientific, cat. no. OB100-01). There were
2–3 coverslips per condition, and three separate trials were per-
formed. Coverslips were stored at −20 °C between imaging ses-
sions and were blinded during imaging and analysis.

For assessing the ratio of excitatory/inhibitory neurons,
coverslips were imaged on a Zeiss LSM800 with AiryScan using
a ×20 objective. Six images were taken per condition of
wavelengths at 405, 488, 561, and 640 nm. Number of excitatory
or inhibitory neurons were counted manually via the presence of
VGLUT1 or GAD65/67, respectively. Co-localization of either
synaptic marker with MAP2 was required to avoid counting dead
neurons.

For assessing the ratio of excitatory/inhibitory synapses, the
same coverslips were imaged on a PerkinElmer Spinning Disk
microscope using a ×100 objective and a Hamamatsu ORCA-R2
CCD camera. Four z-stack images with a step size of 0.2 μm were
taken per coverslip of wavelengths at 405, 488, 561, and 633 nm.
Prior to automated analysis in MATLAB, z-stack images were
maximum projected in FIJI. The 488 nm (GAD65/67), 561 nm
(MAP2), and 633 nm (VGLUT1) channels were each analyzed
separately. To segment inhibitory synapses (positive for GAD65/
67), we use the following approach: (i) apply a Gaussian filter
with a small sigma (σ= 1), (ii) binarize the image using an
adaptive threshold (imbinarize in MATLAB with 'adap-
tive' option) to segment inhibitory synapses, (iii) apply an
upper size threshold to eliminate false positive signals that are too
large to be synapses. To segment excitatory synapses (positive for
VGLUT1), we use the following approach: (i) remove noise by
subtracting a Gaussian-filtered image (σ= 5) from the original
image, (ii) apply a Gaussian filter with a small sigma (σ= 1),
(iii) generate a binarized image where objects that are too bright
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or too dim relative to mean fluorescence have been eliminated,
(iv) apply size thresholds to eliminate false positive signals that
are too large or too small. As with the cell death analysis, to
segment dendrites, MAP2 images were filtered using a rotating,
two-dimensional Laplacian of Gaussian filter73,74. A binary image
is generated from this filtered image, and a lower threshold is
applied to eliminate small segments that are not true dendrites.
Binarized dendrites are then dilated slightly. Any inhibitory
(GAD65/67 positive) or excitatory (VGLUT1) synapses that
overlap with dilated dendrites are counted.

Preparation of microelectrode arrays (MEAs). Standard 60-
electrode MEAs (59 electrodes plus 1 reference electrode) were
used for all experiments (60MEA200/10iR-Ti-gr, Multi-Channel
Systems, Germany) and contain electrodes with diameters of
10 μm and inter-electrode spacings of 200 μm. MEAs were pre-
pared for cell culture as we previously described15–18. Briefly,
MEAs were washed for at least 48 hours in 1% Tergazyme (Fisher
Scientific, cat. no. 16-000-115) solution (in dH2O) prior to the
day of dissection. On the day of dissection, MEAs were auto-
claved, rinsed once with sterile water, and left to dry in a sterile
cell culture hood. MEAs were then coated with 0.5 mg/mL poly-
D-lysine (PDL; MilliporeSigma, cat. no. P0899) and incubated at
37 °C for at least 1 hour. MEAs were then washed three times
with sterile water and dried in a sterile cell culture hood.
Immediately before plating of cells, MEAs were coated with
10 μg/ml laminin (MilliporeSigma, cat. no. L2020) for 30 min
at 37 °C.

MEA recordings. The spontaneous activity of hippocampal net-
works on MEAs was recorded using the data acquisition software
MCRack (Multi Channel Systems, Germany, version 4.6.2).
Recordings were performed at 37 °C on a heat-controlled stage at
room atmosphere as previously described15–18. Data were
acquired at a sampling rate of 20 kHz using an MEA1060-Inv-BC
amplifier (Multi Channel Systems, Germany). A recording solu-
tion containing the following components was used to regularize
bursting behavior (in mM): 144 NaCl 10 KCl, 1 MgCl2, 2 CaCl2,
10 HEPES, 2 Na-pyruvate, and 10 glucose at physiological pH
(pH 7.4)15–18. During recording, MEAs were covered with semi-
permeable lids (ALA MEA-MEM, Multi-Channel Systems) that
selectively allow gases to diffuse through but that prevent air-
borne pathogens from contaminating the cultures. Before
recording, cultures were equilibrated in the recording solution for
5-10 min. Spontaneous activity was then recorded for 5 min.
Cultures were then washed once with growth medium, and
treatment was applied or the conditioned medium was returned,
as described below. MEA data was acquired through repeated
recording of the same networks over time.

Signal processing. All methods of MATLAB data analysis are
based on our previous work15–18 but have been redeveloped
specifically for the analysis of hippocampal neuron network
activity. During recordings, electrodes showing excessive noise
were noted and excluded from later analysis. Raw data were
imported into MATLAB (MathWorks, Inc.) using MEAtools75,
an open-source toolbox. Signals were filtered in 10 s chunks
(300 s= 30 chunks total) through a fourth-order Butterworth
bandpass filter (20–2000 Hz) and a 60 Hz notch filter to remove
electrical noise. Importantly, both filters were infinite impulse
response (IIR) filters and were implemented using the built-in
MATLAB function filtfilt(), which is a zero-phase forward and
reverse digital IIR filter. This type of filter does not introduce a
time delay, unlike traditional finite impulse response (FIR) filters

(the corresponding MATLAB function is filter(), a standard one-
dimensional digital FIR filter).

Spike detection and related parameters. Spikes are defined as
single events in which the voltage surpasses a positive or negative
threshold and are detected using an adaptive thresholding
method. Spike thresholds were defined as 4.5 times the standard
deviation of the background noise76 and were calculated for each
10 s period of the filtered signal. Importantly, the threshold is
recalculated for each subsequent period and calculated separately
for each electrode. The background noise can change over the
recording period, and electrodes tend to have slightly different
background noise levels. Spikes are detected at the maximum
absolute value (positive or negative), and to ensure that the same
spike is not counted twice, we require the interspike interval (ISI)
to be at least 2 ms.

In addition to calculating spike rate (in spikes/s; Hz), we also
calculate Fano factor, which measures the variability of the spike
count within a specific window of time w. We determined this
window w to be 100 ms for our in vitro networks. For 300 s
recordings, we calculated the number of spikes that occurred in
100 ms bins (from msec 0–100, 101–200, etc.), giving us 3000
Fano factor count values per electrode. The Fano factor is
calculated as the ratio of the variance to the mean of these spike
counts77:

FF ¼ σ2w ðspike countÞ=μw ðspike countÞ ð1Þ

Since the majority of the spiking activity in our networks is
present within burstlets, we used a window w that corresponds to
the same order of magnitude as the length of our burstlets. The
Fano factor tends toward 0 for networks with regularly spaced
spikes78,79. When the spike rate is random and follows a Poisson
distribution, the Fano factor is theoretically equal to 177,80.
Higher Fano factor values are indicative of irregular firing, which
is observed in our hippocampal neuron networks17,18,78,79.

Burstlet detection. Spikes occurring in rapid succession on an
electrode are referred to as an individual bursts or “burstlet”.
After all spikes are detected, we determine whether spikes are part
of a burstlet, which are event composed of a core group of very
closely spaced spikes and a peripheral group of less closely spaced
spikes. To implement these criteria for the detection of burstlets,
our algorithm searched for groups of at least 4 spikes with ISIs of
100 ms or 4 times the firing rate of that electrode, whichever was
smaller. Upon finding the core groups of spikes, the algorithm
searched for peripheral spikes that had ISIs of 200 ms or 3 times
the firing rate of that electrode, whichever was smaller76. After all
burstlets in each 10 s period were detected, the algorithm checked
whether, on any electrodei, a burstlet at the end of periodj over-
lapped with a burstlet at the beginning of periodj+1. If so, these
burstlets were combined into one.

Global burst detection. Our hippocampal networks not only
exhibit random spiking and bursting activity on individual elec-
trodes, but they will also often display network-wide bursts,
known as synchronized bursting events81, which occur when
multiple electrodes record burstlets that overlap in time. Phy-
siologically, synchronized bursting events represent the syn-
chronous activity that is necessary for many brain functions82,83,
and thus, are an important measure of network activity. Here, we
refer to these network-wide bursts as global bursts, and they are
detected as at least three overlapping burstlets on different
electrodes76.
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BDNF treatment of developing hippocampal networks and
recording schedule. Cultures of hippocampal neurons were
maintained for 7 days in vitro (DIV) prior to treatments and
recordings. The timeline used for these experiments and abbre-
viations used in the text and figures are shown in Supplementary
Fig. 2a.

Baseline recordings were performed at DIV 7 using MCRack
software. Immediately after recording, an activity check was
performed. Cultures with <2000 spikes in 5 min (a spike rate of
<6.7 Hz) were not used for further experimentation. Remaining
cultures that did pass the activity threshold were randomly
assigned to one of three treatment groups: control (0 ng/ml
BDNF; 0B), 25 ng/ml BDNF (25B), or 50 ng/ml BDNF (50B).
BDNF or vehicle (sterile water) was added to the conditioned
medium, which was then applied to cultures for 72 hours. We
used the additional treatment concentration of 50 ng/ml because
MEA cultures are plated 3.5 times more densely than cultures
used in previous work studying BDNF-mediated effects on
dendrite morphology27,29,30. At DIV 10, after 72 hours of BDNF
or vehicle treatment, an additional recording was performed, and
the treatment medium was replaced with a regular culture
medium. Importantly, this treatment window corresponds to that
of our previous work, in which BDNF was applied to cultures of
hippocampal neurons for 72 hours, resulting in increases in
proximal branching27. A final recording was performed at DIV
17, which is 7 days post-treatment, to determine whether BDNF
exerts any long-term effects on network dynamics.

Identification of glutamate concentration that results in sub-
lethal injury of hippocampal networks. To determine the con-
centration of glutamate that results in a mild injury of
hippocampal networks, cultures were maintained for 14 DIV
prior to injury with glutamate and recording. The timeline used
for these experiments is shown in Supplementary Fig. 2b.

Baseline recordings were performed at DIV 14 using MCRack
software. Immediately after recording, an activity check was
performed using the aforementioned criteria. Cultures that passed
the activity threshold were randomly assigned to one of five
injury groups: no injury (0 μM glutamate; 0g), 30 μM glutamate
(30g), 100 μM glutamate (100g), 175 μM glutamate (175g), or
250 μM glutamate (250g). Glutamate or vehicle (sterile water) was
added to the conditioned medium, which was then applied to
cultures for the following amount of time: injury with higher
levels of glutamate (175 and 250 μM) was induced for 1 hour15,16,
while injury with lower levels of glutamate (30 and 100 μM) was
induced for 30 min. After injury, the glutamate-containing
medium was replaced with a conditioned medium.

Our goal for studying glutamate-induced excitotoxicity was to
cause decreases in activity but not total elimination of activity,
and thus, we quantified how the different concentrations of
glutamate affected spike rate (Supplementary Fig. 2c1), burstlet
rate (Supplementary Fig. 2c2), and global burst rate (Supplemen-
tary Fig. 2c3). Injury with higher concentrations of glutamate
(100g, 175g, and 250g) results in significant decreases for all
activity metrics both compared to the control (# symbols) and
compared to their raw values pre-injury (* symbols). In contrast,
injury with the lowest concentration of glutamate (30g) results in
significant decreases in spike rate, burstlet rate, and global burst
rate compared to the control (# symbols), but only global burst
rate decreased compared to pre-injury levels (* symbol). Thus, we
selected 30 μM as our excitotoxic injury.

Injury of hippocampal networks with glutamate and recovery
treatment with BDNF. After determining the concentration of
glutamate that resulted in sublethal injury to networks of

hippocampal neurons (30 μM glutamate for 30 min), cultures
were maintained for 14 DIV before treatments and recordings.
The timeline used for these experiments and abbreviations used
in the text and figures are shown in Supplementary Fig. 2d.

Baseline recordings were performed at DIV 14 using MCRack
software. Immediately after recording, an activity check was
performed using the aforementioned criteria. Cultures that passed
the activity threshold were randomly assigned to one of two
injury groups: no injury (0 μM glutamate; 0g) or 30 μM
glutamate (30g). Glutamate or vehicle (sterile water) was added
to conditioned medium, which was then applied to cultures for
30 min. After injury, cultures were randomly assigned to one of
two treatment groups: no treatment (0 ng/mL BDNF; 0B) or
treatment with 50 ng/mL BDNF (50B). Cultures were maintained
in treatment medium with or without BDNF until the 24h post-
injury recording on DIV 15. After this recording, the treatment
medium with or without BDNF was reapplied, and cultures were
maintained in this medium until the 72h post-injury recording on
DIV 17.

Synchronization calculation. Synchronization between electro-
des is based on the overlapping of individual burstlets on different
electrodes and is referred to as synchrony of firing (SF). This type
of synchronization measure indicates how correlated the bursting
of one electrode is with other electrodes. SF is calculated by taking
the ratio of the number of times electrodes x and y burst together
(Bx&y) versus the maximum number of times either electrode
bursts on its own (Bx|y)15–18

SF ¼ Bx&y=Bxjy ð2Þ

Here, a value of 0 indicates no synchronization and a value of 1
indicates full synchronization. To assess changes in synchroniza-
tion, we examined the changes that occur to electrodes possessing
specific baseline levels of synchronization. As in our previous
work, we categorized electrodes into the following initial
synchronization bins (categories): 0.1–0.4 (weak), 0.4–0.7 (med-
ium), and 0.7–1.0 (strong)15,16. We ignored electrodes with initial
synchronizations of between 0 (no synchronization) and <0.1
(very weak synchronization) to prevent large percent changes
from biasing the results.

Network parameters: local efficiency. To examine how BDNF
treatment and glutamate injury affected the functional con-
nectivity of networks, we used the Brain Connectivity Toolbox
(BCT; brain-connectivity-toolbox.net;84) to calculate the local
efficiency for both in vitro and in silico networks. Local efficiency
is the average inverse shortest path length of a node’s neighbors
and measures the resilience of the network to injury on a local
scale. It is a measure of segregation and is calculated for each of
the 59 active electrodes on the 60-electrode MEA (59 active
electrodes+1 reference electrode, as in our previous work15,16).
To measure local efficiency, we first generate functional con-
nectivity matrices by binning spikes and calculating cross-corre-
lation, as in our previous work17. These functional connectivity
matrices are undirected network matrices with a size of 59 × 59
that are then inputted into BCT. Our binning parameters are
10 ms for in vitro datasets and 1 ms for in silico datasets. The
slight difference in parameter choice arises from the lower
amount of chatter and a higher level of burstiness in the in silico
networks compared to in vitro networks. The binning parameter
used for in silico datasets is consistent with our previous study17.
Since our in vitro networks in this study showed significantly
higher levels of burstiness than the in vitro networks in our
previous work17, it was necessary to choose a larger binning
window to account for bursting behavior. Note that the
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undirected network matrices used for local efficiency analysis are
distinct from the directed networks used for Granger causal
analysis (described below in subsection “Estimation of directed
network structure using Granger causality analysis”).

Tracking electrode data over time. In contrast with our previous
studies, we chose in this work to track electrodes over time to
better understand how hippocampal networks change during
development and after injury. After calculating parameters for
each electrode, we only kept track of electrodes that functioned
properly (i.e., not too noisy) for all recording periods. For syn-
chronization categorization, the initial category is determined by
the binning on the first day of recording (DIV 7 or 14).

Extraction of burstlet trains for Granger causality and higher-
order synchrony analysis. We observed that spiking activity in
each electrode of the MEA recordings occurred primarily in
burstlets. Defining a burstlet to be a 300 ms period during which
at least 4 spikes are observed, we formed binary time series by
binning spike times at a resolution of 300 ms and assigning bins
with at least four spikes a value 1, and 0 otherwise. We used the
burstlet trains in our statistical approaches for analyzing network-
level properties of hippocampal neurons cultured on MEAs.

Estimation of directed network structure using Granger caus-
ality analysis. To examine networks of directed interactions
between active electrodes on the MEA, we use Granger causality
(GC) analysis, which tests if the bursting activity of one electrode
is better predicted by knowledge of the recent bursting history of
a second electrode. Recent work24,25 developed a GC measure for
point processes that accounts for the sparsity of interactions and
controls the false discovery rate (FDR) of GC links. We adapted
the point process GC framework to infer functional interactions
between active electrodes using extracted burstlet trains. Then,
using the total number of links in GC networks as a measure of
network connectivity, we compared the mean change across
experimental conditions and days in vitro to identify significant
changes, as determined by the two-sided Wilcoxon rank sum test.
The following subsections formulate the point process likelihood
model and describe the estimation and statistical inference pro-
cedure for GC analysis.

Point process likelihood model for burstlet trains. Suppose C active
electrodes were recorded. The observed burstlet sequence of the
cth unit fn cð Þ

t gTt¼1 is treated as a sequence of Bernoulli random
variables whose success probabilities are given by the conditional
intensity function (CIF) fλðcÞt gTt¼1. The CIF is modeled by a gen-
eralized linear model (GLM) with logistic link function:

λðcÞt ¼
exp ω cð Þ0xt

� �

1þ exp ω cð Þ0xt
� � ð3Þ

The parameter vectors consist of a baseline firing rate
parameter and history modulation vectors for each active

electrode, i.e., ωðcÞ ¼ ½μðcÞ;ωðc;1Þ0; ¼ ;ωðc;CÞ0�0; and the history
covariate vector at time t consists of the recent burst history of

each electrode, xt ¼ ½1; nð1Þt
0
; ¼ ; nðCÞt

0�.
The combined log-likelihood of the sequence of observations is

expressed as the sum of Bernoulli log-likelihoods over time:

LðωðcÞÞ ¼ ∑
T

t¼1
nðcÞt ωðcÞ0xt � log 1þ exp ω cð Þ0xt

� �� �
ð4Þ

Model estimation and statistical inference of GC links. To deter-
mine if a GC link from a source electrode �c to a target electrode c

exists, two-point process models of the target’s burstlet activity
are estimated and compared: a full model that includes the recent
burstlet activity history of all active electrodes as covariates; and a
reduced model, nested within the full model, that excludes the
activity history of the source electrode from the covariates.

The full model is obtained by solving

ω̂ðcÞ ¼ argmax
ωðcÞ

L ω cð Þ� �
ð5Þ

using a generalized orthogonal matching pursuit (OMP)85,86 to
enforce parameter sparsity. OMP iteratively updates and
optimizes over the model support set, or the subset of non-zero
parameters of ω̂ðcÞ, by first identifying the parameter for which the
partial gradient of the log-likelihood has the largest magnitude
and then solving the maximum-likelihood problem over the
updated support. The sparsity level (support size) is determined
by cross-validation, hence accounting for the possibility that the
interactions may be dense.

The reduced model is estimated similarly by solving the
maximization problem

ω̂ðc�cÞ ¼ argmax
ωðc�cÞ

Lðωðc�cÞÞ ð6Þ

where the likelihood is evaluated with the reduced set of history
covariates, x�c t , that exclude the history of the �cth unit.

A GC link from the source to the target electrode is detected if
the inclusion of the recent activity history of the source electrode
significantly improves the prediction of the target electrode’s
activity. That is, if the likelihood of the full model is significantly
greater than that of the reduced model, the null hypothesis that
there is no GC link is rejected. Hence, the predictivity of the full
and reduced models are compared using the deviance difference

Dð�c 7!cÞ ¼ 2 L ω̂ cð Þ
� �

�L ω̂ c�cð Þ
� �h i

ð7Þ

a statistic frequently used for likelihood ratio tests with nested
hypotheses. Since the full model has more degrees of freedom
than the reduced model, the deviance difference is non-negative
with large values indicating potential GC links. Using the
inference framework in recent work24,25, which precisely
characterizes the distribution of the deviance difference, we test
the significance of the deviance difference while controlling the
false discovery rate at α ¼ 0:01 using the Benjamini–Hochberg
procedure87. Repeating this procedure for all pairs of source and
target electrodes ð�c; cÞ yields the GC network.

Higher-order synchrony analysis. We characterized network
synchrony in further detail by adapting a recently developed
modeling and inference framework for single-trial spiking
data35,36 to burstlet activity. Specifically, we used a static history-
independent model of ensemble spiking to test whether r-wise
simultaneous bursting occurs at a significantly higher rate than
expected from independent electrodes, as summarized here.

In contrast to the conditionally independent set of point
process models for each unit used in GC analysis, we used a
marked point process (MkPP) model that jointly characterizes all
permutations of ensemble bursting. That is, for C electrodes, each
of the C� ¼ 2C � 1 ensemble states (or marks),

nt ¼ ½nð1Þt ; nð2Þt ; ¼ ; nðCÞt �0, is represented by categorical vectors
n�t ¼ ½n�t ð1Þ; n�t ð2Þ; ¼ ; n�t

ðC�Þ�0. Hence, all permutations of ensem-
ble bursting are represented disjointly so that their rates may be
modeled directly in the joint log-likelihood

log p n�t
� � ¼ μ0n�t � ψ μ

� �
;ψ μ

� � ¼ log 1þ ∑
C�

m¼1
eμ

mð Þ
� �

ð8Þ
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where μ is the rate parameter vector and ψðμÞ is a normalization
factor.

To test for rth-order synchrony (i.e., a significantly high rate
of r-wise simultaneous bursting), we estimated two nested
MkPP models. The full model parameters are estimated without
constraint while the reduced model parameters are estimated
with the rate parameters of rth-order marks fixed at the values
expected if rth-order events occurred by chance. In a similar
manner as in the inference of GC links, the full and reduced
models are compared using the deviance difference; rth-order
synchrony is detected if the deviance difference is significantly
greater than zero. The analysis is repeated for each r ¼ 2; ¼ ;C
and thus, characterizes all higher-order synchronous bursting
across the MEA. For the sake of numerical tractability, only
electrodes with significant activity above a threshold of 30
burstlets were retained in the analysis of higher-order
synchrony.

Visualizing spatial distributions of synchronous units. To
visualize the localization of synchronous electrodes, we generated
histograms of the distance between each electrode and its mid-
point. For example, suppose a set of r synchronous electrodes
have positions ðxi; yiÞ; i ¼ 1; ¼ ; r; we compute the distance
vectors ðxi � �x; yi � �yÞ; i ¼ 1; ¼ ; r, where �x ¼ ∑r

i¼1 xi and
�y ¼ ∑r

i¼1 yi. These distance vectors are compiled separately for
low (2–8), intermediate (9–15), and high (16+) orders of syn-
chrony and displayed as a spatial histogram. Larger counts in the
center of the spatial histogram indicate more localized synchro-
nous units. The similarity of pairs of spatial distributions was
quantitatively determined by two-sample KS tests (significance
level p < 0.05).

Tokeshi’s test of bimodality. To assess differences in the fre-
quency distribution of orders of synchrony, we adapted Tokeshi’s
test for bimodality37. The test was developed to distinguish types
of modality in spatial frequency distributions of animal com-
munities but is applied to our setting to analyze the modality of
frequency distributions of present orders of synchrony.

First, we bin the orders of synchrony. This reduces the number
of synchrony classes and highlights peaks in the distribution,
similar to the use of a larger class interval in previous work37.
Two candidate modes are selected by identifying one peak
amongst the lower- and higher-order synchrony classes each. The
selected classes are, respectively denoted, by ml (mr) with
frequencies nl (nr). Three probabilities are computed under the
null hypothesis: the sum of probabilities of obtaining at least the
observed frequencies nl and nr, Pc; and, separately, the probability
of obtaining at least nl (nr), Pl (Pr). Explicitly, with N the total
number of samples and 1

h the number of classes,

Pc ¼ ∑
N�nl

i¼nl
∑
N�i

j¼nr

N!hiþjð1� 2hÞN�i�j

i!j!ðN � i� jÞ! ð9Þ

Pl ¼ ∑
N

i¼nl

N
i

� �
hið1� hÞN�i ð10Þ

and

Pr ¼ ∑
N

i¼nr

N
i

� �
hið1� hÞN�i ð11Þ

We also define an additional quantity ρðtÞ ¼ ½1�maxðPl; PrÞ�t
that is used to reflect the relative magnitude of a small peak. If t
consecutive classes adjacent to the class (ml or mr) that
maximizes ½maxðPl; PrÞ� have frequencies lower than nl (or nr)
and t satisfies ρðtÞ<0:1, that class is judged to be locally

significant. Table 1 summarizes Tokeshi’s test of bimodality
based on the values of Pc, Pl, Pr, and ρðtÞ.

Computational neuron network model. For our simulations, we
modified a neuron network model developed in Python 3.8 that
uses the Brian2 neural simulator41,88. Our group has previously
adapted this model to replicate and extend in vitro findings17. In
this work, our network employs distance-dependent
connections89 that we then adjusted in accordance with our
previously reported in vitro data27. Our network contains 500
neurons seeded at a density of 3.5 × 103 cells/mm2 to match
in vitro cell density and comprises 440 excitatory neurons and 60
inhibitory neurons (E/I balance of 88/12) to match in vitro E/I
neuronal balance (Fig. 5d, e). We connected our neurons prob-
abilistically based on the neuron-neuron distance and type of
connection based on Voges and Perrinet (2012)89 and scaled the
likelihood function to achieve the target E/I synaptic balance of
~65/35 to match in vitro E/I synaptic balance (Supplementary
Fig. 8 for in silico; Fig. 5f and Supplementary Fig. 5 for in vitro).

We used a conductance-based leaky integrate and fire model
for our neurons. Their membrane potential V follows the
Langevin equation:

Cm
dV
dt

¼ �gm V � VL

� �� Isyn þ IAHP þ I
pre

ð12Þ

where Cm is the capacitance, gm= 1/Rm is the membrane leak
conductance, and VL is the resting potential. The synaptic current
Isyn represents the sum of the glutamatergic AMPA and NMDA
excitatory currents and GABA inhibitory currents. The after-
hyperpolarization current IAHP represents slow calcium dynamics
and fatigue. Ipre represents presynaptic neuronal noise current,
modeled as Gaussian white noise. Excitatory–excitatory connec-
tions are modified by spike-time-dependent plasticity90. The
excitatory–excitatory synapses are initially seeded at a weight of
8 AU and capped at 16 AU to prevent runaway bursting. All other
synapses have a weight of 1. Only one synapse can exist between a
given set of two neurons.

We seeded our neurons with a Gaussian distribution of
external current inputs and allowed the network to stabilize for
120 s, after which period the spike and burst rate experienced
only marginal changes in unperturbed networks. We ran each
simulation 6 times, consistent with the replicates of in vitro
recordings.

The code used to generate our neuron network model can be
found on the Meaney Lab website (https://www.seas.upenn.edu/
~molneuro/software.html) and ModelDB.

Glutamate and BDNF simulation in silico. To simulate the
application of glutamate in silico, we replicated the findings
in vitro with regard to loss of excitatory and inhibitory neurons
and synapses (Fig. 5 and Supplementary Fig. 5). We intended for
“Injury” to represent 30 µM glutamate and for “post” to represent
the 72h post timepoint. We silenced 30% of excitatory neurons,
25% of inhibitory neurons, and 75% of inhibitory synapses. To
preserve bursting activity and account for the low plating density
required for imaging studies to assess cell death, we proportion-
ally scaled back the cell death applied in silico. Owing to the
inhibitory synaptic loss associated with inhibitory cell death, this
resulted in a net loss of inhibitory synapses of 86% in our model
(Supplementary Fig. 8c, d).

To simulate the application of BDNF in silico, we again
replicated the findings in vitro with regard to the protection of
inhibitory neurons (Fig. 5e). We intended our “BDNF treatment”
to correspond to treatment with 50 ng/ml BDNF. We modeled
BDNF as a reintroduction of 50% of injured inhibitory neurons
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after the network settled from simulated glutamate injury (net
reintroduction of 7 inhibitory neurons; Supplementary Fig. 7).
Reintroduced neurons had the same connections as they did pre-
injury unless their connections were specifically injured as a result
of glutamate injury (Supplementary Fig. 8a). Since we modeled
BDNF as a resurrection of lost neurons, we only modeled BDNF
treatment in the post-injury case and not as a control treatment.

To replicate the timing of BDNF and glutamate treatment
in vitro (Fig. 5a), we first allowed the in silico network to settle
from 0 to 120 s (Fig. 9a; as described in the section “Methods”:
subsection “Computational neuron network model”). We then
allowed the simulation to run from 120 to 240 s to establish a
“pre-treatment” period against which the effects of treatment(s)
would be compared (Fig. 9a). The pre-treatment period was
matched for each set of Control, Injury, and Injury+ BDNF
simulations to minimize the effect of variable network parameters
(e.g., neuron location and its effect on connectivity) on treatment
effect. Glutamate was always applied at the beginning of the first
treatment epoch (at 240 s), and the network was allowed to
resettle for 120 s. If BDNF was applied, it occurred at the
beginning of the second treatment epoch (at 360 s), and the
network was allowed to settle for 120 s. If BDNF was not applied,
the network was allowed to run unperturbed for 120 s during the
second treatment epoch. Next, the simulations entered the “post-
treatment” epoch from 480 to 600 s: the period when we
evaluated the effect of treatment(s).

Conversion of neuron network model to MEA-type recording.
Because of the significant cell loss intrinsic to this model of
neuronal injury, we converted our in silico neuronal recordings
into a pseudo-MEA recording to be more faithful to the in vitro
experimental design. MEAs in vitro are understood to record
from approximately 3–6 neurons15–18. In accordance, we spatially
divided our 500 neurons into an 8 × 8 grid and then removed 5
reference electrodes to equal the 59 recording electrodes found
in vitro (Supplementary Fig. 7). As a result, each “electrode” in
our system records from an average of 7.8 neurons in the unin-
jured condition (Supplementary Fig. 7d).

After consolidating our in silico neuron-based recordings to
MEA-like recordings, we analyzed the simulations in the same
manner as the in vitro MEA recordings, evaluating burstlet rate,
Fano factor, and local efficiency.

Data representation. For all MEA-derived parameters, data are
represented as percent change and compared to the baseline
timepoint. In cases where a particular parameter can be tracked
for each electrode (e.g., burstlet rate), each datapoint represents
an electrode value. For these parameters, we only used datasets
that included electrodes that could be tracked across all three
timepoints. To prevent artificial inflation of percent change values
for in vitro and in silico data, the following thresholds (per
electrode) were used: 0.2 Hz for spike rate, 0.02 Hz for burstlet
rate, 0.01 Hz for global burst rate, and 0.005 (AU) for local effi-
ciency. It was not necessary to use a lower threshold for Fano
factor, and the synchronization data already have a lower bound
of 0.1.

All data were plotted using MATLAB 2021a. Error bars
indicate 95% CIs and are occasionally smaller than the size of the
mean datapoint when the number of datapoints is large. We used
Adobe Illustrator (version 25.0.1) for the final assembly of figures.

Statistics and reproducibility. In cases where a particular para-
meter must be calculated as one value for each MEA network
(e.g., Granger Causal links), then each datapoint represents an

MEA network value. For these parameters, we used all available
data. In the figure legends, we specify that N indicates indepen-
dent experiments, e indicates electrodes, and n indicates data-
points (MEA networks). For some in silico data, we also report
that s indicates a number of synapses.

In rare cases, we excluded data using the median absolute
deviation (MAD) calculation. We used a scale factor k= 2 for the
Western blot analysis (Fig. 1c; eliminated one experiment) and
preliminary glutamate experiments (Supplementary Fig. 2c;
eliminated two datapoints from the control condition for all
parameters). It was also necessary to use this outlier removal
method for the final normalized data from the in silico networks
(scale factor k= 3).

When tracking electrode data over time, we used repeated
measures ANOVA to determine significant differences between
timepoints within the same condition. To keep RM ANOVA as
accessible as possible for readers, we treat the conditions in the
injury dataset as one set of four categories (untreated uninjured,
treated uninjured, untreated injured, treated injured) rather than
two sets of two categories (treated/untreated, injured/uninjured).
We report F-statistics and p values for all parameters analyzed by
RM ANOVA in Supplementary Tables 1, 2, and 3. After RM
ANOVA, we use Tukey–Kramer as a multiple comparisons test
based on the treatment group for each timepoint separately.
These data and statistical analyses are represented in plots with
dual axes. Plots on the left side (“changes within”) demonstrate
differences within a condition across timepoints (e.g., 24h post-
injury versus pre-injury), and significance is shown via asterisks.
For determining significant differences in changes across
conditions, we used estimation statistics to calculate confidence
intervals (CIs)34 (nIterations= 500) and then calculated the p-
value from the CIs91. These data and analyses are shown on the
right side of plots (“differences between”) and demonstrate how
changes differ across treatment conditions. Statistical differences
between the two conditions are shown by p values.

For E/I neuron data, we used Kruskal–Wallis followed by the
Tukey–Kramer multiple comparisons tests (Fig. 5d, e). For E/I
synapse data and, we used one-way ANOVA followed by
Tukey–Kramer multiple comparisons test (Fig. 5f and Supple-
mentary Fig. 5b–g). Statistical comparisons of the number of GC
links across timepoints and conditions were made using a two-
sided Wilcoxon’s rank sum test (Figs. 4a and 8a), while
bimodality of the frequency distributions of higher-order
synchrony was determined by Tokeshi’s test (Fig. 4b, c; see also
Table 1). Differences in spatial distributions of synchronous units
were tested using two-sample Kolmogorov–Smirnov (KS) tests
(Figs. 4d and 8b, c). Changes to excitatory–excitatory synaptic
weights for in silico networks were assessed via two-sample
Kolmogorov–Smirnov test (Fig. 9g) and one-way ANOVA
followed by Tukey–Kramer multiple comparisons test (Fig. 9h).

All statistical tests were performed using MATLAB 2021a.
When datapoints are data from individual electrodes, individual
data points are shown in the Supplementary Information along
with the mean. At least three separate replicates (independent
experiments) were performed for all datasets; we consider
different dissections to be separate replicates. The significance
level was set at α= 0.05.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The source data for all plots is publicly available on Figshare92.
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Code availability
All code is available on GitHub.com and onModelDB.com. Refer to GitHub and the associated
DOI for the MEA analysis code (github.com/katemon/MEAanalysis_ONeill2023/)93. Refer to
GitHub and the associated DOI for the Granger causality analysis code (github.com/ShoutikM/
GCandSynchronyAnalysisCode_ONeill_etal_NatCommunBiol_2023/)94. Please refer to
ModelDB for the simulation code (https://modeldb.science/2015421).
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