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Classifying behavior patterns in mouse models of neurological, psychiatric and
neurodevelopmental disorders is critical for understanding disease causality and
treatment. However, complete characterization of behavior is time-intensive, prone to
subjective scoring, and often requires specialized equipment. Although several reports
describe automated home-cage monitoring and individual task scoring methods, we report
the first open source, comprehensive toolbox for automating the scoring of several
common behavior tasks used by the neuroscience community. We show this new
toolbox is robust and achieves equal or better consistency when compared to manual
scoring methods. We use this toolbox to study the alterations in behavior that occur
following blast-induced traumatic brain injury (bTBI), and study if these behavior patterns
are altered following genetic deletion of the transcription factor Ets-like kinase 1 (Elk-1).
Due to the role of Elk-1 in neuronal survival and proposed role in synaptic plasticity,
we hypothesized that Elk-1 deletion would improve some neurobehavioral deficits, while
impairing others, following blast exposure. In Elk-1 knockout (KO) animals, deficits in open
field, spatial object recognition (SOR) and elevated zero maze performance after blast
exposure disappeared, while new significant deficits appeared in spatial and associative
memory. These are the first data suggesting a molecular mediator of anxiety deficits
following bTBI, and represent the utility of the broad screening tool we developed. More
broadly, we envision this open-source toolbox will provide a more consistent and rapid
analysis of behavior across many neurological diseases, promoting the rapid discovery of
novel pathways mediating disease progression and treatment.

Keywords: automated behavior, blast-induced traumatic brain injury, Elk-1 knockout, spatial object recognition,

social interaction, Barnes maze

INTRODUCTION
An increasing number of behavioral assays are available to the
neuroscience community for identifying a phenotype in mouse
behavioral studies. Many of these behavioral tasks are linked to
one or more neuroanatomic substrates (Phillips and Ledoux,
1992; Broadbent et al., 2004; Balderas et al., 2008; Barker and
Warburton, 2011). As such, rapidly defining a behavioral phe-
notype could bridge the gap between changes in brain structure
and the advancement of new therapies for treating neurological
diseases.

Key bottlenecks limit behavior phenotyping across laborato-
ries. Many tests use time-intensive manual scoring techniques
susceptible to inter-operator variability, leading to poor repro-
ducibility within and across research groups. Moreover, manual
tracking methods do not provide an opportunity to explore or

“re-mine” data not collected during the initial scoring. Although
automated activity monitoring methods exist to increase the
speed of analysis and reduce variability, the methods are either
proprietary, not robust, or rely on specialized, expensive equip-
ment not widely accessible to the research community. Similarly,
automated scoring methods currently do not allow adjustments
to either improve the accuracy or extend the analysis of several
common behavior tests.

In parallel, the analytical framework to extract the significant,
unique behavior patterns across experimental groups needs better
definition. Rather than evaluating behavioral tasks independently
using traditional parametric or nonparametric statistical tests,
a single consolidated analysis may identify significant group-
ings, or patterns, of behaviors (Markow and Hanson, 1981;
Vekovischeva et al., 2007). The consolidated analysis of several
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tasks will become even more important as we increase our
ability to automate task scoring, and this systems-level analy-
sis would prove increasingly valuable to prospectively identify
brain areas most affected by the genetic manipulation or disease
condition.

Recognizing the benefits of an automated system, the neu-
roscience community has developed many different methods
to automate the phenotyping of animals in their home-cage
(Tamborini et al., 1989; Casadesus et al., 2001; Tang et al.,
2002; Millecamps et al., 2005; Tang and Sanford, 2005; Chen
et al., 2006; Steele et al., 2007; Bonasera et al., 2008; Goulding
et al., 2008). In contrast, automation of video recordings of task-
related experiments lags behind. Existing home-cage software,
including most recent machine learning (Kabra et al., 2013) or
computer vision (Jhuang et al., 2010) based methods cannot be
applied to score task-experiments, partly because these methods
are primarily designed to classify the way in which a mouse’s
body deforms over small time intervals and assign behavioral
labels such as rearing, grooming, or sitting. Scoring task-related
experiments requires an entirely different approach based on the
temporal evolution of an animal’s interactions with the environ-
ment [e.g., exploration of objects in spatial object recognition
(SOR) or social interaction] or by the choices the animal makes
(e.g., entry into different regions of an arena as in Y-Maze,
place-preference, etc.). Only recently have tools emerged to score
some common tasks, or, more generally, a more general pur-
pose tools to develop automated scoring functions [e.g., Janelia
Automatic Animal Behavior Annotator (JAABA); Kabra et al.,
2013].

We now significantly extend the repertoire of computerized
methods for scoring video recordings of many behavior tasks that
span tests of anxiety, cognition, learning, and memory. These
include fear conditioning, open field, zero-maze, Y-maze, plus-
maze, T-maze, Barnes maze, place preference, SOR, novel object
recognition (NOR), and two- or three-chamber social interac-
tion. We overcome the limitations of existing methods that either
required inking part of the animal for automatically identify-
ing body landmarks (Rutten et al., 2008) or required specialized
equipment to monitor activity. For each behavior task, we use this
new toolbox to automatically compute performance metrics that
are commonly scored manually and achieved equal or better con-
sistency compared to inter-observer variability. In addition, we
introduce novel fine-grained measurements of task performance
that are not available through manual scoring.

We employ some of these tools and a systems-level analysis
to evaluate how the aggregate behavior of animals changes with
a genetic and/or experimental manipulation. This automated
phenotyping of behavior, or autotyping, reveals a novel behav-
ior pattern for a mouse model of blast-induced traumatic brain
injury (bTBI). We hypothesized that, due to its role in neuronal
survival and proposed role in synaptic plasticity (Sharma et al.,
2010; Besnard et al., 2011; Morris et al., 2013), the genetic deletion
of transcription factor, Ets-like kinase 1 (Elk-1), would amelio-
rate some, but not all, behavior impairments of bTBI. Indeed, we
find that bTBI increases anxiety-like behavior in wild-type mice
and this effect is significantly reduced in Elk-1 knockout (KO)
animals.

METHODS
SUBJECTS
All animal studies were conducted according to NIH guide-
lines and were approved by the University of Pennsylvania’s
Institutional Animal Care and Use Committee (IACUC). We
studied the behavioral effects of bTBI using an Elk-1 KO mouse
(Cesari et al., 2004) and wild-type littermate (WTLM) mice.

BLAST-INDUCED TRAUMATIC BRAIN INJURY (TBI)
We used a shock-tube to generate a fully developed shock wave
within an aluminum tube. The animal was placed 16-mm from
the exit of the tube, and experienced a typical blast overpressure
loading—a rapid rise in pressure (40 μs) followed by a slightly
longer pressure decay (0.615 ms) (Gullotti et al., 2014). For all
experiments, we used blast input conditions (peak overpressure:
215 kPa, duration: 0.65 ms) that, when averaged across three pres-
sure transducers placed along the periphery of the exit of the tube,
varied less than 5% across all animals tested, and caused an imme-
diate impairment in righting reflex. Once animals recovered their
righting reflex, they were returned to a warmed recovery cage.

MOVEMENT DETECTION, TRACKING, AND ORIENTATION OVERVIEW
Several simple observations from the video record were auto-
mated: (1) determining whether the animal was moving and
classifying the type of motion (goal-directed or exploratory),
(2) determining the absolute location of the animal in an
arena and relative to other objects, (3) identifying several land-
marks on the animal’s body, and (4) determining the ani-
mal’s gaze direction and body curvature. These movement
classifiers were key for determining an automated score for
a given test. All algorithms described below are implemented
in MATLAB (MathWorks). The source-code, detailed user
guide, and sample experiment videos are freely available on
www.seas.upenn.edu/∼molneuro/autotyping.html.

OBJECT TRACKING AND DETECTION OF INTERACTIONS WITH THE
ENVIRONMENT
We automated the process for determining the precise location of
an animal and time spent interacting with an object or within a
region of interest (ROI). Traditionally, automated identification
of interaction has been a difficult task. A common method uses
photobeam crossings in an open field to determine the location
of an animal in an arena. However, this method requires the user
to predetermine areas of interaction, requires calibration of addi-
tional monitoring equipment and the spatial resolution is limited
to the density of photobeams. To our knowledge, the only other
open-source automated software for object interaction requires
inking the mouse’s tail to denote a starting point and iteratively
searches for position of the nose via multiple line fittings (Rutten
et al., 2008), a process that can easily create cumulative errors. In
our experience, proprietary software (e.g., Clever Systems) often
suffered from this limitation, restricting its utility. Our algorithm
consisted of segmenting the mouse in the image; determining
locations of head, tail, and centroid; determining the direction
of gaze; extrapolating whether the mouse’s line of site crosses an
ROI; and assigning a label (interacting or not interacting) to each
frame.
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Segmentation was accomplished by background subtraction.
In selecting an efficient and robust algorithm for estimating the
background, we note that typical object interaction experiments
are short in duration, have relatively constant (perhaps uneven)
illumination, steady background geometry throughout the exper-
iment and have minimal shadowing or hardware motion artifacts
(i.e., camera is held in position). If there are no moving objects
in the scene and no variations in illumination, then for each pixel
location, the intensity values along the temporal axis should be
constant; however, moving objects or system noise cause pixel
intensity to vary from a constant value. Since the moving objects
appear only in a small number of images at any pixel location,
an estimate of the background was obtained as the main mode
of the underlying distribution along the temporal axis for each
pixel location (Figures 1A–C). Estimating the background scene
was accomplished in under 1 min on a standard workstation with
an Intel i940 processor and 6 GB RAM.

The centroid of the moving segmented object (mouse) and the
coordinates of the nose and tail are determined via geodesic dis-
tance transform (Figure 1D). We note that the mouse’s anatomy
is such that the tip of the tail is the farthest geodesic distance from
the centroid and its nose is the farthest geodesic distance from
the tail. To determine the directions of mouse’s gaze, we could
either draw a vector from the centroid to the nose coordinates
or skeletonize the segmented image and fit a line to points near
the head. Both approaches were equally effective in identifying
mouse’s gaze. Commercial systems were not sufficiently robust in
consistently detecting these landmarks, virtually eliminating their
usefulness especially in a high-throughput setting.

The overall trajectory of the mouse in an experimental arena
was visualized by plotting its centroid coordinates (Figure 2A).
The total distance traveled or the amount of time spent interact-
ing with an object across multiple exposures to the same arena
are common measures of habituation (Vianna et al., 2000), one
of the most elementary nonassociative learning tasks in rodents.
Our automated tracking computes this directly in real-time, and
also allowed us to plot the angle of approach during each bout
of exploration of an object, possibly providing a novel method to
examine biases (Figure 2B). In our implementation, users have
the flexibility to draw arbitrary number of ROIs denoting objects
of potential interaction. An immediate advantage of this flexi-
ble ROI assignment appears for the SOR task, where we gain
the ability to determine if the mouse acquired spatial memory
via drawing a phantom ROI around what used to be the dis-
placed object. Additionally, a heat-map plot of the mouse position
during the test facilitates high-throughput characterization of
behavior through novel pattern recognition or machine learning
algorithms (Figure 2C). The algorithm for detecting interaction
with an object is also useful for measuring social interactions
(Figures 2D–I).

APPLICATION TO AUTOMATED SCORING OF TASKS
The modular implementation allowed us to extend our method-
ology for analyzing many neurobehavior tasks. A complete list
of behavior tasks and their respective performance metrics that
are automatically derived are provided in Table 1. All behavior
experiments were videotaped using a securely mounted overhead

FIGURE 1 | Background estimation, segmentation, and detection of

the head. Four randomly selected frames of a 10-min video of an open-field
experiment (A) shows the different locations of the mouse in the arena.
The pixel intensity variation at the center of the blue circle illustrates sparse
variations from baseline intensity due to a moving object (B). The first
mode of pixel intensity histogram at each pixel location accurately
estimated the background scene (C). The mouse was segmented by
thresholding a background subtracted image (D1) and the centroid, tail
(D2), and head (D3) coordinates determined via a geodesic distance
transform (see main text for details). A vector from the centroid to head or
extrapolation of the medial axis provided gaze direction (D4).

camera (Logitech C270HD). Social interaction experiments were
performed in dark lighting condition and were recorded with a
Sony DCR-SR60 camcorder. Video duration varied depending on
behavior experiment, ranging from 2 to 30 min. The autotyping
software is able to process videos encoded in most widely-used
file formats, including .wmv, .avi, .mpg, .mp4, and .mov.

SPATIAL OBJECT RECOGNITION
On the day of training, mice were placed in the training arena
for a total of 10-min session. The first session consisted of con-
text habituation without objects in the arena. During the next 3
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FIGURE 2 | Application of automated algorithm for scoring

“interaction” tasks. (A–C) Response to novel objects and spatial novelty.
(A) The path traveled (black) by the mouse during the first exposure
session to the objects (left) and during the second exposure where one of
the objects is displaced (right). (B) Exploration of the displaced and
non-displaced objects represented by white lines that denote the angle of
approach and the number of exploratory bouts. (C) Heat-map representing

the mouse position in the experimental arena, red = more time, blue =
less time. (D–I) Analysis of a social interaction experiment shows path
traveled (D) and non-biased exploratory bouts (E) between the two
non-social objects. Majority of the time is spent in a corner (F). After the
introduction of a novel mouse in the right chamber, the test mouse
demonstrates significant greater preference for the novel mouse-containing
object over the empty object (G–I).

sessions, mice were allowed to explore the arena with two dis-
tinct objects (a glass bottle and a metal tower). Each session
lasted 10 min. Testing occurred 24 h after the four training ses-
sions in which one of the two objects was displaced. To analyze
these tests, we determined the location and visual field of the
mouse during the test procedure. The user defined an ROI for
each object in the arena, and the software computed the frac-
tion time (% of total) the animal was interacting with the ROI.
During each bout of interaction, the instantaneous direction of
gaze was also recorded to determine whether there were direction-
approach biases (Figure 2B). For example, the software permits
measurement of the interaction time with different sides of the
object facing the center, walls or corners of an arena. This level
of analysis can be informative for models of autism in which gaze
aversion or avoidance is a prominent phenotype (Clifford et al.,
2007; Defensor et al., 2011). The mouse’s preference for the dis-
placed object over the non-displaced object was measured for all
sessions. Video S1 demonstrates real-time tracking and scoring of
a SOR experiment.

SOCIAL INTERACTION
A three-chamber test was used to analyze animal’s sociability and
preference for social novelty. Animals are placed into the middle

chamber and allowed to habituate to the arena, containing empty
objects in the left and right chambers. In the second trial, a novel
mouse is introduced into either the left or right chambers. The
test animal’s preference for the novel mouse is a measure of socia-
bility. To analyze, we defined two separate ROIs that contain either
an inanimate object or a novel mouse. Similar to SOR, we deter-
mined the interaction time for both ROIs, the approach angle
during each bout of interaction, and distance traveled. Heat-map
indicating cumulative time spent in different parts of the socia-
bility apparatus is especially useful to visually inspect preferences
between novel objects and novel mice (Figures 2D–I).

OPEN FIELD TEST
Individual mice were released in the corner of a rectangular
(30 × 40 cm) open field arena. Mice were left undisturbed and
videotaped with a camera mounted on the ceiling above the cen-
ter of the open field arena for 30 min. At the end of testing, mice
were returned to their home cage. We automatically partitioned
the video arena into outer periphery, inner, and center region
and four corner quadrants. Using the automated tracking of the
mouse centroid, the software computed the amount of time spent
and the distance traveled in these subdivisions (Figures 3A,B).
The ambulation data was further categorized as walking (straight
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Table 1 | Automated scoring of behavior tasks.

Behavior test Performance metric

Open field Thigmotaxis

Total distance traveled

Time spent walking, sitting, exploring

Entries into the center of the arena

Fear conditioning Total freezing time (test session)

Freezing time immediately after foot shock
(training session)

Elevated zero maze Latency to first exit

Time in open/walled regions

Total distance traveled

Risk assessment

Y-maze, T-maze Time spent and distance traveled in each
of 3 arms

Number of spontaneous transitions and
total transitions

Conditional probability of transitions
between arms

Instantaneous speed

Barnes maze Latency to escape

Number of errors

Path length to the escape box

Number and duration of nosepokes

Strategy to escape—random, systematic,
or spatial

Spatial/noval object

recognition

Time spent interacting with each object

Direction of approach for each interaction
bout

Spatial extent of object
exploration—uniform or one-sided

Distance, speed and exploratory
tendencies

Social interaction Interaction time with inanimate object vs.
animate object

Visual gaze (direction) of exploration

and relatively fast locomotor activity), exploring (non-straight
line path locomotion performed at a relatively slow speed), or sit-
ting (non-locomotion for at least 3 s) (Figure 3C) (Choleris et al.,
2001).

Y-MAZE TASK
Mice were placed in the center of a Y-shaped maze and allowed
to freely navigate throughout the maze. We recorded the motion
of the animal during the navigation phase for 8 min. The user
identified the maze arms in the video and our motion-tracking
algorithm allowed us to detect animal position throughout the
testing period (Figure 3D). The number of crossings into each
of the three arms of the Y-maze was recorded in real time.
The final measurements from the Y-maze were the number of
spontaneous alternations, the time spent in the central portion

and the three arms of the maze (Figure 3E), and the relative
fraction of crossings into each arm (Figure 3F). Video S2 demon-
strates real-time tracking and spontaneous alternations between
arms of the Y-maze.

BARNES MAZE
Animals were placed in the center of a Barnes maze contain-
ing 20 separate holes, one of which contained an escape box.
Over repeated trails, we recorded the motion of the animal as it
explored the environment and found the correct escape hole. To
automate this process, we identified the target hole and labeled it
“T,” identified the hole opposite target “O” and numbered the rest
as 1–9 or −1 to −9. Using motion tracking algorithms described
above, we measured the latency to target hole, the number and
duration of nosepokes in each hole and the time spent in each of
four quadrants over the testing period (Figures 3G–I). Video S3
demonstrates real-time tracking and scoring of nosepokes in a
Barnes-maze experiment.

ELEVATED ZERO-MAZE
The apparatus comprised of an elevated annular platform with
two opposite, enclosed quadrants and two open quadrants.
Mice were placed in the walled region and left undisturbed for
5 min. A user initialized the videos by identifying walled and
open regions of the maze. In each frame, the software iden-
tified the mouse’s centroid, area, and major axis length. We
defined entry into the open regions when >95% of the mouse’s
area and its centroid were simultaneously in the open region.
The amount of time spent in the open and walled regions was
recorded as a measure of anxiety-like behavior (Jacobson et al.,
2007) (Figures 3J,K). Since experimentally altered locomotion
can influence the time spent in open or walled regions, indepen-
dent of anxiety, we also measured ambulation. Risk assessment
includes a stretch-attend posture in which the head extends
into the open area but the remainder of the body stays in
the walled compartment (Karlsson et al., 2005). This behav-
ior was automatically identified when several empirical con-
ditions were met: centroid of the mouse was in the walled
region, head was in the open region, and the mouse’s body
length (major axis length of the segmented image) exceeded
mean +2∗standard deviation of body length throughout the
experiment.

ROTAROD PERFORMANCE
Animals were placed on a rotarod apparatus (model: ENV-577M,
MedAssociates Inc., Georgia, VT) that accelerates linearly from 4
to 40 RPM over a 5-min session. Three trials, separated by an hour
each, were conducted each day. Two measures were recorded for
each rotarod test: the time lapsed until first fault, and the total
time the animal remained on the rotating rod before falling. Fault
was defined as making a complete revolution around the rotarod.
In the event that an animal did not fault, we used fall time for
fault.

FEAR CONDITIONING
Contextual fear conditioning was performed as described previ-
ously (Bourtchuladze et al., 1994; Abel et al., 1997) to develop
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FIGURE 3 | Automated analysis of several maze-related tasks. (A–C)

Automated tracking (A) and measurement of the time spent in different
regions of the open-field in any 5-min interval (B), along with the time spent
walking, exploring and sitting (C). In Y-maze, the trajectory of the test mouse
(D), the amount of time spent in each of the 3 arms (E), denoted as “A,” “B,”
“C,” and the relative fraction of transitions between each of the three arms
(F) are determined as metrics of spatial memory. A standard Barnes-maze
consists of 20 circular holes, one of which is the escape box. The 20 holes
are automatically identified using pixel intensity gradient and numbered such
that the escape box or “target” is denoted “T,” the hole opposite to the
escape box denoted “O” and the remaining holes numbered 1–9 and -1 to -9
in clockwise and counterclockwise directions relative to the escape box (G).

The latency to escape box and the amount of time spent in each of four
quadrants (denied as wedge-shaped areas encompassing sets of five holes)
are recorded (H), along with the total number and duration of nosepokes in
each of the 20 holes (I). In elevated zero-maze, the mouse is placed in a
walled-region and the latency to escape and the amount of time spent in
walled or open regions of the maze are measured [(J,K) bar graph with
alternating black and white stripes indicate the location of the mouse in
walled (black) or open (white) regions of the maze as a function of time]. (L)

(Top) Discrimination of motion from freezing events using an estimate of
camera noise (red line). (Bottom) Time strip showing bout length of freezing
behavior (white space) relative to movement bouts (black space) in fear
conditioning.

Frontiers in Behavioral Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 349 | 6

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Patel et al. Automated phenotyping of mouse behavior

a complementary measure of hippocampal and amygdala func-
tion. On the training day, the mouse was placed in the condi-
tioning chamber for 2:28 min before the onset of a foot shock
(2-s 1.5 mA). Contextual conditioning was assessed 24 h later
by placing the mouse back in the same chamber for 5 min. We
implemented a simple yet robust algorithm to define periods
where the animal stopped moving for at least 2 s, showing a
“freezing” behavior that is traditionally recorded in fear condi-
tioning tests. We used an image difference matrix, defined as
the matrix created by subtracting an image at time ti with the
preceding image at ti − 1. Theoretically, no motion between con-
secutive frames would yield a difference image matrix of all zeros.
However, due to camera noise, a null image difference matrix
rarely occurred. We estimated hardware noise by recording a
1-min video of an empty chamber, using consecutive image pairs
and assigning a threshold motion limit (ε) equal to the 95th
percentile of the matrix magnitude for image difference pairs.
Freezing was designated to occur when consecutive image dif-
ference matrices over 2-s or longer duration (15+ image frame
pairs) showed a net difference magnitude < ε (Figure 3L). A
resulting bar code of activity (Figure 3L) denoted the periods
of motion and inactivity over the 5-min monitoring period.
Continuous scoring, rather than assessing freezing at arbitrary
fixed time intervals, also permits analysis of cumulative freez-
ing distributions. Video S4 demonstrates real-time scoring of
freezing behavior.

VALIDATION AND OPTIMIZATION OF AUTOMATED APPROACHES
Comparison to manual scoring methods
We compared the results obtained from automated analysis to
those obtained by manual scoring (visual inspection by an expert
observer). In each task, we created a Bland-Altman plot to ana-
lyze the limits of agreement between the two methods (manual
scoring being the gold standard). At least 20 videos each for fear
conditioning, SOR, elevated-zero maze, and social interaction
were manually scored. For each behavior task, we computed the
mean and standard deviation of the difference between two values
obtained by automated and manual scoring. Two expert observers
scored the same videos to estimate inter-observer variability.

SENSITIVITY ANALYSIS
Video quality
Videos were recorded in bright, even light conditions, using a
high-definition camera. Segmentation by background subtrac-
tion was fast (<2 min for a 10-min video) and worked very well
under these settings. To test its sensitivity to light conditions and
video quality, we recorded a set of videos in lower resolution
and in which the mouse was placed in an arena either dimly
illuminated or not evenly illuminated.

Fear conditioning threshold
Assessment of freezing depends on estimating hardware noise;
freezing was defined when the difference between successive
frames drops below noise. Given a distribution of hardware noise
obtained by recording a 1-min video of an empty chamber, we
selected threshold values at the 50, 70, 90, and 95th percentile.
We manually scored several experimental videos and compared

the accuracy of the automated algorithm as a function of varying
thresholds.

Interaction distance
In our implementation, interaction is scored by first defining a
gaze vector originating from the nose and extending in the direc-
tion of vision with magnitude x. When this gaze vector crosses a
user-defined ROI, it is scored as an interaction. To find the user-
specific optimal magnitude of the gaze vector, users scored SOR
videos frame-by-frame and annotated each frame with “interact-
ing” or “not-interacting” labels. The same videos were processed
with our algorithm. We swept through different magnitudes of
the gaze vector (0–6′′, step-size 0.1′′) and for each vector length,
we computed the total number of true positives and false pos-
itives. The user-specific interaction distance corresponds to the
optimum point on the ROC curve, defined as the point on the
ROC curve closest to the upper left corner (100% sensitivity and
100% specificity).

Statistical analysis
Statistical differences in task-related performance of animals in
four experimental groups (WTLM sham, WTLM blast injured,
Elk-1 KO sham, and Elk-1 KO blast) were assessed via One-Way
ANOVA and Tukey’s post-hoc test. Shapiro–Wilk test was used
to assess normality and nonparametric tests (Kruskal–Wallis and
Mann–Whitney U) were employed when needed. A repeated-
measures (RM) ANOVA was performed when the same measure-
ment was obtained for an animal over multiple trials as in rotarod
or habituation. Group sizes were: WT sham n = 13, WT blast
n = 13, Elk-1 KO sham n = 11, Elk-1 KO blast n = 12. alpha-
level 0.05, ∗p < 0.05 and ∗∗p < 0.01 indicated significance. For
a given level of analysis, a Bonferroni correction for multiple
comparisons was used. All values reported are mean ± s.e.m.
unless otherwise noted. Significance of time in all RM-ANOVA,
p < 0.001 unless otherwise noted.

Behavior pattern analysis
The standardization of test scoring also provides an opportunity
for employing a statistical framework for analyzing behavior pat-
terns across experimental groups. Each animal was subjected to a
battery of behavior tasks and 14 performance metrics were com-
puted. Principal component analysis (PCA) visualized the dataset
in a lower dimensional space and identified a combination of
the original variables that explained the largest possible variation.
Following PCA, a MANOVA identified a linear combination of
the original variables with the largest separation between groups.
Relationships between group means were visualized in a distance
dendrogram. Additionally, the ability to use a pattern of behavior
to correctly identify group membership was assessed by multiclass
support vector machine (SVMlight; Joachims, 1999).

RESULTS
Our goal was to develop, assess, and apply an automated analy-
sis of commonly used behavior tasks, including open field test,
SOR, NOR, social interaction, Y-maze, Barnes maze, elevated
zero-maze, and fear conditioning (Figures 2, 3). We used a sub-
set of these tasks in this new toolbox and a systems-level analysis
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of behaviors tested to characterize a new transgenic mouse line
(Elk-1 KO) and investigate the effects of bTBI on behavior.

COMPARISON OF AUTOMATED AND MANUAL ANALYSIS OF
BEHAVIOR TASKS
To test whether our automated approach of discriminating
motion from freezing was the ideal, we asked expert observers to
score fear conditioning videos manually and compute total freeze
fraction. We then computed the accuracy of automated method
across a range of motion detection thresholds that corresponded
to 50–99th percentile of the measure hardware noise. Across three
independent scorers, we determined the optimal point hardware
threshold corresponded to the 95th percentile of hardware noise
(Figure 4A).

Assessment of social interaction, Y-maze, Barnes maze, SOR,
and NOR all involve determining if an animal is interacting
with a defined ROI. We expected slight variations on the def-
inition of “interaction” for each person manually scoring the
test. Existing proprietary software for automated analysis of
these behavior tasks are closed box and either do not cor-
rectly identify the location of animal’s head consistently or do
not allow user flexibility in defining an interaction, resulting
in gross over- or under-estimation of the true object interac-
tion time. We used the automated tracking and gaze detection
algorithm to examine different magnitudes of the gaze vector
and determined the true positive rate and false positive rate
for each vector length (Figure 4B), using the user definition of
interaction as the gold standard. The optimal gaze distance was
the vector length that minimized the distance from the upper
left corner (perfect classification, TPR = 1, FPR = 0) on the
ROC curve (Figure 4B). As expected, a single video analyzed
by three different users produced three slightly different optimal
vector lengths, reflecting the user-to-user variability in scoring
interactions.

After confirming the robustness of our automated algorithms
and calibrating them on a small subset of the recorded tests, we
tested the accuracy of the automated video analysis in four spe-
cific behavior tasks: fear conditioning, SOR, elevated zero-maze,
and open field test. Since social interaction and Barnes maze also
require determining interaction with an ROI similar to SOR, we
do not duplicate validation data here. For each task, 20 videos
were both manually analyzed by trained observers and scored
using the automated approach, resulting in 2 data points for each
video. The mean biases of the automated approach relative to
manual measurements were 5.24% for freezing time in fear condi-
tioning task (Figure 5A), 1.07-s for latency to first-exit in elevated
zero maze (Figure 5B), −0.37 s for amount of time spent in the
open region in elevated zero maze (Figure 5C), 0.003 for thigmo-
taxis in open-field (Figure 5D), and 2.98% for object interaction
time in SOR (Figure 5E).

We further tested the accuracy of automated scoring of inter-
action time using videos recorded in lower resolution (640 × 480
1′′ = 23 pixels, high resolution 1200 × 1600 1′′ = 57 pixels), dim
lighting conditions, and uneven illumination. Segmentation via
background subtraction was robust under dim and uneven light-
ing conditions. Lower resolution video footage was also adequate
to accurately determine landmarks on the animal’s body. The lim-
its of agreement between automated and manual scoring across
these three groups were comparable to videos acquired in high
resolution under bright and even light conditions as in Figure 5E
(low resolution: [0.4%, 6.1%], dim lighting: [−4.1%, 7.2%],
uneven illumination: [−1.2%, 4.3%]).

Automated methods for assessing behavior not only increase
throughput, but may potentially reduce user bias and variabil-
ity. Forty SOR videos were manually scored for object interaction
time in SOR experiments by two independent expert human
observers, user A and user B. User A calibrated the automated
approach using 3 videos chosen at random (Figure 4B). All

FIGURE 4 | Sensitivity of automated approach. (A) Discriminating motion
from freezing in automated scoring of fear conditioning experiments relies on
choosing a threshold value for hardware noise. The accuracy of the
automated approach compared to manual scoring approached >90% when
point threshold value was at 95th percentile of hardware noise (n = 4). (B)

Object interaction was defined when a gaze vector of magnitude u extending
from the mouse’s nose crossed a user-defined region of interest. This

allowed us to calibrate the software to user’s definition of interaction by
determining the optimum u for each user. Three different users scored the
same SOR video, annotating each frame in the video with “interacting” or
“not-interacting” labels. An ROC curve generated by varying u identified the
optimum interaction distance for each user as the point on the ROC curve
closest to the upper left corner (true positive rate = 1, false positive rate = 0),
denoted by straight lines.
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FIGURE 5 | Comparison of automated and manual scoring.

Bland-Altman plots show excellent agreement between manual and
automated scores for freeze fraction in fear conditioning [(A) bias 5.24%,
limits of agreement [−0.0511, 0.067] freeze fraction], latency to first exit
[(B) bias 1.07-s, limits of agreement [−5.97 s, 8.11 s]], time spent in open
region of the elevated zero maze [(C) bias −0.37 s, limits of agreement
[−5.78 s, 5.04 s]], thigmotaxis in open-field experiment [(D) bias 0.003,
limits of agreement [−0.046, 0.045]], and interaction time in spatial object

recognition task [(E) bias 2.98%, limits of agreement [−8.62%, 14.6%]].
Bias and limits of agreement between automated and manual methods are
denoted by horizontal solid and dashed lines in (A–E) (n ≥ 20 for each
task). Red dots indicate measurements that fall outside limits of
agreement. The difference in interaction time of automated and manual
methods is comparable to inter-observer variability [(F) limits of agreement
between automated and User A [−8.6%, 14.6%] and agreement between
Users A and B [−17%, 21.8%]].

videos were then automatically processed using the definition of
interaction provided by User A. We compared the percent dif-
ference in interaction time between automated and User A, and
between User A and User B (Figure 5F). The limits of agreement
(bias ± 1.96∗std) between automated and User A was [−8.62%,
14.6%], compared to [−17%, 21.8%] for User A vs. User B. The

improved agreement between automated and User A is likely
because User A calibrated the software to his/her own specifica-
tion of interaction, yielding better agreement with the software
than with another human observer.

Real-time tracking of the animal and scoring of object interac-
tion is possible with our implementation. Our automated system
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consistently identified the correct coordinates of the nose and
scored object interaction. There were few instances when the ani-
mal was sitting in a corner and in a curled posture where the
algorithm did not correctly identify the head and tail coordi-
nates. However, this did not pose a problem because objects are
rarely placed in the corners and mislabeled events span less than
2–3 consecutive frames. Additionally, since each video frame is
automatically annotated with “interacting” or “not-interacting”
labels, we were able to quickly scroll through a set of interacting
frames and remove false positives. In our experience, manual cor-
rection took less than 1 min for a 10 min video and improved the
sensitivity to nearly 98%.

AUTOTYPING AS A METHOD TO ASSESS THE INFLUENCE OF
BLAST-INJURY AND Elk-1 DELETION
With these validated algorithms for automating the analysis of
individual behavioral tasks, we examined if bTBI caused a sig-
nificant change in the normal behavior of C57/BL6Nwildtype
mice. In addition, we explored if there were significant behavioral
differences that appeared when a neuronal transcription factor,
Elk-1, was deleted completely from a C57/BL6N animal back-
ground and whether behavioral impairments following bTBI can
be ameliorated with Elk-1 deletion. Several recent reports impli-
cate Elk-1 in neuronal loss and degeneration (Sharma et al., 2010;
Morris et al., 2013), however it is unclear if (a) Elk-1 is impor-
tant for normal behavior and (b) whether Elk-1 deletion improves
outcome after bTBI.

PCR confirmed the deletion of Elk-1 in KO male animals, and
littermate wildtype animals retained Elk-1 mRNA levels similar to
native wildtype (data not shown). Animals placed in an open field
environment, subject to elevated zero maze testing, and exposed
to SOR and fear conditioning testing over an eight day interval
showed no significant differences between littermate wildtype and
KO groups using ANOVA testing. The lack of an overt behavioral
phenotype is not surprising, given the compensatory pathways
available for other isoforms of the Elk-1 protein not affected by
the KO strategy employed (Cesari et al., 2004).

We next applied our analysis to examine if bTBI caused a sig-
nificant change in the normal behavior, and if these changes were
influenced by the deletion of Elk-1. Studying a range of behavioral
tasks, rather than a single task, is particularly important because
of the widespread changes that can occur throughout the brain
following a gene deletion and bTBI alike (Davenport et al., 2012).
We focused our behavior analysis on specific tests that relate to
deficits appearing in patients following blast-induced TBI, includ-
ing memory deficits, heightened anxiety, concentration difficulty,
and balance problems. Therefore, we selected the rotarod, ele-
vated zero maze, open field, SOR, and fear conditioning tests to
explore the deficits appearing after blast exposure, and how these
deficits changed in Elk-1 KO animals.

BLAST-INJURY INCREASES GENERALIZED ANXIETY IN WILDTYPE
ANIMALS WHILE Elk-1 KNOCKOUT MICE ARE RESISTANT TO
POST-BLAST ANXIETY
Our collective results from open-field and elevated zero-maze
tests show that bTBI significantly increases anxiety-like behav-
ior. Uninjured animals placed in an open-field arena showed a

typical spatiotemporal response to novel environment, spending
most of their time along the periphery (thigmotaxis) during the
first 5 min and gradually entering the central zone of the arena
during the next two 5 min intervals. We quantified thigmotaxis
by determining the ratio of time spent along the periphery rela-
tive to time spent in the center over any 5-min interval as an index
of anxiety (Simon et al., 1994). Following bTBI, wildtype ani-
mals show increased thigmotaxis during the second 5 min interval
compared to sham group (mean ± s.e.m.: 0.820 ± 0.033 blast vs.
0.588 ± 0.039 sham, p = 0.0013, Figure 6A). In addition, blast
injured mice spent significantly more time sitting in an open-field
arena compared to uninjured shams, another measure of anxi-
ety (Prut and Belzung, 2003) (95.81 s ± 9.19 s blast vs. 62.56 s ±
8.83 s sham, p = 0.0484, Figure 6B). The total distance traveled
and time spent walking or exploring were not significantly dif-
ferent between sham and injured wildtype animals, suggesting
that the spatial component important in thigmotactic behavior
is being directly increased by blast.

In contrast to WTLMs, blast-injured Elk-1 KO animals did not
show a significant difference in thigmotaxis or total time spent
sitting compared to uninjured sham Elk-1 KO controls (thigmo-
taxis: 0.626 ± 0.028 blast vs. 0.638 ±0.026 sham, p > 0.05; sitting:
82.3 s ± 9.69 s blast vs. 73.4 s ± 9.82 s sham, p > 0.05). Moreover,
blast-injury in Elk-1 KO group resulted in significantly less thig-
motaxis compared to blast injured WTLM, suggesting a possible
role for Elk-1 in post-traumatic anxiety (0.626 ± 0.028 Elk+blast
vs. 0.820 ± 0.033 WTLM+blast, p = 0.0081).

An alternative test for anxiety-like behavior is the elevated zero
maze. Indicators of increased anxiety include a relative increase
in latency to first exit, decreased time spent in the open unpro-
tected region, and increased risk assessment behaviors. We found
increased risk assessment activity in WTLM blast group relative to
uninjured sham (49.8 s ± 4.08 s blast vs. 36.8 s ± 3.41 s sham, p =
0.0312, Figure 6C). No significant difference was found between
WTLM blast and WTLM sham groups in latency to first exit or
time spent in unprotected open regions (Figure 6C). We observed
a very significant decrease in latency to first exit in Elk-1 KO blast
injured mice relative to 3 other groups (5.63 s ± 1.14 s Elk+blast
vs. 40.82 s ± 6.87 s WTLM sham, 46.8 s ±4.08 s WTLM blast,
35 s ± 4.9 s Elk sham, p < 0.001, Figure 6C). Similar to decreased
latencies to exit, a decrease in risk assessment behavior appeared
in Elk-1 KO blast injured mice (Figures 6C,D). The cumulative
distance traveled in the zero-maze, as well as the peak instanta-
neous speed, were not statistically different between the 4 groups
(ANOVA, p > 0.05, data not shown).

The behavioral alterations of animals using two anxiety-
related assessments, open-field test and elevated zero-maze indi-
cate heightened anxiety following blast-injury in WTLM. In
contrast, blast-injury does not worsen anxiety-related behavior in
Elk-1 KO mice relative to their sham counterparts.

BLAST-INJURY TO WILDTYPE MICE IMPAIRS OBJECT HABITUATION
BUT Elk-1 DELETION RECOVERS NORMAL BEHAVIOR
Habituation is one form of nonassociative learning that can
be readily measured in the SOR test where exploration of the
objects during consecutive training trials decreases as novelty
decreases (i.e., before one of the objects is displaced). Therefore,
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FIGURE 6 | Behavior deficits following bTBI in wildtype littermate and

Elk-1 knockout mice. (A,B) Open-field. (A) Thigmotaxis decreased from the
first 5-min interval to the second 5-min interval in wildtype sham (paired
t-test p < 0.001, n = 13), Elk-1 KO sham (p < 0.001, n = 11) and Elk-1 KO
blast injured animals (p < 0.001, n = 12) but was not significantly different in
wildtype bTBI (p = 0.194, n = 12). (B) Wildtype bTBI animals spent
significantly more time sitting in the open-field compared to uninjured
shams (p = 0.0484). Other open-field measures were not different across
the four groups (ANOVA p > 0.05). (C–D) Elevated zero-maze. (C) Latency to
first exit of walled regions and risk assessment was significantly lower in
Elk-1 KO bTBI compared to Elk-1 KO sham (p < 0.01). However risk
assessment was significantly elevated in wildtype bTBI relative to sham
(p = 0.0312). (D) Average heat-map showed an increased localization to the
walled/open interface in wildtype bTBI group. (E–F) Spatial object
recognition. (E) Object habituation was significantly impaired in wildtype
bTBI compared to sham (RM-ANOVA p < 0.005) but was not different

between Elk-1 KO sham and injured animals (p = 0.181) (F) Preference for
the displaced object was >50% for wildtype sham, blast and Elk-1 KO sham
groups suggesting acquisition of spatial memory. However, displaced object
preference was reduced in blast injured Elk-1 KO (50.1 ± 3.4% Elk+blast vs.
59.3 ± 2.6% Elk+sham, p = 0.0531). (G) Elk-1 KO sham showed a deficit in
fear conditioning compared to wildtype sham (p = 0.0213) and
thisimpairment was not worsened by bTBI (p > 0.05). (H) Motor
coordination and motor memory was assessed by computing latency to fault
on rotarod. On day 1, WTLM blast had significantly lower fault time
compared to both WTLM sham and Elk-1 KO sham (WT blast 79.8 s ± 10.8 s
vs. sham 117.9 s ± 10.5 s, p = 0.0145; WT blast vs. Elk-1 sham 127.3 s ±
13.5 s, p = 0.0074). An improvement in fault was observed over days 1–3 for
all four groups, however, the improvement was greater for uninjured shams
than injured animals, regardless of genotype (repeated-measures ANOVA
within subjects time p < 0.001, between subjects sham vs. blast
p = 0.0037, wildtype vs. KO p = 0.8712). ∗p < 0.05, ∗∗p < 0.01.
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we analyzed the duration of interaction with the non-displaced
object in trials 2–4 of the SOR test in mice that received bTBI
prior to training. Uninjured wildtype sham mice habituate to
the SOR arena as the duration of interaction with the non-
displaced object significantly decreased over time (RM-ANOVA,
p = 0.0062, Figure 6E). In contrast, blast injured wildtype ani-
mals failed to show a significant decline in object exploration
from trial 2 to trials 3 and 4 (RM-ANOVA p > 0.05). Direct com-
parison between sham and blast injured wildtype animals showed
a significant deficit in object habituation during trial 3 (blast:
42.8 s ± 4.12 s, sham: 26.1 s ± 5.03 s, p = 0.0036).

In contrast to WTLM, blast injured Elk-1 KO animals did not
show a deficit in object habituation compared to sham (mul-
tivariate RM-ANOVA, p > 0.05). Both sham and injured Elk-1
KO groups spent equally large amounts of time interacting with
the non-displaced object in trial 2 (first exposure to objects in
the arena) and significantly less time in trials 3 and 4 (Trial 3:
Elk-1 KO sham, 37.1 s ± 2.36 s compared to Elk-KO injured,
46.6 s ± 2.26 s, p = 0.2366).

BLAST INJURY IMPAIRS SPATIAL AND ASSOCIATIVE MEMORY ONLY
IN Elk-1 KNOCKOUT MICE
We assessed spatial memory by calculating the percent of total
object interaction time that was devoted to the displaced object in
the SOR test during trial 5. Typically, by trial 4, mice spend nearly
equal time interacting with the two objects (Supplementary
Figure 1B). Upon displacing an object in trial 5, both wildtype
sham and blast injured animals spent significantly more time
(>50%) interacting with the displaced object, consistent with
acquisition of spatial memory. Preference for the displaced-object
was not different between sham and injured wildtype animals
(wildtype sham 58.1 ± 3.8% vs. wildtype injured 55.2 ± 3.2%,
p > 0.05). Similarly, Elk-1 KO sham animals showed a preference
for the displaced object in trial 5. However, the preference for
displaced object was abolished in blast injured Elk-1 KO group
(Elk-1 KO sham 59.3 ± 2.6% vs. Elk-1 KO injured 50.1 ± 3.4%,
p = 0.0034) (Figure 6F).

Since blast injured WT animals still retained spatial memory,
we next tested contextual fear memory, a distinct hippocampus-
dependent form of associative memory. Pairing of an aversive foot
shock to a novel environment resulted in freezing responses when
mice were reintroduced to the same environment 24-h follow-
ing the shock. We found no statistical difference in total freeze
fraction between sham and blast injured wildtype animals (sham:
0.390 ± 0.049, 0.3 ± 0.053, p = 0.18) suggesting that associative
memory is not altered following blast-injury (Figure 6G).

Unlike wildtype mice, Elk-1 KO showed significantly less freez-
ing behavior (wildtype sham freeze fraction: 0.3904 ± 0.0494,
Elk-1 KO sham: 0.2198 ± 0.0492, p = 0.0213). However, the
impairment in associative memory was not made worse by blast-
injury (Elk-1 KO blast: 0.2069 ± 0.035, p > 0.05 compared to
Elk-1 KO sham) (Figure 6G). A deficit in contextual fear con-
ditioning in Elk-1 KO mice suggests an important role for this
transcription factor in associative memory. Indeed, this is consis-
tent with a previous report of increased Elk-1 phosphorylation
in the CA3 hippocampus and dentate gyrus following contextual
fear conditioning and the proposed role of Elk-1 in consolidation

of contextual memories via interaction with Erk1/2 proteins
(Sananbenesi et al., 2002).

BLAST-INJURY IMPAIRS MOTOR COORDINATION AND MOTOR
LEARNING
We assessed motor coordination and motor learning in rotarod
task by measuring the latency to fault. On first exposure to the
rotarod (day 1), wildtype blast injured animals had significantly
lower fault time compared to wildtype sham, suggesting a deficit
in motor coordination as a result of blast (wildtype blast fault
79.8 s ± 10.8 s vs. wildtype sham 117.9 s ± 10.5 s, p = 0.0145)
(Figure 6H). Interestingly, Elk-1 KO animals were resistant to
blast-induced deficits in motor coordination (Elk sham fault:
127.3 s ± 13.5 vs. Elk blast fault: 104.2 ± 12.2, p = 0.2097).

An improved performance on the rotarod during subsequent
trials 2 and 3 is indicative of acquisition of motor memory. All
four groups showed an improvement in latency to fault over days
1–3, but the increase in performance was greater for uninjured
shams than blast-injured animals regardless of genotype (RM-
ANOVA, within subjects time p < 0.0001, between subjects sham
vs. blast p = 0.0037, wildtype vs. KO p = 0.8712). Together, blast-
injury impairs the acquisition of motor memory in WTLMs and
Elk-1 KO mice equally.

MULTIVARIATE ANALYSIS REVEALS THE RELATIVE EFFECTS OF
GENOTYPE, INJURY, AND GENOTYPE∗INJURY ON BEHAVIOR
OUTCOME
An automated approach permits the measurement of even more
behavioral responses in a high-throughput fashion. With the goal
of automating the process of phenotyping animal behavior, we
also sought to determine whether there are group differences
when the aggregate behavior was considered simultaneously,
rather than individually across each behavior test. Rather than
comparing group means on a single variable (as in Figure 6),
we now compared group centroids for the 14 variables collected
across the 4 independent behavior tests.

With the large number of behavior measurements, we first
applied PCA for clustering and exploratory analysis. Visualizing
the behavior dataset in a subspace spanned by the first three prin-
cipal components (Figure 7A, 72% explained variability) does
not show a natural clustering of mice into separate groups. An
alternative approach using MANOVA was used to identify a
linear combination of the original behavior variables with the
largest separation between groups. Response variables with pair-
wise correlation greater than 0.7 were eliminated from MANOVA
design to avoid over-bias in the analysis (Supplementary Figure
1A). All variables used in the MANOVA (see Supplementary
text for tabular listing) followed a multivariate normal distribu-
tion and had equal variances (Barlett’s test, p > 0.1, n.s.). We
found a significant difference in overall group mean centroids,
Wilk’s lambda p = 0.0011. Genotype alone did not have an effect
on multivariate group mean differences (WTLM vs. Elk-1 KO,
p = 0.0825), however, injury severity (sham vs. blast, p = 0.0007)
and genotype∗injury (p = 0.0018) were both significant. We pro-
jected these multivariate behavior scores for each mouse onto
a canonical subspace and color-coded each group (Figure 7B).
Inspection of the group mean centroids (+ marker) and 95%
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FIGURE 7 | Multivariate analysis reveals the relative effects of

genotype, injury, and genotype∗injury on behavior outcome. (A)

Projection of 14 behavior attributes for each animal onto the first three
principal components did not reveal obvious groupings. (B) Multivariate
ANOVA identified differences in the population means of the four groups
(Wilks’ λ = 0.0011). The multivariate behavior scores are projected onto a
MANOVA canonical subspace and color-coded by experimental groups
(dots represent the aggregate neurobehavior of individual mice, + marker

indicates group centroids with 95% confidence bounds shown in circles).
(C) Dendrogram of pair-wise group centroids reveals the hierarchical
similarity among groups. (D) Confusion matrix. A multiclass support vector
machine was trained using multivariate behaviors to determine whether a
pattern of task-related behaviors can accurately predict injury severity or
genotype. The fraction of a group of mice (along the rows) that were
classified as each of the four alternative groups (along the columns) are
indicated in the confusion matrix.

confidence bounds reveals intersecting groups with no signifi-
cant difference from each other (WTLM sham vs. Elk sham),
while non-intersecting domains represent groups that are signif-
icantly different from each other (e.g., Elk-1 KO sham vs. Elk-1
KO injured). Using this canonical representation, a dendrogram
constructed from pair-wise Mahalanobis distances between each
pair of group means identified the hierarchical similarity among
groups—WTLM sham and Elk-1 KO sham were phenotypically
most similar; blast injury affects the two genotypes differently—
wild-type injured mice are most affected while Elk-1 KO injured
have milder phenotypic alterations (Figure 7C).

Until now, we relied only on retrospective data mining to
group aggregate behaviors. With the ability to quickly screen sev-
eral tasks simultaneously, there is an opportunity to use these
behavior data as prognostics. In this light, we tested whether
pattern of task-related neurobehavior can accurately predict the
injury severity or genotype of an animal. We trained and tested
a linear multiclass support vector machine using the 14 behavior
attributes. The results of a leave-one-animal-out cross validation

are shown in a confusion matrix (Figure 7D). The confusion
matrix indicates the fraction of a group of mice (along the rows)
that were classified, on the basis of its pattern of behavior, as each
of the four alternative groups (along the columns). Larger values
along the diagonal indicate successful classification. As expected,
the classification accuracy for wild-type sham and blast injured
groups is the largest, while there is large confusion in accu-
rately classifying animals into WTLM sham and Elk-1 KO sham
groups—only 40% of true Elk-1 KO sham animals were correctly
classified as Elk-1 KO sham, while 30% were falsely classified as
WTLM sham.

DISCUSSION
We identified and incorporated a number of automation algo-
rithms to generate a new, open access software platform for scor-
ing and analyzing several common behavioral tasks. Automated
scoring can be done in real-time and the results matched manual
measurements within the limits of inter-observer variability. We
then applied automated tools to phenotype animals carrying
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a genetic manipulation (Elk-1 KO), experimental manipulation
(blast TBI), and the combination of these two effects. Examining
the behaviors separately, we discovered that blast-injury signifi-
cantly increased the level of anxiety and impaired the ability to
habituate to a novel environment. Elk-1 KO animals were resis-
tant to these detrimental effects of blast-injury, but showed a
deficit in associative memory after blast exposure. A multivari-
ate analysis designed to identify differences in aggregate behavior
showed that Elk-1 KO and wildtype animals were not significantly
different prior to blast-injury. Following injury, wildtype animals
showed more severe changes in behavior than Elk-1 KO animals.

Our application of the software toolkit to evaluate the pattern
of deficits appearing following blast-induced brain injury pro-
vides a new, more comprehensive view of the deficits caused by
blast exposure. Blast-injury is characterized by modest neuronal
loss or pathologic remodeling that can disrupt both anatomic
and functional connectivity throughout the brain (Levin et al.,
2010; Sponheim et al., 2011; Magnuson et al., 2012; Mac Donald
et al., 2013). Given this potential broad disruption of brain net-
works, our automated screening tool was an ideal method to
scan across multiple behavior tasks and develop a behavioral phe-
notype for each animal. The early signs of anxiety observed in
our wildtype mice are reminiscent of symptoms associated with
post-traumatic stress disorder in human blast TBI, and is con-
sistent with some evidence from other rodent models of bTBI
(Park et al., 2013). At the level of blast exposure studied, we saw
no significant memory deficits using two independent measures
of associative learning—contextual fear conditioning, and SOR.
However, we found a significant reduction in motor memory fol-
lowing blast. The consistent appearance of a memory deficit is not
a universal consequence of bTBI in rodents, and some of these
deficits appear to be linked to the head accelerations induced by
the blast exposure (Goldstein et al., 2012).

To our knowledge, this work also presents the first evidence
that Elk-1 plays an important role in the recovery of function
after a neurological injury. One key modulatory point for con-
trolling the function of Elk-1 is its multisite phosphorylation
“state.” The mitogen activated protein kinase ERK phosphorylates
Elk-1 on multiple sites, and the ERK pathway is activated in sev-
eral models of TBI (Otani et al., 2002; Carbonell and Mandell,
2003; Raghupathi et al., 2003). However, many of the control-
ling phosphatases and kinases regulating the control of Elk-1
within its transactivation domain (Yang et al., 2002), as well as the
domain controlling its neurodegenerative function (Barrett et al.,
2006; Sharma et al., 2010) are not known. Based on our current
data, we cannot conclude if the behavioral differences between
Elk-1 KO and WTLMs is simply because the KO animals have
lost the ability to prune dysfunctional neurons from hippocam-
pal and cortical circuits, or if these changes are more linked to
Elk-1 dependent changes in gene expression. Determining the
key regulating mechanisms that mediate these Elk-1 dependent
effects is particularly important because we found that Elk-1
deletion can eliminate posttraumatic anxiety. Given that post-
traumatic stress disorder is a condition commonly associated with
soldiers exposed to blast, a more thorough exploration of these
Elk-1 dependent mechanisms of anxiogenic behavior may yield
important insights for a significant clinical condition.

From a broader perspective, the rapid scanning of several
behaviors in parallel facilitates a new framework to assess the
broad effects that can occur in a rodent model of neurological
disease. Compared to manual scoring, our automated analysis
can reduce user-to-user variability or observer bias. This leads to
more consistent findings within and across laboratories. Further,
an automated method greatly speeds up data analysis and lessens
the time burden on researchers, making more complex behavior
protocols possible. We expect the broader behavior spectrum that
can be analyzed with our autotyping system will permit a more
complete and rapid understanding of disease models in rodents,
with the goal of using this same toolbox to test potential treatment
strategies.
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Video S1 | Scoring of object interaction. Overview of spatial object

recognition scoring module, also applicable for other “interaction” tasks.

Typically, a video recording contains multiple enclosed boxes and each box

may contain variable number of objects in a particular spatial configuration.

Using an initialization GUI, users define the number of boxes and the

number of objects per box for an experiment and interactively define

regions of interest. Once several videos are initialized, scoring is done as a

batch job. An example of real-time tracking of mice is illustrated. Top

panel: The centroid and head of the animal are automatically detected in

each frame and marked in green and red dots. A vector in the direction of

the animal’s gaze is marked in red (vector magnitude increased for visual

clarity). Interaction is scored when the gaze vector crosses a user-defined

region of interest (glass and metal objects). The boundary of interacting

object becomes highlighted in red during the movie. Bottom panel: The

cumulative time spent in the arena during each bout of interaction. Movie

is sped-up x3. Once videos are scored, users can quickly scroll through a

set of frames labeled as interacting and verify the accuracy of the

algorithm or remove any false-positives if needed.
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Video S2 | Performance in Y-maze. Overview of YMaze scoring module,

also applicable for other maze-like configurations, including T-maze,

zero-maze, open field, place preference, etc. Separate GUIs and modules

for each are provided in the toolbox. Users define regions of interest, such

as arms of a maze or subdivisions of an arena and the algorithm computes

the amount of time spent in each ROI and the number of transitions

between the ROIs. A simple visual output in a bar-code like format is

generated for each experiment, which can be useful to detect patterns of

exploration. Common measures of performance specific to different

maze-like configurations, such as latency to first exit and risk assessment

in elevated zero-maze or path length and number of errors for Barnes

maze are computed.

Video S3 | Performance in Barnes-maze. Real-time tracking of mouse’s

location, the number and duration of nosepokes in a Barnes-maze is

illustrated. The coordinates of the mouse’s nose are determined, as

outlined in Methods. A nosepoke is defined when the coordinates of the

animal’s nose cross a circular hole and is highlighted by a red outline in the

video.

Video S4 | Scoring of fear conditioning. Detection of freezing events in a

fear conditioning chamber. Red border around a video frame indicates

freezing bout.
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