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The white matter tracts forming the intricate wiring of the brain are subject-

specific; this heterogeneity can complicate studies of brain function and

disease. Here we collapse tractography data from the Human Connectome

Project (HCP) into structural connectivity (SC) matrices and identify groups of

similarly wired brains from both sexes. To characterize the significance of these

architectural groupings, we examined how similarly wired brains led to distinct

groupings of neural activity dynamics estimated with Kuramoto oscillator

models (KMs). We then lesioned our networks to simulate traumatic brain

injury (TBI) and finally we tested whether these distinct architecture groups’

dynamics exhibited differing responses to simulated TBI. At each of these levels

we found that brain structure, simulated dynamics, and injury susceptibility

were all related to brain grouping. We found four primary brain architecture

groupings (two male and two female), with similar architectures appearing

across both sexes. Among these groupings of brain structure, two architecture

types were significantly more vulnerable than the remaining two architecture

types to lesions. These groups suggest that mesoscale brain architecture types

exist, and these architectural differences may contribute to differential risks to

TBI and clinical outcomes across the population.
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Introduction

Despite growing public awareness, traumatic brain injury (TBI) continues to be a

significant health issue responsible for nearly three million emergency room visits

annually in the United States (Taylor et al., 2017). The cost of TBI in the United States

is $40.6 billion per year and TBI is on pace to become the third leading cause of death

worldwide by 2025 (Miller et al., 2021). TBI can occur from a wide variety of everyday

activities, such as contact sports, involvement in a vehicular collision, or even just falls

from a standing height, demonstrating that an otherwise typically healthy population

is at risk for TBI (Asemota et al., 2013). Therefore, understanding the mechanisms of
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TBI is key to developing protective headgear and mitigating its

great socioeconomic burdens across a large population.

Computational biomechanics is a key tool used by

researchers to mitigate the consequences of TBI, and its

role in developing protective headgear and passive safety

equipment in motor vehicles is well-documented

(Fredriksson et al., 2011; Dymek et al., 2021). Finite

element (FE) analysis is frequently leveraged (Kleiven and

von Holst, 2002; Mao et al., 2013; Gabler et al., 2016) to relate

impact conditions to the movement and deformation of the

brain within the skull, with recent models developed

specifically for improving helmet design (Kurt et al., 2017;

Giudice et al., 2020b). In recent years, there has been a

growth in interdisciplinary models that integrate both the

mechanics of brain movement and the corresponding

changes to the brain’s axonal network structure (Kraft

et al., 2012; Sullivan et al., 2015; Giordano et al., 2017;

Wu et al., 2019; Giudice et al., 2020a; Hajiaghamemar

et al., 2020). A common approach in these studies is to

embed the structural connectivity (SC) network of a brain,

representing the connections among grey matter regions and

white matter tracts (Bassett and Sporns, 2017), into the FE

brain models and predict how information transfer paths in

the brain would change from the impact. As the FE models

improve—e.g., by incorporating the anisotropic material

properties of the model—these interdisciplinary methods

will provide a more direct comparison between white

matter concentrations and the strain time-history of a

corresponding region in the FE model. Brain deformation

(strain) can be outputted from these FE models and strain

injury criteria can then be implemented to predict injury

severity (Bain and Meaney, 2000; Wright and Ramesh, 2012;

Wu et al., 2021, 2022b). Together, it is now possible for

helmet designers to identify regions of the brain that

experience the greatest magnitude of deformation,

estimate how this can affect or injure cellular and

subcellular structure, and estimate an overall injury risk

(Fanton et al., 2019; Anderson et al., 2020).

Until now, many of these computational models

examining TBI risk rarely examined a range of sizes that

could include both male and female subjects or considered

a wide range of brain shapes (Reynier et al., 2021). Despite

females exhibiting a greater risk of experiencing TBI (van Pelt

et al., 2019; Bretzin et al., 2021), biomechanical computational

models of TBI are historically derived from male anatomies

and kinematics. The exact mechanism for a sex-specific risk

factor could emerge at the ultrastructural levels, where there

are key differences in the microtubule network (Benice et al.,

2006; Dollé et al., 2018). Alternatively, the differences could

appear at the brain architecture level, where sex-dependent

changes in the SC network could lead to a differential risk of

injury from impact between males and females, or within

subgroups (Xin et al., 2019).

Collectively, these factors point to an opportunity for

examining whether differential risks exist among subgroups

within the population. Two potential sources of risk difference

associated with the biomechanics of TBI can occur from

variations in the physical characteristics of the brain (e.g.,

size, shape, material properties) and variations of the brain

architecture. In the most detailed form, this would lead to

asking whether TBI risk is subject-specific (Anderson et al.,

2020), which could have important implications for individual

risk to an impact and point towards personalized head

protection strategies. Some current methods already

approach the possible differential risks for injury associated

with a range of physical properties that include brain size and

shape. For instance, image registration can be used to rapidly

generate individual-specific FE brain models by morphing a

template brain model into one that matches the anatomy of a

subject (Giudice et al., 2020a). In this case, the mechanics of

TBI are simulated with a model that is individual-specific in

anatomy, but this process currently does not consider the

aspects of the individual’s brain neuronal networks, a feature

that may provide more direct insight into the neurological

impairment that could occur from an impact (Sharp et al.,

2014; Hellyer et al., 2015; Váša et al., 2015; Gilbert et al., 2018).

The possibility that impacts may differentially map onto

different brain architectures is supported by clinical

imaging data that show even simple features of network

architecture and information flow will change because of

TBI, and that the extent of these changes are correlated to

patient outcome (Caeyenberghs et al., 2014; Yuan et al., 2015;

Dall’Acqua et al., 2017; van der Horn et al., 2017). However,

these clinical studies do not provide any information

regarding the biomechanics of a specific impact, thereby

limiting the ability to draw a more direct connection

between impact and network dynamics.

Compared to other approaches used to model brain and

neuronal dynamics, Kuramoto oscillator models (KMs) are well

suited to leverage the information from a network architecture in

their simulations. Many models of neural activity such as

Hodgkin-Huxley or the Izihkevich integrate-and-fire model,

represent the activities and membrane potentials of individual

neurons (Hodgkin and Huxley, 1952; Izhikevich, 2003). KMs

instead model the collective activity of neuronal masses and can

be used to study global dynamics. Other comparable models of

global dynamics include Fitzhugh-Nagumo, Wilson-Cowan,

neural-mass, and spiking neurons; however, the KM offers a

simple model with relatively few parameters without sacrificing

predictive ability (Messé et al., 2015). KMs are a class of coupled

oscillator models that use the edge strength in the brain SC

network to predict how the oscillatory behavior of neuronal

activity in different brain regions affect each other (Cumin and

Unsworth, 2007; Cabral et al., 2011; Schmidt et al., 2015; Siettos

and Starke, 2016; Lee et al., 2017; Fukushima and Sporns, 2018).

In combination with FE models of the brain architecture, KMs
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provide a path to directly examine individual-specific responses

to impact and build upon previous models that imply specific

lesions in the brain can have a subject-specific difference in their

severity (Honey and Sporns, 2008; Váša et al., 2015). By analyzing

how metrics of oscillator coalescence (synchrony) and state

switching (metastability) change as a function of network

lesion, KMs offer analogs to how cognition can be altered

(Córdova-Palomera et al., 2017).

Our broad objective in this study was twofold: 1) to

determine if there was sufficient similarity among a

population of brain architectures to define distinct

architecture subgroups among male and female brains, and

2) to study if these distinct architectures would show a

differential vulnerability to simulated TBI. Using KMs, we

evaluated how structural groupings translate to unique

patterns in simulated neural dynamics, asking whether

these dynamical groupings would show consistency with

the differences observed in the structural network. Our

study demonstrates that the neural architecture is not

homogenous in the population but can be grouped into

distinct subpopulations among male and female subjects. In

turn, these structural architectures display a differential risk to

lesions that target hub nodes in each architectural

group. Together, these results demonstrate the potential

role that architecture could play in outcome and lead the

way towards future studies which can test if these

architecture-based differences play a role in concussion risk

after head impact.

Materials and methods

Computing structural connectivity from
human connectome project Data

Our dataset of structural connectivity (SC) matrices came

from the human connectome project (HCP) young adult data

(van Essen et al., 2013). As described in Wu et al., 2022b, we

computed SC for a subject by examining tractography in the

Schaefer 100 parcellation (a resolution of 100 nodes) (Schaefer

et al., 2018). We used DSI Studio (http://dsi-studio.labsolver.org)

with the following settings for deterministic whole-brain fiber

tracking: q-space diffeomophic reconstruction (Yeh and Tseng,

2011), a mean diffusion distance ratio of 1.25, an angular cutoff of

55, a step size of 1.0 mm, a minimum length of 10 mm, a spin

density function smoothing of 0.0, a maximum length of 400 mm

and a cutoff of 1,000,000 streamlines. This yielded

1,065 networks, of which 490 were male and 575 were female.

We scaled the edge weights in these networks by the number of

edges such that the mean weight was 1
10,000.

Reparcellation and similarity scores

We sought to sort our subjects by using their structural

connectivity matrices (Figure 1). To do so, we reshaped our

matrices into 1D arrays; each unique SC edge corresponded to a

dimension in this vector. For instance, a network generated using

FIGURE 1
Modeling pipeline overview. Our methodology used two modeling approaches: (1) an approach to group similar structural connectivity (SC)
matrices into distinct types, and (2) a method to convert any SC into an estimate of the neural dynamics using a Kuramoto oscillator model (KM). Our
first approach examined the different architectural groupings among the SCmatrices extracted from the Human Connectome Project dataset (top).
To reduce the bias from sparse connectivity matrices on the subsequent groupings, we reparcellated Schaefer 100 into Yeo 7 representations,
and then computed Pearson correlation for every pair of Yeo 7 networks in our sample. These pairwise similarity scores were collated in a similarity
matrix. Modularity calculations on this similarity matrix identified which networks exhibited the greatest similarity. Our second modeling approach
started with the Schaefer 100 SC network for a subject (bottom), used a KM to predict brain activity.
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the Schaefer 100 parcellation would be reshaped into a 10,000-

dimensional vector (4,950 edges come from its upper triangle, the

symmetric 4,950 edges in the lower triangle would be removed as

0’s, and the remaining 100 trivial edges would consist of 1’s along

the diagonal). These sparsely distributed data lead to difficulty

with Euclidean-distance-based clustering methods (Domingos,

2012). Therefore, we reduced the dimensionality further by

recalculating the SCs using the Yeo 7 parcellation, which only

has 21 informative dimensions. For our work, we computed the

mean weight of every Schaefer 100 edge contained within a single

Yeo 7 edge, moving through each of the Yeo 7 edges (Yeo et al.,

2011; Schaefer et al., 2018). To circumvent any remaining

challenges associated with using Euclidean-distance-based

measures, we used Pearson correlation to evaluate similarity.

A value of 1 indicated perfect similarity, 0 indicated complete

dissimilarity, and -1 indicated anticorrelated vectors. For both

sexes, we computed a matrix of similarity between each pair of

architectures.

Modularity

After generating similarity matrices, we identified clusters of

similar subjects by employing modularity analysis. Modularity is

a graph theorymetric that is used to highlight and identify groups

of nodes that exhibit higher connectivities to each other than

nodes not belonging to the group (Newman, 2006; Reichardt and

Bornholdt, 2006). We used the Brain Connectivity Toolbox

(BCT) and MATLAB (Mathworks Inc., Natick, MA.) to

compute the modularity of our similarity matrices (Rubinov

and Sporns, 2010). Their algorithm maximizes modularity

according to the following equation:

Q(γ) � ∑n,n

jh�1,1[Ajh − γPjh]δ(σj, σh),

where Q is modularity, γ is resolution, n is the number of nodes,

Ajh is the observed edge between nodes j and h, Pjh is the

expected edge weight given the degree of nodes j and h, and δ is

the Kronecker delta function that is 1 if nodes are in the same

group and 0 otherwise. Q will be approximately 0 if a network is

randomly connected and cannot be organized. To ensure that our

modularity method would be able to identify groups consistently

among populations of different scale, we optimized γ. The value

for γ we chose was the minimum that produced nontrivial

groupings (i.e., the first value for which two modules were

produced). Subjects were assigned an identifier according to

their modules.

To ensure the robustness of our groupings, we repeated the

modularity analysis using 5-fold cross-validation for both sexes.

For the one fifth of networks withheld from the initial modularity

analysis, we identified their modules according to the

corresponding mean scores in the similarity matrix. We

computed accuracy as the fraction of withheld networks that

were placed in their original module from the whole sample

analysis. We also examined the significance and sufficiency of

two modules, by repeating some of our analyses on the groupings

that are yielded with other values of γ. For each module, we

measured the distributions of various graphmetrics (described in

more detail below) and computed the significance of the

differences between each group.

Subset similarity and modularity

Using the Schaefer 100 to Yeo 7 parcellation mapping, we

identified all Schaefer 100 edges that existed between two Yeo

7 systems. With these edges, we recomputed male and female

Pearson correlation similarity matrices. If system edges were

off the diagonal of the Yeo 7 matrix (connections between two

distinct systems) we computed the correlation of all Schaefer

100 edges. If only the edges within a single system were

considered, we reduced the information to the upper

triangle of this submatrix. We repeated modularity and

cross-validation on these new similarity matrices. Subset

accuracy, much like cross validation accuracy, was the

fraction of networks that were assigned to the same module

when all Yeo 7 edges were considered, with 80% accuracy

being considered ideal.

Kuramoto oscillators

We employed the Kuramoto oscillator model (KM) to

simulate neural dynamics from SCs. The behavior of our

KMs was defined by the following system of differential

equations:

dθj(t) � ωj +K∑N

h�1Cjh sin(θh(t) − θj(t))dt,

where θj(t) is the phase of the oscillator j at time t, ωj is the

oscillator’s intrinsic frequency, K is the global coupling

strength parameter, N is the number of oscillators, and Cjh

is the connectivity between oscillators j and h (range 0–1).

For all KM simulations, we assigned the natural frequency

(ωj) from a normal distribution centered at 60 Hz with a

standard deviation of 1 Hz as in Cabral et al., 2011. Initial

phases were randomly sampled from a uniform distribution

between 0 and 2 π. Simulations lasted 100 s to ensure a stable

solution was reached. We used the structural connectome to

weigh connectivity among oscillators. To ensure consistency

across connectomes, we used a subject’s Schaefer 100 network

and normalized the edges such that the mean of off-diagonal

elements was 1.

We computed several outputs from the KM (Cabral et al.,

2011). First, the order parameter representing the magnitude of

the mean phase was calculated using the equation:
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r(t)eiϕ(t) � 1
N

∑N

j�1e
iθj(t),

where r(t) is the instantaneous order, ϕ(t) is the instantaneous
mean phase, N is the total number of oscillators, and θj is the

phase of oscillator j at time t. The order parameter measures the

instantaneous organization of the system of Kuramoto

oscillators. From r, we then calculated synchrony, a measure

of the network’s ability to coalesce its oscillators into unified

states, as the mean of the order parameter. Metastability, which

represents the network’s ability to shift between synchronous

states, was the order parameter’s standard deviation.

We also tested a form of the KM that used delay differential

equations to incorporate possible signal latency between

oscillators. In this preliminary analysis across a limited range

of coupling strengths, we noticed that our group-dependent

results remained consistent, so we moved forward with the

more computationally efficient form described above.

Targeted lesioning

Our lesioning method was derived from (Alstott et al., 2009),

whose approach removed all connections from the node with the

highest degree, computed the resulting graph theory metrics of

the remaining network, and repeated the deletion process until

no nodes remained in the SC network. We used node degree to

rank the relative connectivity of each node to other nodes within

the network to create a ranked list for each brain architecture

group, listing nodes in descending degree rank. To map this

method—which was applied to a single SC network—onto our

population of multiple SC networks, we averaged the nodes’

rankings in every subject. This strategy ensured that we would

consistently delete the same nodes across all networks. We also

limited our lesions to nodes within the top 5th, 10th, 25th, 50th,

and 75th percentile rank. After each lesioning step, we repeated

our earlier analyses by simulating the dynamics of the injured SC

networks with the KMs. We compared the synchrony and

metastability from the KMs as well as various graph metrics

of the resulting SC matrices after each deletion.

Graph metrics

We computed several graph metrics to characterize our SC

matrices. Unless specified, all MATLAB functions were from the

BCT (Rubinov and Sporns, 2010). Global efficiency was

computed as: GE � 1
n ∑

n

j�1
∑n

h�1d
−1
jh

n−1 , j ≠ h where GE is global

efficiency, n is the number of nodes, and djh is the shortest

path between nodes j and h. Mean shortest path length was the

characteristic path length computed as: L � 1
n ∑

N

j�1
∑N

h�1djh
n−1 , j ≠ h

with the same variables as global efficiency in addition to L

representing mean shortest path length. Betweenness centrality

for a node was: BCj � 1
(n−1)(n−2) ∑

n

g�1
∑
n

h�1
ρgh(j)
ρgh

, g ≠ h, g ≠ j, h ≠ j,

where BCj is the betweenness centrality for node j, n is the

number of nodes,
ρgh(j)
ρgh

is the fraction of shortest paths between

nodes g and h that include node j. We computed the mean

betweenness centrality of all nodes in a network. Clustering

coefficient for a node was: CCj � 1
n ∑

n

j�1
2tj

kj(kj−1), where CCj is the

clustering coefficient of node j, n is the number of nodes, tj is the
number of triangles around node j, and kj is the degree of node j.

Statistical analysis

Unless otherwise noted, all statistical analyses were performed at

α = 0.05. We verified normality via visual inspection of quantile-

quantile plot linearity. We compared multiple distributions using

one-way ANOVA and module assignment as the categorical factor,

correcting for multiple comparisons using the Tukey-Kramer

method. Unless otherwise noted, error bars for sample-based

distributions represent standard error.

Results

Types of architectures could be identified
within populations of brain networks

We used modularity to identify groups of brains that exhibited

similar architectures, finding two modules for both males and

females. For every brain, the average intramodule correlation was

significantly greater than the average intermodule correlation:

0.942 and 0.906, respectively (p < 0.05) (Figure 2A). Hereafter,

we refer to these modules as Male 1 (M1), Male 2 (M2), Female 1

(F1), and Female 2 (F2). We generated representative structural

connectivity (SC) matrices by computing each edge’s mean weight

among all brains assigned to that particular module (Figure 2B).

When comparing the graph metrics of the brains using module

assignment as the categorical factor, we saw the appearance of two

statistically distinguishable pairs: M1 and F1 networks had

significantly different global efficiencies (GEs), clustering

coefficients (CCs), and betweenness centralities (BCs), from

M2 and F2, but neither M1 compared to F1 nor M2 compared

to F2 were significantly different (Figure 2C). When considering

mean shortest path length, M1 and F1 had dissimilar distributions.

Two modules were sufficient for
identifying brain architecture types

The modularity algorithm we used could be tuned to identify

different sizes and numbers of modules. Increasing the γ
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FIGURE 2
Modules of brain networks with similar architectures exhibited distinct structural graph metrics. (A) As visualized in the similarity matrices for
bothmale and female structural connectivity (SC) networks, fourmodules (outlined in dashed lines) appeared. Within amodule similarity was greater
than outside (0.942 and 0.906 respective mean correlations). (B) The mean Yeo 7 edge weights for all networks within a module produced
representative matrices. (C) SC metrics (MSPL, GE, CC, BC) produced module-dependent distributions (for a given row, cells containing the
same color did not significantly differ). A key is also provided. For GE, CC, and BC, M1-F1 and M2-F2 modules produced significant pairings.
Abbreviations used: M1, Male 1; M2, Male 2; F1, Female 1; F2, Female 2; G1, Group 1; G2, Group 2; V, Visual; SM, Somatomotor; DA, Dorsal Attention;
VA, Ventral Attention; L, Limbic; C, Control; D, Default; MSPL, Mean shortest path length; GE, global efficiency; CC, Clustering coefficient; BC,
Betweenness centrality.

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Rifkin et al. 10.3389/fbioe.2022.936082

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.936082


parameter produced smaller but more numerous modules

(Figure 3A). When we identified two modules for both male

and female brain networks, most graph metrics yielded

significantly different distributions that paired M1 with

F1 and M2 with F2 (Figure 3C). However, introducing a third

module did not produce a third distinct network architecture

type (Figure 3B). Instead, the results from the two module

analysis remained largely unchanged with the original pairings

still appearing. The new Male 3 and Female 3 modules consisted

of brains with similar GEs, CCs, and BCs to M2 and F2 while

significantly differing from M1 and F1 (p < 0.05). For both sexes,

the third module consisted entirely of brains originating from

either M2 or F2. As a result, we concluded there were only two

statistically distinct architectures in both male and female brains.

Architectural grouping was predicted by
edge distributions within and across brain
regions

Examining the entire architecture structure across large

populations is computationally intensive and requires copious

data depending on the resolution of the parcellation used. As an

alternative, more efficient approach, we next considered if these

architectural groupings in male and female brains could be

predicted using only a subset of the SC network within a

brain subregion. Using the subset of Schaefer 100 edges that

correspond to the connections within a single Yeo 7 region, we

observed that the distributions of several network features

(density, mean nodal strength, and mean clustering

coefficient) of these subset matrices recapitulated the

significant pairings when considering the whole network (p <
0.05). Among these single brain region edges, dorsal-dorsal and

limbic-limbic edges performed as the best features to predict

overall brain architecture. Edges within these regions were at

least 80% accurate in assigning both males and females to their

original modules from the whole brain network modularity

analysis (Figure 4A).

A second classifier approach would use the prediction of

architecture based on edge weights across brain regions. In this

case, we evaluated the unique Schaefer 100 edges between nodes

of two systems in the Yeo 7 parcellation. Among the 21 possible

inter-region edge weight measures, the visual-somatomotor,

visual-ventral attention, and somatomotor-limbic

submatrices failed to produce two modules (Figure 4B). For

the remaining 18 inter-region weights, system connections

yielded varying degrees of success in classifying brain

architecture with this single network feature (accuracy:

0.51–0.92), with the most accurate edges for both sexes

coming from the ventral attention and default systems

(Figure 4A). In six of the 18 possible inter-region edge

weight classifiers (somatomotor-dorsal attention,

somatomotor-ventral attention, somatomotor-control, dorsal

attention-ventral attention, dorsal attention-control, and

limbic-control) there was a significant difference between the

accuracy in predicting grouping between male and female brain

architectures (p < 0.05, Bonferroni corrected). In general,

submatrices with high accuracies for males were also

accurate for females; the converse was not true. The

difference was not significant overall, and the average

accuracy (for applicable subsets) for males was 0.713 and the

average accuracy for females was 0.732 (p = 0.583).

Transition points in neural dynamics
follow architectural groupings

After determining the distinct architectural subgroups in

both the male and female population, we next considered if

these groupings would also produce a similar separation in

Kuramoto oscillator model (KM) predicted neural dynamics.

Our analysis of the relationship between synchrony and

coupling strength showed a direct architecture-dependence

of each model’s ability to cohere its oscillators into unified

states (Figure 5A). Comparing respective areas under each

subject’s synchrony vs. coupling strength curves, groupings

M1 and F1 demonstrated significantly higher synchronies

than M2 and F2 for most coupling values before reaching

total synchronization (p < 0.05). In direct comparison,

groupings M1 and F1 were not significantly different in

their synchronization over this range of coupling strengths

(p = 0.768). Likewise, M2 and F2 were not significantly

different in synchronization across the coupling range (p =

0.789).

We also considered our KMs’ metastability and coupling

strength relationships. Over the range of coupling strengths

studied, we observed points of maximum metastability for all

four distinct brain architectures (Figure 5B). In general, M2 and

F2 yielded typically significantly greater metastabilities than

M1 and F1. Similar to our synchrony results, the unique male

architectures (M1, M2) showed significant differences in their

metastability vs. coupling strength curves (p < 0.05). Likewise, the

female architectures (F1, F2) were also significantly different in

their metastability over coupling strength range (p < 0.05). No

differences were observed when comparing the metastability

generated in the M1 and F1 models, nor were differences

observed when comparing the M2 and F2 architectures (p =

0.902 and p = 0.917, respectively). In addition, all networks

trended to metastability values of 0 as total synchronization was

reached.

With the differences in the synchronization and

metastability established across the coupling strength

range, we next examined critical coupling strengths to

achieve synchrony or peak metastability for all networks

in our sample. Synchrony critical coupling for a given

network was chosen as the first coupling strength that
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yielded 90% of that network’s peak synchrony. M1 and F1

(mean Kcrit,syn = 0.62 and 0.57, respectively) synchronized at

significantly lower coupling strengths than M2 and F2 (mean

Kcrit,syn = 1.02 and 0.96, respectively) (p < 0.05). However,

eventually all modules plateaued to the same maximum

synchrony levels at higher coupling levels. Metastability

critical coupling for a given network was chosen as the

coupling strength that corresponded to the Kuramoto

model with the peak metastability. Similar to synchrony

critical coupling, metastability reached a critical value at

significantly lower coupling strengths in M1 and F1 (mean

Kcrit,mts = 0.21 and 0.21, respectively) than M2 and F2 (mean

Kcrit,mts = 0.42 and 0.41, respectively) (p < 0.05). However,

the critical coupling strength was not different between

M1 and F1 (p = 0.998), nor was it different between

M2 and F2 (p = 0.939).

Brain architectures exhibited differential
response to structural lesions

At this point in our analysis, our results showed that the

unique brain architectures led to differences in neural dynamics

which largely followed the original differences in architectures.

However, these differences may trace to a small number of

specific nodes among architectures or may originate from

broader differences in the wiring across the SC groupings.

Determining how these differences in dynamics and

connectivity emerge among SC subgroups may be particularly

important to study the consequences of traumatic injury, which

produces a pattern of lesions throughout the brain that depends

on the impact location, magnitude, and physical brain size

(Donat et al., 2021). Using a modified approach from Alstott

et al., 2009, we performed cumulative targeted lesions on our

FIGURE 3
Tuning the gamma parameter in the modularity algorithm produced differing numbers of modules. (A) The number of modules remained
relatively stable at gamma values below 1. Increasing gamma allowed us to detectmore—but smaller—modules. (B)Wemeasured the distributions of
various graphmetrics (MSPL, GE, CC, BC) for both two and threemale and femalemodules. The thirdmodule was comparable to the secondmodule
for both sexes, while M1 and F1 remained unchanged. (C) Multiple comparisons significance testing showed that for GE, CC, and BC, M1 and
F1 did not significantly differ as a pair, nor didM2, F2, M3, and F3. For a given row in a table, cells containing the same color did not significantly differ. A
key for grouping is provided.
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network sample (details regarding cumulative lesions can be

found in Supplemental Material S1. We then simulated neural

dynamics using KMs on the lesioned networks, again computing

synchrony and metastability (Figures 6A,B). For all modules,

lesioning impacted model dynamics across a range of coupling

strength inputs. Synchrony exhibited a negative relationship with

lesioning; not only did KMs converge to lower levels of

synchronization, but greater coupling strengths were required

to achieve these plateaus (Figure 6A). At the most severe lesion

(75% of nodes severed from the network), KMs failed to achieve

any meaningful amount of synchronization. The impact on

metastability was less direct (Figure 6B). In all modules, a

local maximum in metastability appeared between lesions of

5% and 25% and coupling strengths of 0 and 2. As we increased

lesion severity, metastability critical coupling mostly increased.

The effect on metastability was most pronounced in M2 and F2.

Again, the most severe lesions prevented Kuramoto oscillators

from being able to coalesce into states, thus minimizing

metastability across all coupling strengths.

Despite targeting the same nodes to lesion across all sampled

networks, our simulated injuries produced effects on the SC

networks which differed significantly among modules. Every

network exhibited decreased GE with increased lesioning

(Figure 6C). However, SC networks from groupings M2 and

F2 demonstrated significantly greater decrease in GE than those

fromM1 and F1 (mean change in GE from all lesions for M1, F1,

M2, and F2, respectively: 2.56 × 10−4, 2.55 × 10−4, 2.78 × 10−4,

2.81 × 10−4; p < 0.05). When examining the resulting lesioned SC,

our sampled networks recapitulated the trends from the entire

dataset with the mean M1 and F1 GEs appearing significantly

lower than the mean GEs of M2 and F2 at the least severe lesions

(Figure 6B; mean GE5% for M1, F1, M2, and F2, respectively:

FIGURE 4
Modularity exhibited nonuniform accuracy when considering different subsets of edges from the original Schaefer 100 parcellation. (A)
Accuracy, or the fraction of subjects placed in the correct module, was dependent on the subset of nodes included in the similarity matrix
formulation. Asterisks indicate subsets where males and females had significantly different accuracies. (B) Group identification according to each
modularity analysis. Visual/somatomotor, visual/ventral attention, and somatomotor/limbic edges failed to produce comparable modules.
Dashed lines delineate between results from edges from one Yeo 7 system (left) and results from edges between two Yeo 7 systems (right). System
pairs for each subset listed as System 1/System 2. Abbreviations used: V, Visual; SM, Somatomotor; DA, Dorsal Attention; VA, Ventral Attention; L,
Limbic; C, Control; D, Default.
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3.64 × 10−4, 3.60 × 10−4, 3.83 × 10−4, 3.79 × 10−4; p < 0.05). When

we increased lesion severity, these differences in lesioned SCs

disappeared between 10% and 25% injury (mean GE25% for M1,

F1, M2, and F2, respectively: 1.66 × 10−4, 1.64 × 10−4, 1.65 × 10−4,

1.62 × 10−4; p > 0.05 for all comparisons). At the most severe

injury level, M1 and F1 networks had significantly greater GEs

than M2 and F2 (mean GE75% for M1, F1, M2, and F2,

respectively: 0.0798 × 10−4, 0.0770 × 10−4, 0.0566 × 10−4,

0.0567 × 10−4; p > 0.05).

Discussion

We showed that a large population of human brain

architectures can be distilled into two distinctly shaped

network representations for both male and female brains.

The groupings converged further, as we found the unique

architectures for male and female brains did not significantly

differ across sex; two structural networks captured accurately

the entire population of human brains analyzed. Despite high

similarity metrics between all brains in our population

(respective intramodule and intermodule mean correlations

of 0.942 and 0.906) we showed that this slight difference was

significant enough to produce distinct distributions of

structural graph metrics, simulated neural dynamics, and

responses to lesioning. For modest lesions to the network,

one architectural grouping demonstrated more impairment in

neural dynamics than the other architecture. At the highest

injury levels, the differences in dynamics between these two

architectural groupings disappeared. Together, these results

suggested that brain architecture and the response to

traumatic brain injury (TBI) may be interrelated, raising

the possibility that brain architecture type could be an

important factor in predicting the consequences of head

impact in humans.

The methods we used in this study were derived from

several previous articles and attempted to address

methodological limitations common to these techniques.

Our KM methodology was largely inspired by Cabral et al.,

2011., who used KMs in conjunction with the Balloon-

Windkessel (BW) model to simulate functional

connectivity, optimizing the model parameters to match the

FIGURE 5
Modules produced distinct patterns of Kuramoto oscillator outputs. (A) Synchrony reached its peak at a lower critical coupling strength for
M1 and F1 networks than M2 and F2. (B) Metastability achieved a greater peak in M2 and F2 modules, but at greater critical coupling values. Critical
coupling for synchrony for a given structural connectivity (SC) network was computed as the first global coupling input that yielded synchronization
within 10% of the maximum synchrony. Critical coupling for metastability was computed as the global coupling input that corresponded to the
Kuramoto oscillator model with the greatest metastability. Asterisks between Group 1 and Group 2 modules indicate that the distributions
significantly differed between pairings but not within pairings.
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measured functional connectivity in a human subject. One

difference in our approach was using a model that did not

include signal latency among brain areas, an approximation

that allowed us to model the dynamics across a far larger

number of architectures than previously examined by Cabral

or others (Petkoski and Jirsa, 2019; Wu et al., 2022a). Such a

method more closely matched the KM from Allegra Mascaro

et al., 2020 that assumed instantaneous coupling between

oscillators albeit at low frequencies. Moreover, we focused

on how the coupled neural dynamics—and not simulated

function—would change across this range of architectures

and allowed us to determine whether groupings of

dynamics would change with the coupling strength (they

did not). We were encouraged that these approximations

still provided a reasonable fidelity to trends found within

the original study (Cabral et al., 2011), where synchrony

plateaued as a function of coupling strength and that

metastability peaked at intermediate coupling strengths.

Interestingly, lesioning had comparable effects to increasing

delay. Oscillators became less synchronous and metastability

increased perhaps because removing nodes reduced the

model’s ability to coordinate oscillations.

FIGURE 6
Lesioning altered both the structure and neural dynamics of sampled networks. (A) As lesioning increased, synchrony decreased for all coupling
strengths in all modules. M1 and F1maintained greater levels of peak synchronization compared toM2 and F2. (B)Maxmetastability initially increased
as result of lesion, but decreased after further lesioning. (C) Global efficiency (GE) decreased as a function of lesion severity. Between 10% and 25%
lesioning, GE did not exhibit the paired M1-F1 and M2-F2 significance previously seen. Beyond 25% lesioning, M1 and F1 networks exhibited
greater GE than M2 and F2. Asterisks denote significant pairings consistent with previous results. Group 1 and Group 2 modules distributions
significantly differed between pairings but not within pairings.
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A second limitation was employing targeted lesioning rather

than trying to model explicitly the lesion patterns that occur in

TBI. The lesioning approach was modeled after Alstott et al.,

2009, who ranked and lesioned nodes in a single network

according to various SC metrics including centrality and

degree. Like our approach, Alstott et al. systematically

increased lesion severity and evaluated the impact of each

lesion on the resulting network features. To produce an

analogous injury while maintaining consistency across our set

of 1,065 networks, we used the mean degree ranking. Although

this lesioning methodology was sufficient to study injuries,

especially from a topological perspective, it did not represent

the true distribution of lesions that occur during a TBI (Kraft

et al., 2012; Donat et al., 2021). The pattern of damage after each

TBI is unique and depends on the circumstances describing the

impact (Gabler et al., 2016, 2018). Although we could use a

method incorporating brain biomechanics and strain injury

criteria to produce a more realistic injury pattern (Kraft et al.,

2012), this approach would make the process of identifying

critical nodes more difficult.

It should be noted that lesioning can be used to model the

effects of other forms of neurodegeneration. Allegra Mascaro

et al., 2020, used a KM to examine how lesions from stroke

altered network communications. Others have similarly

examined the network disruptions associated with epilepsy

(Olmi et al., 2019). Brain disorders associated with axonal

deficits, such as amyotrophic lateral sclerosis, Alzheimer’s, or

multiple sclerosis can be represented by similarly altering the

edges in a SC network (Fornito et al., 2015). Together, along with

TBI, these conditions all represent disruptions to the axonal

connections between different brain regions. Aerts et al., 2016 go

on to describe how such disruptions intersect very well with

graph theory, and network metrics can be leveraged to

demonstrate the effects of lesions from disease or injury. The

conclusions from this study regarding architecture-dependence

of lesions’ effects may share some applicability and relevance to

these other neurodegenerative conditions.

Contextualizing brain architecture typing
research

In addition to the specific comparisons to Cabral et al., 2011

and Alstott et al., 2009, as well as the other cases in which

network lesions may be representative of neurodegeneration, we

would like to draw attention to other studies in the field of

identifying “types” of brains. Our study’s impact comes from its

distinctions here and the potential applications of our brain

typing findings. Attempting to characterize brain “types” has

been explored by other researchers; our primary contribution to

this field was using networks to determine whether there is an

architecture-dependent vulnerability among these types. Other

methods include analyzing the distribution of grey matter

volumes or pre-dividing networks based on demographics and

analyzing the effect of these subgroups (Ingalhalikar et al., 2014;

Joel et al., 2015, 2018; Tyan et al., 2017). As a result, the methods

of these studies are limited in their applicability to understanding

how brain function is related to white matter structure. For

modeling the consequences of head impact, methods that focus

on grey matter distribution may help create individual-specific

models where the distribution and properties of grey matter may

lead to changes in injury risk across subjects (Giordano et al.,

2017). Conversely, studies that pre-divide according to sex may

capture general trends that exist between male and female

subjects but fail to define more nuanced trends in the

population. Other past work considered how the size and

shape of the brain can affect the relative susceptibility of the

brain to impact and offered new insight for scaling impact

magnitude to account for risk across different populations

(Wu et al., 2020). However, none of these efforts incorporated

a simultaneous analysis of the network structure and its separate

role in risk prediction.

Architecture-dependent consequences of
lesions

Our ability to identify a brain’s architecture type did not require

consideration of the entire brain network. Instead, with relatively

high accuracy, we could choose subsets of the network features and

accurately recapture our original architecture groupings. Conversely,

other nodal subsets do not show any meaningful difference across

the population. Both outcomes are reminiscent of algorithms to

determine edges and edgeweight distributions in both structural and

functional networks which successfully separate healthy controls

from individuals with schizophrenia, Alzheimer’s disease, and

depression (Dai et al., 2012; Chi et al., 2015; Gutiérrez-Gómez

et al., 2020). At an individual level, generative models produce

structural connectome wiring rules for a given network state (Betzel

and Bassett, 2017) to represent the probability of an edge existing

within a network of interest, such as one from a schizophrenic

patient (Zhang et al., 2021). In other cases, small patterns of

connections, or motifs, have been used to identify disease states

in brain networks (Sporns and Kötter, 2004; Friedman et al., 2015).

Rather than disease in our case, we instead identified network types

that exhibited distinct edge probabilities and arrangements. Subsets

of nodes could act as biomarkers to classify a network into an

architecture type.

Different architecture types exhibit
different levels of susceptibility to injury

There is a consensus that the impact magnitude and duration

is correlated to brain injury outcome (el Sayed et al., 2008;

Meaney et al., 2014; Gabler et al., 2016; Alshareef et al., 2020).
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Numerous injury risk functions have been produced linking

increasing kinematics and deformations within the brain to

TBI likelihood (Funk et al., 2007; Rowson et al., 2012;

Sanchez et al., 2017; Gabler et al., 2018). Two past studies

suggested that incorporating features of the brain network can

explain why different injury outcomes may occur in similar

impact conditions (Aerts et al., 2016; Anderson et al., 2020).

We extended these analyses one step further to consider how the

consequences of injury across a population may arise from

differences in the architectures among subjects. Indeed, it is

known that populations are not homogenous enough to

assume a general response to TBI (Broglio et al., 2017).

However, if one needed to calculate the individual risk for

each individual architecture, the computational burden would

be overwhelming (Raizman et al., 2020). Here, our ability to

coalesce many individual architectures into two distinct groups

for male and female brains and, further, into two overarching

architecture types, makes the estimation of individual risk more

tenable. Moreover, the ability to designate a brain architecture

type based on the connectivity characteristics within a specific

brain subregion makes it possible to quickly identify, sort, and

prospectively determine relative risk for any individual brain in

future studies.

One key result was that our differences among

architectures disappeared after a moderate number of

areas were injured. These findings implied that

architecture-dependent changes only applied for mild

injury levels, especially if the injury pattern was focused

on nodes with relatively high degree. Once the extent of

injury exceeded roughly half of the network, the networks

failed to produce any meaningful level of synchronization,

produced low metastability, and did not show any significant

differences in these changes across architecture type.

However, even at the more severe lesion levels, the global

efficiency measures showed the remaining network structure

still retained some differentiable capacity to transmit

information through the network, albeit at a negligibly

inefficient level. Lesions at this severity exceeded any

reasonable expectations of the injuries typically observed

in these types of analyses. Instead, the domain of injury that

is of interest remains mild TBI (concussion) which usually

occurs when approximately 10–30% of brain tissue exceeds

injurious strain thresholds (Wu et al., 2021). It is here that

brain types can be used to further understand the

heterogenous nature of TBI.

Conclusion

Our work highlights the possibility that the

consequences of an impact to the brain may depend on

the initial brain architecture. On its own, this work

indicates that brain network architecture should be

considered when attempting to predict the injury risk

after an impact. One likely consequence is that different

types of architectures may make some brains more

vulnerable to impact in specific directions, while other

architectures could be vulnerable to injury from impacts

in a different direction. This potential to generate a

customized vulnerability for each architecture points to

the possibility of designing head protective equipment

that is either customized to one architecture or adequately

protects all architectures equally. In the future, these results

imply that knowing a person’s architecture type ahead of

time can enable him/her to take precautions against impacts

that will be particularly injurious.
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