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Abstract

Proper function of the hippocampus is critical for executing cognitive tasks such as

learning and memory. Traumatic brain injury (TBI) and other neurological disorders

are commonly associated with cognitive deficits and hippocampal dysfunction.

Although there are many existing models of individual subregions of the hippocam-

pus, few models attempt to integrate the primary areas into one system. In this work,

we developed a computational model of the hippocampus, including the dentate

gyrus, CA3, and CA1. The subregions are represented as an interconnected neuronal

network, incorporating well-characterized ex vivo slice electrophysiology into the

functional neuron models and well-documented anatomical connections into the net-

work structure. In addition, since plasticity is foundational to the role of the hippo-

campus in learning and memory as well as necessary for studying adaptation to

injury, we implemented spike-timing-dependent plasticity among the synaptic con-

nections. Our model mimics key features of hippocampal activity, including signal fre-

quencies in the theta and gamma bands and phase-amplitude coupling in area CA1.

We also studied the effects of spike-timing-dependent plasticity impairment, a

potential consequence of TBI, in our model and found that impairment decreases

broadband power in CA3 and CA1 and reduces phase coherence between these two

subregions, yet phase-amplitude coupling in CA1 remains intact. Altogether, our work

demonstrates characteristic hippocampal activity with a scaled network model of

spiking neurons and reveals the sensitive balance of plasticity mechanisms in the

circuit through one manifestation of mild traumatic injury.
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1 | INTRODUCTION

Caused by a variety of mechanical impacts, traumatic brain injury (TBI)

affects approximately 10 million people each year worldwide (Hyder

et al., 2007), including 2.5 million annually in the United States alone

(Cancelliere et al., 2017). Although advances in brain imaging technol-

ogies facilitated understanding TBI as a disease of the brain network

(Stam, 2014), mild injuries generally lack detectable macroscale

pathology (Bigler & Maxwell, 2012; Sours, Zhuo, et al., 2015), making

these injuries challenging to diagnose. Also known as concussion, mild

TBI has garnered interest in recent decades because it is highly preva-

lent (Blennow et al., 2016; Cancelliere et al., 2017; Martin et al.,

2008), and there is growing appreciation for the potential long-term

consequences of mild brain injuries (Cancelliere et al., 2017; Hiploylee

et al., 2017). Since it remains difficult to predict which patients will

recover completely and which will experience chronic symptoms, we

still have much to learn to better diagnose and treat TBI across the

spectrum of injury severity.
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Learning and memory deficits after TBI are associated with dys-

function in the hippocampus (Paterno et al., 2017), a brain region situ-

ated in the temporal lobe of the human brain where it is vulnerable to

injury (Kotapka et al., 1994; McAllister, 2011; Paterno et al., 2017;

Raghupathi, 2004). The hippocampal formation consists of several

subregions, including the dentate gyrus (DG), CA3, and CA1. The

region has a complex array of inputs from and outputs to other areas

of the brain. Briefly, it receives input from the entorhinal cortex and

sends information downstream to the subiculum, which projects

to subcortical structures (e.g., the amygdala and hypothalamus)

(Canteras & Swanson, 1992; O'Mara, 2005) and areas of the medial

prefrontal cortex (Jin & Maren, 2015). Through lesion and animal

behavior studies, the hippocampus has been associated with spatial

learning, episodic memory, and contextual conditioning (Bird & Burgess,

2008; Fanselow & Dong, 2010). In addition to behavior tests that impli-

cate the region, the hippocampus is accessible in the rodent brain for

electrophysiological investigation and benefits from an extensive mor-

phological and molecular characterization of various cell types (Wheeler

et al., 2015). The wealth of data about the hippocampus is challenging

to synthesize but emphasizes the need to study and model the region as

an entire circuit rather than isolated subregions.

In the context of TBI, there are many in vivo injury models that

involve the hippocampus (Morales et al., 2005). This work has

established that animals with hippocampal damage exhibit slower spatial

learning and worse memory retention (Paterno et al., 2017). Further-

more, those behavioral deficits are associated with electrophysiological

changes in the hippocampal circuitry. For instance, post-injury shifts in

excitability occur in the DG (Folweiler et al., 2018; Santhakumar et al.,

2001; Witgen et al., 2005) and in CA1 (Witgen et al., 2005), yet the

exact mechanisms underlying these changes and how they vary across

subregions are not known. Impairment of synaptic plasticity is one pos-

sibility, and plasticity deficits appear in both in vivo and in vitro models

of traumatic injury (Albensi & Janigro, 2003). Specifically, many reports

describe the inability to induce long-term potentiation (LTP), the persis-

tent activation-dependent strengthening of synapses (Albensi et al.,

2000; Aungst et al., 2014; Schwarzbach et al., 2006; White et al., 2017).

Failure to induce LTP occurs most notably and consistently in CA1

(Cohen et al., 2007; Schwarzbach et al., 2006) and can persist at 7 days

(Schwarzbach et al., 2006) up to 28 days post-injury (Aungst et al.,

2014). Blast injury, often considered a milder form of TBI, can produce

similar deficits in LTP (Effgen et al., 2016; Vogel et al., 2016; Vogel et al.,

2017). Still, plasticity impairment remains an underexplored mechanism

of mild TBI. In this work, we model the change as a modest decrement

in potentiation and explore functional and structural effects.

Due to our interest in neuron- and circuit-level effects of injury,

we developed and tested a computational model of the hippocampus

to investigate how deficits in plasticity affect both activity patterns

within subregions of the hippocampus and coupling of activity

across these subregions. There are existing experimental methods

(e.g., microelectrode arrays, calcium imaging, in vivo electrophysiologi-

cal recording) to record this type of activity (Chen et al., 2013; Harvey

et al., 2009; Lein et al., 2011), but they have shortcomings for our

application. For instance, experimental models of TBI affect the entire

region of the hippocampus and surrounding synaptic connections.

With the sensitivity of current recording methods, it is difficult or

impossible to obtain pre- and post-injury measurements. Finally, exis-

ting experimental methods offer a limited view of the entire hippo-

campal circuit, either lacking simultaneous measurements across all

subregions or neuron-level resolution. Due to its isolated circuitry, a

computational model of a single brain region contends with fewer

confounding factors than in vivo methods. Accordingly, effects

detected independently from the rest of the brain and macroscale

network can lead to principles that apply throughout the broader neu-

ral circuitry.

In this report, we construct a novel, network-based model of the

hippocampus, focusing on the DG, CA3, and CA1. We systematically

validate the model activity by comparing simulations to existing mea-

surements of activity rates of each neuron type, to reported frequency

spectra from local field potential recordings, and to stimulus–response

curves that qualitatively recapitulate input–output curves from in vitro

recordings. Using this model, we examine the potential role of altered

spike-timing-dependent plasticity on features of regional function,

including activity rates, signal power, and interregional coupling.

Although a modest plasticity deficit does not dramatically alter the

overall pattern of activity, this injury mechanism does yield deficits in

power across several frequency bands in CA3 and CA1. Given our

results, we conclude that spike-timing-dependent plasticity (STDP) cre-

ates a delicate balance in the network and minor impairment can yield

significant deficits in network function.

2 | METHODS

Given the body of work about the hippocampus, there are existing

efforts to synthesize these data and construct computational models

of its activity. However, these models predominantly consist of single,

isolated subregions, making it impossible to interrogate aspects that

depend on higher level circuitry or regional differences. (For the DG:

Chavlis et al., 2017; Santhakumar et al., 2005; Strüber et al., 2017;

Tejada et al., 2014. For CA3: Hummos & Nair, 2017; Sanjay et al.,

2015; Stanley et al., 2013. For CA1: Cutsuridis et al., 2010; Fink et al.,

2015; Malerba et al., 2016; Neymotin et al., 2011.) Impressive full-

scale models of individual subregions exist (Bezaire et al., 2016;

Dyhrfjeld-Johnsen et al., 2007), but these are slow and computation-

ally expensive, often requiring supercomputers to run simulations.

Such high computational requirements limit the accessibility and

broad use of these models. Furthermore, the duration of the simula-

tions is short (s), which precludes the study of adaptive mechanisms

or prolonged change.

This reduced model represents the hippocampus as three inter-

connected subregions—the DG, CA3, and CA1—with topology based

on the well-documented predominantly feedforward architecture of

the hippocampus (Strange et al., 2014; Wheeler et al., 2015). It has

10 different types of neurons across the three subregions, and each

neuron type is differentiated based on electrophysiological character-

istics in the dynamic model and connectivity within and between
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subtypes in the structural model. As a network model, each neuron is

represented by a node, and the synaptic connections between neu-

rons are edges. Our primary resources for the structure and connec-

tivity of these regions were the Hippocampome database for overall

information on neuron subtypes in the hippocampus (Wheeler et al.,

2015), Morgan et al., 2007 and Dyhrfjeld-Johnsen et al., 2007 for the

DG, and Bezaire & Soltesz, 2013 and Bezaire et al., 2016 for CA1.

2.1 | Structural model properties and circuitry

We narrowed our focus to three primary areas of the hippocampal

formation with well-characterized structure and well-studied func-

tions (Fanselow & Dong, 2010; Paterno et al., 2017; Wheeler et al.,

2015). This subset of regions included the DG, CA3, and CA1. Within

each subregion, we first determined which neuron types to include

(Figure 1). Starting with all neurons identified in the Hippocampome

database (83 different types across DG, CA3, and CA1) (Wheeler

et al., 2015), we first eliminated any types without detailed electro-

physiological characterization or connectivity information (see Section

2.2 for more information on the model of neural activity). We chose a

point neuron model to reduce complexity and computation time

(Izhikevich, 2003; Koch, 2004), as some neuronal types with unique

morphologies yet similar electrophysiological characteristics could be

combined in our model.

For each subregion (DG, CA3, CA1), point neurons were placed

randomly on the surface of an ellipsoid. Each area is a separate ellip-

soid, scaled by the anatomical dimensions of that subregion (Strange

et al., 2014). The ellipsoid geometry has the advantages of mitigating

edge effects and enhancing distance-dependent connectivity, such

that neurons near one another are more likely to connect to one

another. This approach is designed to mimic important aspects of the

lamellar organization of the hippocampus in vivo (Andersen et al.,

2000), while avoiding edge effects and more complex geometries. It

approximates the physical aspects of the structure that are necessary

for generating accurate network connectivity but does not create an

exact physical representation of the hippocampus.

After finalizing the subtypes included in the model (Figure 1a,b),

we determined the overall scale and number of neurons of each type.

Once we identified the best possible estimates for the population

F IGURE 1 Model structure and circuitry. (a) The primary excitatory connections of the hippocampus follow a feedforward structure across
three subregions (dentate gyrus [DG], CA3, CA1), as indicated by the top schematic. Each of 10 cell types is represented by an icon of a neuron
with all excitatory connections between the 10 different cell types shown as arrows. Thick arrows represent many connections from a
representative single neuron, and thin arrows represent few connections. The dentate is represented in gray, CA3 is green, and CA1 is blue. Thick
arrows: N > 40. Medium arrows: 40 > N ≥ 10. Light squares: N < 10, where N is the average number of connections from a single upstream
neuron to downstream neurons. Created with BioRender.com. (b) The inhibitory connections of the hippocampus are predominantly local,
intraregional connections. Inhibitory connections between the 10 cell types are shown as arrows where arrow thickness corresponds to the
number of connections. Created with BioRender.com. (c) This information is shown for both excitatory and inhibitory projections as a
connectivity matrix. Moving down each column, a filled square indicates that connections exist. For example, DG granule cells project to DG
mossy cells but not to other DG granule cells. Here, N is the total number of projections to a downstream subtype (number of connections per
cell � number of cells). Dark squares: N > 10,000. Medium squares: 10,000 > N ≥ 2000. Light squares: N < 2000
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numbers in vivo, we determined the ratio for each subtype relative to

the primary excitatory subtype in each subregion (i.e., granule

and pyramidal cells). For example, there are 56 pyramidal cells to

1 parvalbumin-expressing basket cell in CA1 (Bezaire & Soltesz, 2013).

We used 10% total inhibitory neurons in CA1 and CA3 as an important

constraint on population numbers, within the range of 10–12%

reported empirically (Aika et al., 1994; Woodson et al., 1989) and simi-

lar to previous work (Bezaire et al., 2016; Bezaire & Soltesz, 2013).

Given this constraint, we ensured that the sum of basket and generic

interneurons comprised approximately 10% of the total number for

CA1 and CA3. Importantly, we targeted an intermediate population

scale for each cell type in the model, balancing the representation of

different cell types with computational requirements. To ensure our

model would run in a reasonable amount of time on a desktop com-

puter, we limited the overall network size to under 10,000 neurons.

The final network corresponds to a scale of approximately 1:200 for

DG, 1:175 for CA3, and 1:150 for CA1, as compared to the rat hippo-

campus (see Table 1 for population sizes in the model).

To develop the connectivity matrix (Figure 1c), we found litera-

ture values for the number of connections between subtypes, relying

primarily on Morgan et al. (2007) and Bezaire and Soltesz (2013). The

connectivity rules were developed via the following formula:

Cmodel ¼ C0

N0
�k Nmodelð Þ

where Cmodel is the number of connections per neuron in the model,

C0 is the original number of connections between two subtypes

in vivo, N0 is the original population size in vivo, Nmodel is the popula-

tion size of the subtype in the model, and k is a scalar. Given the

reduced population sizes, we increased the density by a constant sca-

lar (k) for each area to generate synaptically driven activity. This

method is similar to that used in other models that are not full-scale

(Morgan et al., 2007; Santhakumar et al., 2005; Tejada et al., 2014)

(see Table 2 for connectivity values between all subtypes). Given that

TABLE 1 Cell numbers and percentages for different cell types.
This is the final set of cell types included in the hippocampal model

Cell type Number Percentage

DG granule 5000 56.3

DG mossy 150 1.7

DG basket 50 0.6

DG interneuron 60 0.7

CA3 pyramidal 1250 14

CA3 basket 30 0.3

CA3 interneuron 120 1.4

CA1 pyramidal 2000 22.5

CA1 basket 45 0.5

CA1 interneuron 180 2

Total 8885 100

Abbreviation: DG, dentate gyrus. T
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this model relies on point neurons rather than multicompartmental

neurons, the synapses between cells are represented as aggregate

connections. For the interregional connectivity, we relied on similar

calculations to determine the number of connections, but in contrast

to distance-dependent intraregional connections, connections

between subregions were added to randomly selected neurons.

Although most collaterals from CA3 feedforward to CA1, CA3 is

known to have some recurrent collaterals and a small backprojection

to the DG. In our model, 60% of collaterals project to CA1, 35% of

collaterals are recurrent, and the remaining 5% comprise the back-

projection to DG (Myers & Scharfman, 2011; Treves & Rolls, 1994;

Wittner et al., 2007).

2.2 | Dynamic model features

Action potential spiking was modeled with the Izhikevich system of

differential equations, applying the 2008 formulation as follows

(Izhikevich & Edelman, 2008):

Cv0 ¼ k v�vrð Þ v�vtð Þ�uþ I

u0 ¼ a b v�vrð Þ�u½ �

if v ≥ vp, then
v¼ c

u¼ uþd

�

where v is the membrane potential in millivolts (mv), and u is the

recovery variable. C is the membrane capacitance (pF), vr is the rest-

ing membrane potential, vt is the threshold potential, and vp is the

membrane potential at the peak of the spike. I is the current in pic-

oamperes (pA). The dimensionless parameters a, b, c, d, and k are

used to tune the spiking behavior of each neuron subtype (see

Izhikevich & Edelman, 2008 and Izhikevich, 2010 for more detail).

The current (I) can be decomposed according to the following

equation:

I¼ IAMPAþ INMDAþ IGABAþ Inoise

The total current aggregates ionic currents through AMPA,

NMDA, and GABA-A receptors as well as a noise input used to drive

the network, using a gamma distribution (k = 2, θ = ½) (Gabrieli et al.,

2020; Gabrieli et al., 2021; Izhikevich & Edelman, 2008; Schumm

et al., 2020) (see Section 2.3 for more detail on the noise current). The

NMDA receptor currents have longer duration and shorter amplitude

as compared to AMPA receptor currents (Gabrieli et al., 2021). Elec-

trophysiology data were compiled for all relevant subtypes from the

Hippocampome and NeuroElectro databases, whenever available

(Tripathy et al., 2014; Wheeler et al., 2015). Where possible, we

implemented values for resting membrane potential (vr), threshold

potential (vt), and capacitance (C) directly into the model equations

above. We used the average values and tuned the parameter up or

down within the experimentally recorded range to match the firing

pattern of each cell type. If the capacitance for a subtype was

unknown, we used 115 pF, the average recorded across all neuron sub-

types documented in the NeuroElectro database (Tripathy et al., 2014).

Values for the membrane time constant, action potential width, and

afterhyperpolarization were similarly included, with more qualitative

adjustments (see Tables A1—A3 in the Appendix for electrophysiological

properties of relevant neuron types). The remaining parameters were

modified to match examples of cell firing patterns found in the literature.

A good match was determined based on firing rate and action potential

shape across a range of current injections, which included a subthresh-

old injection, a marginally supra-threshold injection, and one to two

larger injections, depending on the available data.

After developing neuron models for all subtypes under consider-

ation, we merged the models for neuron types with similar electro-

physiology, producing 10 final neuron models. (See Table 3 for the full

set of parameters used. Single cell activity traces for each subtype can

be found in Table S1 in Supporting Information and display predomi-

nantly regular spiking patterns. Table S2 contains more detailed

experimental electrophysiology references that were used in model

development and all of which are drawn from the Hippocampome and

NeuroElectro databases.) To introduce heterogeneity among neurons

within a specific type, we varied model parameters ±10–20% of the

nominal values. None of these adjustments to model parameters

TABLE 3 Neuron model parameters
Cell type Vr Vt Vp C a b c d k

DG granule �70 �48 30 60 0.01 1.2 �68 25 0.7

DG mossy �62 �37 30 50 0.01 3 �65 50 1

DG basket �62 �38 35 150 0.01 6 �75 25 1

DG interneuron �65 �43 30 90 0.25 2.5 �70 30 1

CA3 pyramidal �68 �50 30 200 0.01 3 �70 50 1

CA3 basket �57 �34 25 150 0.25 5 �70 50 1

CA3 interneuron �60 �40 30 140 0.4 4 �70 40 1

CA1 pyramidal �65 �50 35 125 0.2 10 �68 100 2

CA1 basket �60 �40 30 140 0.02 0.9 �65 15 1

CA1 interneuron �60 �38 30 130 0.15 2.25 �68 40 1

Note: Vr = resting membrane potential; Vt = instantaneous threshold potential; Vp = spike peak

membrane potential; C = capacitance; a, b, c, d, and k are dimensionless model parameters.
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altered the characteristic firing patterns of these neurons. The ranges

of interneuron parameters were slightly broader than the other neu-

ron types (±20 vs. ±10%) to represent the diversity of interneurons.

This variability is more representative of heterogeneous in vivo neu-

ron populations, in which no two neurons are the same (Izhikevich,

2003). Small variations in parameters also prevent instability in model

dynamics, which can occur when all simulated neurons are identical.

We implemented propagation delays based on the physical dis-

tances between neurons where the minimum delay is 1 ms. The

ranges used were based on an average 0.2 m/s conduction velocity

(Kress et al., 2008; Meeks & Mennerick, 2007; Miles et al., 1988) and

the lower range of delays reported for Schaffer collaterals (Andersen

et al., 2000). Within-region delays range from 1 to 6 ms, and

between-region delays are estimated to be 6–10 ms. To account for

slower conduction velocity in the DG compared to CA3 (Kress et al.,

2008), we used a different range of delays for each subregion (see

Table 4). At this scale, the difference is only 1–2 ms at the maximum

delay.

Finally, the excitatory–excitatory AMPA synaptic connections in

the network are plastic, governed by both STDP and homeostatic

plasticity (HSP). STDP is a classical implementation of order-

dependent Hebbian learning by which the synaptic strength between

two neurons is strengthened if they fire causally. If neurons do not

fire causally (the downstream neuron fires prior to the upstream neu-

ron), the synaptic strength is instead decreased, according to the fol-

lowing equation (Effenberger et al., 2015):

Δw wð Þ¼
Aþ wð Þexp �tpost� tpre

τ

� �
if tpost� tpre > 0

A� wð Þexp �tpost� tpre
τ

� �
if tpost� tpre ≤0

8>>><
>>>:

where w is the weight of the connection between two neurons. A+

and A� determine the magnitude of maximal synaptic change. The

A+/A� ratio is commonly biased slightly toward strengthening and

was set to 1.05. τ is the plasticity time constant and often approxi-

mated as 20 ms. Finally, tpre and tpost are the timing of presynaptic

and postsynaptic spikes, respectively. Neurons were also desensitized

to rapidly repeated inputs at 40% attenuation (τdesensitization = 150 ms)

(Izhikevich & Edelman, 2008).

As in many previous models, we applied STDP to AMPA synap-

ses between excitatory neurons only because inhibitory STDP is not

well understood and warrants ongoing investigation (Caporale &

Dan, 2008; Lu et al., 2007). However, it is a well-known problem

that STDP alone can produce chronic runaway firing rates in such

models, potentiating or depressing synapses endlessly (Zenke et al.,

2017). Therefore, to combat drifting activity, we incorporated

HSP to stabilize synapses (Turrigiano et al., 1998; Turrigiano &

Nelson, 2004). Among the many proposed mechanisms for synaptic

stabilization (inhibitory synaptic plasticity, neuromodulation, synaptic

normalization, etc.), we chose synaptic scaling for two key reasons.

It is comparatively well-characterized and enables us to continue

to test STDP-dependent learning. The specific implementation we

used was gated, weight-dependent synaptic scaling. Synaptic scaling

is a heterosynaptic form of plasticity because it modifies all synap-

ses of a neuron, rather than acting on the level of individual synap-

ses. By comparing the actual neuron firing rate to a target firing

rate, this homeostatic mechanism decreases synaptic weights if

activity is too high and increases them if it is too low. Adapted

from Effenberger et al. (2015), the following equation demonstrates

this property:

if vo�vtð Þ=vtj j>0:50

Δw wð Þ¼� γ

Wmax

vo�vt
vt

� �
w2
� �

where w is the weight of connection, γ is the dimensionless rate of

change and equals 10�8 in our simulations, vo is the observed firing

rate, vt is the target firing rate, and Wmax is the maximum excitatory

weight for that neuron type. Since STDP acts only on excitatory-to-

excitatory connections, synaptic scaling also applies to these connec-

tions. Previous studies have demonstrated the importance of weight

dependence for synaptic stabilization (Effenberger et al., 2015;

Tetzlaff et al., 2011). Finally, to preserve diversity and competition

among synapses, HSP applies in neurons with firing rate change

greater than 50% of their target firing rate (vt) over the course of

120 s. This threshold is important because it avoids over-constraining

the model and continues to allow neurons to adapt with STDP. Given

we intend to study STDP-dependent learning in future work with this

model, this is an important aspect to our solution to synaptic weight

stabilization.

As the slow rate of HSP can significantly decrease the speed of

network convergence (Effenberger et al., 2015), we first settled the

network for 20 min with STDP only to accelerate convergence. We

used the individual neuron firing rates during minute 20 to set the tar-

get firing rates for each neuron. We then turned on HSP and ran the

simulation for an additional 30 min with a fixed timestep of 0.2 ms. All

data analyzed were taken from the final 5 min of simulation, after the

network has stabilized with both STDP and HSP. See Figure S1 in

Supporting Information.

TABLE 4 Propagation delays between neurons. Delays are
reported in ms and are implemented as integers only. Within
subregions, delays follow a distance-dependent distribution based on
the physical distance between neurons. Between different
subregions, they follow a uniform distribution

Delay type Range (ms) Distribution

Within DG 1–6 Distance dependent

DG à CA3 6–10 Uniform

CA3 à DG 6–10 Uniform

Within CA3 1–4 Distance dependent

CA3 à CA1 6–10 Uniform

Within CA1 1–6 Distance dependent

Abbreviation: DG, dentate gyrus.
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2.3 | Connection strength and noise calibration

Incorporating unique electrophysiology-based parameters for each

neuron subtype required calibrating the connection strength and

noise stimulus for each subtype. The noise stimulus is designed to

cause each neuron to spike once per second at a random timestep.

Since the firing is noisy and uncoordinated, the noise input lacks the

spectral features of a 1 Hz signal. To maintain 1 Hz noisy firing across

the entire network, each subtype needed a different stimulus magni-

tude. Otherwise, with each noise input, some neurons would spike

multiple times and others not at all. For calibration, we used a single

neuron model and first verified that the neuron did not spike with a

current injection of 0 pA. Then we increased or decreased the current

and observed the size of the excitatory postsynaptic potential (EPSP)

or the inhibitory postsynaptic potential (IPSP), respectively. The cur-

rent stimulus was instantaneous and allowed to decay. The excitatory

strength was set such that an injection of that size produced an EPSP

size less than 10 mV (Ferster & Jagadeesh, 1992) and it would take

approximately three coincident inputs to produce an action potential.

Accordingly, the noise value for each neuron was set to 2-3x the

excitatory strength so that the neuron would spike only once from

resting membrane potential. Similar to excitatory strength, the inhibi-

tory strength was determined by identifying the current required for

an IPSP size of approximately 15 mV (Ferster & Jagadeesh, 1992).

This calibration process ensured consistency among subtypes and

agreement with the literature (Ferster & Jagadeesh, 1992).

2.4 | Analysis metrics

All metrics were computed for the final 5 min of simulation time. To

evaluate average firing rate, we summed the number of spikes for

each neuron for the last 5 min of simulation activity and divided by

the duration for an average in Hz. Values reported for an entire sub-

type are the mean of firing rates for that subtype. The variability in

spike timing was quantified as the coefficient of variation of the inter-

spike interval (CoV ISI), which is the SD over the mean of the interval

between spike times. The metric contextualizes firing rate by measur-

ing the irregularity of spike timing such that larger values indicate

greater variability in duration between spikes. The CoV ISI was com-

puted for each neuron and averaged by subpopulation. To measure

prominent frequencies in network activity, all spikes were summed for

each millisecond for each region (DG, CA3, CA1). For each trace, the

signal was smoothed and analyzed in the frequency spectrum by

Welch's method. The power was computed in five different frequency

bands, corresponding to delta (<3 Hz), theta (3–8 Hz), alpha (8–

12 Hz), beta (13–25 Hz), and gamma waves (25–60 Hz) (Abhang et al.,

2016; Bezaire et al., 2016; Rutishauser et al., 2010).

Since we were interested in the relationship between traces

extracted from these frequency bands, we assessed phase coherence

between the theta signal component in CA3 and CA1. We applied

a Hilbert transform to the theta wave to calculate the analytic

signal from which we extracted the phase angle. With the phase

components of both CA3 and CA1 signals, we computed the phase

locking value (PLV) according to the following equation:

PLV¼
Pn

t¼1e
i θ1�θ2ð Þ

n

����
����

where n is the length of the trace, t is a timestep, θ1 is the phase angle

of trace 1, and θ2 is the phase angle of trace 2. Finally, we evaluated

phase-amplitude coupling (PAC) between the theta wave and gamma

oscillation in CA1. Similar to the coherence analysis, we filtered the

aggregate activity, applied a Hilbert transform, and extracted the

phase and amplitude components from the theta and gamma bands,

respectively. The phase angle is then binned into 18 bins of 20� (Tort

et al., 2008), and the corresponding amplitudes are averaged for each

phase bin, yielding a phase-amplitude plot. PAC exists when this dis-

tribution differs significantly from the uniform distribution. To mea-

sure this difference, we calculated the modulation index (MI) as

follows:

MI¼ log Nð ÞþPN
j¼1a jð Þ log a jð Þ½ �

log Nð Þ

where N is the number of phase bins (18 in this study) and a is the

vector of normalized average amplitudes per phase bin. To determine

significance for both coherence and cross-frequency coupling, we

compared the experimental values to values generated from null

models. Following a method promoted by Hülsemann et al., we gener-

ated permuted activity traces by randomly cutting the trace in two

parts, flipping both parts, and concatenating (Hülsemann et al., 2019).

The procedure alters the precise timing of the signal but leaves the

frequency information intact, so it is an effective and conservative

method of permutation testing (Hülsemann et al., 2019). Permutation

testing was repeated 100 times for each network, and those values

were averaged to yield one null model value for each network.

2.5 | Stimulus–response curve and stimulation

To demonstrate an input–output relationship in this circuitry, we

developed a protocol which is analogous to classical input–output cur-

ves in acute slice electrophysiology: (1) stimulate the DG and record in

the DG and (2) stimulate CA3 and record in both CA3 and CA1. These

protocols are designed to mimic perforant path and Schaffer collateral

stimulation, respectively. For each, we selected nonoverlapping groups

of stimulated and recording neurons. The stimulated subset consisted

of randomly selected neurons, which simultaneously received an input

equivalent to five spikes. The response was measured from the set of

recording neurons, which consisted of the neurons nearest a randomly

chosen location in the network. The recording set sizes are 100 neu-

rons in DG and 50 neurons in CA1, which are 2 and 4% of the

populations in the DG and CA1, respectively.

The stimulus consists of linearly increasing the number of stimu-

lated neurons by targeting 10% more with each stimulus level. If we
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consider an example of stimulating area CA3, stimulus level 1 targets

five neurons, which is 10% of the overall stimulation subset in CA3.

Stimulus level 2 targets 10 neurons, which is 20% of the total stimu-

lated neurons, and so on for increasing levels of stimulus up to level

10. This simulates linearly increasing input current in electrophysiol-

ogy protocols. The size of the recording group remains constant, and

the response is the sum of all spikes from the subset of neurons nor-

malized by the maximum response for that network. The 1 Hz noise

used to drive the network in other simulations was removed during

this procedure to enhance the signal-to-noise ratio. This protocol was

run for each of the 10 baseline networks.

2.6 | Injury: Impaired STDP

To simulate plasticity impairment in the model, we reduced the maxi-

mum potentiation constant (A+ in the STDP equation above) by 10%.

After this change, the networks resettled their AMPA-based synaptic

weights for 30 min with intact HSP and impaired STDP mechanisms,

and the analysis focused on the last 5 min of this simulation time. By

this time, the activity level had stabilized at a level distinct from base-

line. While there are several possible ways to alter the STDP algo-

rithm, we believe this modification most closely represents empirically

observed changes, such as the inability to induce LTP in CA1 after

injury. Others have demonstrated that this ability is associated with

protein production, receptor replacement and lifetime, and CaMKII

phosphorylation (Schwarzbach et al., 2006; Vogel et al., 2017). Inhibi-

tion of these processes would reduce the overall capacity for potenti-

ation. In our model, this impediment is captured by reducing the

maximum amount of positive synaptic change associated with STDP.

The precise decrement was determined by identifying a change after

which the network could stabilize after 30 min. At higher levels of

injury (>10% decrease), activity continued to decline, and the network

did not achieve a new equilibrium level of activity.

2.7 | Statistical analysis

To compare coherence and cross-frequency coupling between base-

line simulations and null models, we used Student's t test. To compare

models with STDP impairment with their respective baseline measures,

we applied a paired Student's t test. Bonferroni corrections were used

to determine significance when there were pre- to post-injury compar-

isons for many groups, such as different neuron subtypes.

3 | RESULTS

3.1 | Firing rate and frequencies of activity

With representative modeling parameters to describe four excitatory

and six inhibitory neuron populations across three anatomic subregions,

F IGURE 2 Baseline activity results
establish functional network behavior.
(a) The raster plot displays the baseline
activity where each dot represents a
spike. The primary excitatory cell types
(dentate gyrus [DG] granule cells, CA3,
and CA1 pyramidal cells) are shown in the
darkest colors. Inhibitory neurons are
shown in lighter colors, which match
those in panels (b) and (c). DG = gray;
CA3 = green; CA1 = blue. (b) Average
firing rates by cell type, evaluated over
5 min of simulated time. Inhibitory
populations have higher firing rates than
excitatory populations do, on average.
(c) Average coefficient of variation of the
interspike interval (CoV ISI) by cell type.
CoV ISI was evaluated over 5 min of
simulated time and varies less by cell type
than firing rate does
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our model showed distinct patterns of activity in each anatomic area

(Figure 2a). Broadly, neural activity was lowest in the DG and higher in

both CA3 and CA1 (Figure 2). The average firing rates of the neuron

subtypes also reflected these differences (Figure 2b). As expected, the

excitatory neurons had lower firing rates than the inhibitory neurons

(excitatory: 2.4 ± 7.2 Hz vs. inhibitory: 24.4 ± 18.7 Hz; Student's t test;

p < .001). Across all subtypes, the average firing rates fell within the

range reported for the literature (see Table A4 in the Appendix). When-

ever the data were available, we used the spontaneous firing rate for

the lower limit and the maximum recorded firing rate for the upper limit

for comparison purposes. We also compared to existing models where

possible. Compared to firing rate, the CoV ISI was more consistent

across subtypes; however, as one might expect, there were still differ-

ences across the subregions (DG: 97 ± 10% vs. CA3: 106 ± 27%

vs. CA1: 100 ± 25%; one-way analysis of variance; p < .001) (Figure 2c).

To further contextualize these firing rate results, we also assessed net-

work sparsity by calculating edge density according to the following

equation:

D¼ K

N2�N

where D is the density, K is the number of connections or edges, and

N is the number of neurons in the network. The overall networks are

sparse, with a density of 0.008. The subregional densities for the DG,

CA3, and CA1 are 0.010, 0.038, and 0.024, respectively. Therefore,

we see that the region with the highest density, CA3, also has the

highest firing rate.

Once we established agreement between the simulation results

and the available literature, we next considered the general spectral

features of activity within each anatomic area. Attributes of the fre-

quency spectrum are important for regional function and communica-

tion between regions (Battaglia et al., 2011; Colgin, 2016), and the

spectra provide a framework to investigate how changes to the net-

work (e.g., trauma) would affect the flow of information through the

circuit. We summed the activity of each subregion into an aggregate

signal, which we smoothed with a 10 ms moving average filter and

evaluated in the frequency spectrum (Figure 3a). We calculated the

power in several frequency bands that are often used to classify elec-

trode recordings in the brain (delta: <3 Hz, theta: 3–8 Hz, alpha:

8–12 Hz, beta 13–25 Hz, and gamma: 25–60 Hz). In this baseline

state, the DG did not have high power in any of these bands (Figure

3b), indicating that the area does not generate prominent frequencies

of its own (mean power < 0.06 across all frequency bands). Rather,

the DG operates as a gate, or filter, for the rest of the hippocampal

circuitry, only allowing important signals to pass through to down-

stream regions. In vivo the DG exhibits more dynamic spectral activity

as a result of extra-hippocampal stimulation in the behaving animal.

CA3 was dominated by low frequency signals in the delta and theta

frequencies (mean power > 2.4) (Figure 3c). CA3 shows little to no

F IGURE 3 The observed power in
common frequency bands supports
known characteristics of each subregion.
(a) Aggregate activity signals for each area
are computed by summing the spiking
activity at each ms and smoothing the
resulting signal with an average filter to
yield the spike density function (SDF).
These traces were evaluated in the
frequency spectrum to test power in each
of five common frequency bands of brain
activity. (b) Compared to CA3 and CA1,
the dentate gyrus (DG) has low power in
all frequency bands, but the frequencies
with the most power are beta and slow
gamma. (c) CA3 has signal in relatively low
frequencies of the delta and theta bands.
(d) CA1 has power in both theta and slow
gamma bands
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power in alpha, beta, or gamma frequencies (mean power < 0.5). The

development of these low frequency signals in CA3 despite minimal

passthrough from the DG points to the importance of recurrent collat-

erals in CA3 (see Figure S2 in Supporting Information for additional

evidence to this effect). Supporting the putative function of CA3 as

an amplifier, recurrent connections enable the subregion to augment

signals and send them to CA1. Uniquely, CA1 demonstrates power in

both low frequency theta and higher frequency gamma (Figure 3d).

These frequencies are believed to enable communication between

CA1 and other brain regions, such as the entorhinal cortex, CA3, and

prefrontal cortex (Colgin et al., 2009; Tamura et al., 2017), by directing

the transient binding between distant neuronal ensembles (Colgin

et al., 2009). In the complete biological circuit, these frequencies

would be sent from CA1 to downstream regions, fulfilling the primary

function of CA1 as a transducer (Cohen et al., 2007). Importantly, all

these frequencies developed organically within the network based on

the neuron model parameters and connectivity. It is driven by synaptic

noise to generate nominal random firing, but there are no additional

patterns or frequencies used as inputs. Altogether, these results vali-

date the activity of the model and demonstrate that the circuitry

supports known functions of each subregion.

3.2 | Baseline networks produce
stimulus–response curves

We next sought to demonstrate an important feature of hippocampal

circuitry—namely, the relationship between extrinsic stimulus and the

circuit response. In electrophysiology, extracellular field recordings are

used to evaluate field potential input–output relationships and to test

the function and excitability of a hippocampal slice. The method typi-

cally consists of stimulating with a current input and recording the

downstream circuit response. The two most common protocols in the

hippocampus are stimulating the perforant path and recording in

downstream DG (Figure 4a) or stimulating the Schaefer collaterals in

CA3 and recording in downstream CA1 (Figure 4c). We developed an

analogous testing routine within our model (see Section 2 for details).

Briefly, with each increase in stimulation level, more neurons fired

action potentials. The response in terms of spikes was recorded from

a nonoverlapping set of neurons and normalized. The resulting curves

show that as the stimulation level increases, there is a corresponding

increase in the response (number of spikes). As stimulation continues

to increase, the response reaches a plateau, producing a curve. We

see that this is the case for both perforant path- and Schaeffer

collateral-like stimulation (Figure 4b,d). We also fit the curves with

two-term exponential equations (Yfit = a � exp(b � x) + c � exp(d � x).

DG: a = 0.40, b = 0.076, c = �0.40, d = �1.54; R2 = .98; RMSE =

0.04. CA3: a = 1.50, b = �0.04, c = �1.50, d = �0.21; R2 = .98;

RMSE = 0.04. CA1: a = 0.73, b = �5.6e-6, c = �0.72, d = �0.45;

R2 = .95; RMSE = 0.05.) Although this approach differs from classical

electrophysiology because the stimulus consists of spikes as an analog

to extracellular current injection, we find a similar stimulus–response

trend.

3.3 | Phase coherence and PAC

To further explore the relationships between frequency bands of the

aggregate activity traces, we considered phase coherence between

the phase angles of the CA3 and CA1 theta waves. We filtered the

F IGURE 4 Stimulus–response curves
in the model hippocampus. (a) The
schematic shows how traditional input–
output curves would be recorded in acute
slices. The red bolt is a hypothetical
stimulus, and the gray triangle represents
a recording electrode in the dentate gyrus
(DG). (b) In the model DG, the response
has higher variability at low stimulus
levels and is more stable at higher levels.
Error bars = SEM. (c) This schematic
shows stimulus (red bolt) of the Schaffer
collaterals, which project from CA3 and
synapse in CA1. The green triangle
represents a recording electrode in CA3
while the blue triangle signifies a
recording electrode in CA1. (d) In the
model, the normalized response tracks
closely between CA3 and CA1. Error
bars = SEM

240 SCHUMM ET AL.



traces (Figure 5a), extracted the phase component from the analytic

signal, and computed the PLV according to the method originally intro-

duced by Lachaux et al. (1999). Across the 10 networks, the coherence

between CA3 and CA1 theta oscillations is high and significant com-

pared to null models (simulation: 0.96 ± 0.01 vs. null model: 0.15

± 0.03; p < 1e-5) (Figure 5e). This suggests that theta oscillations are

highly synchronized between CA3 and CA1, which can also be seen in

the filtered traces (Figure 5a). We also evaluated cross-frequency cou-

pling between theta and slow gamma frequencies in CA1. Specifically,

we tested for PAC where the phase of the theta wave corresponds to

the amplitude of the gamma wave. Qualitatively, the representative

phase-amplitude plot shows that there is a strong relationship

between the theta phase and gamma amplitude (Figure 5b). The same

plot for permuted data yields a uniform distribution, indicating there is

no cross-frequency coupling (Figure 5c). Quantitatively, permutation

testing demonstrates that the MI is significantly higher in the simula-

tion data than in the null model (simulation: 6.2e-3 ± 2.3e-3 vs. null

model: 5.3e-5 ± 1.2e-5; p < .001) (Figure 5d). It is important to note

that the peak of the gamma amplitude is located at the rising phase of

the idealized theta wave (Figure 5b). This result differs from other

work that shows the amplitude peak near the trough of the theta wave

(Bezaire et al., 2016; Tort et al., 2008). It is possible this difference

arises because our analysis aggregates the simultaneous spiking activ-

ity across the entire simulated subregion, and in this way, it is not a

true local field potential (LFP). Furthermore, in vivo recording data

demonstrate that the theta phase preference of the gamma amplitude

varies based on attributes like the behavioral state of the animal and

the specific gamma sub-band of interest (Belluscio et al., 2012).

3.4 | STDP impairment

After STDP impairment, we find that the overall pattern of activity

remains similar to baseline (Figure 6a). Several neuron subtypes do

F IGURE 5 There is strong phase-
amplitude coupling (PAC) in CA1 and
phase coherence between CA3 and
CA1 at baseline. (a) The aggregate activity
from CA3 and CA1 was smoothed and
filtered by frequency band. (b) A phase-
amplitude plot demonstrates the presence
of phase-amplitude coupling between the
theta and gamma frequencies in the CA1

subregion. The amplitude of the gamma
wave is highest during the rising phase of
the theta wave. (c) The null model
generated by permuting the gamma trace
produces a uniform phase-amplitude
distribution, indicating no phase-
amplitude coupling. (d) The modulation
index is much higher for the simulation
signal than for the null model (p < 1e-5).
(e) The phase locking value (PLV) between
the theta wave in CA3 and CA1 is high,
suggesting a high level of phase
coherence (p < 1e-5)
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however have a significant reduction in their firing rates compared to

baseline levels (CA3 pyramidal cells, CA3 basket cells, CA3 interneu-

rons, CA1 pyramidal cells, CA1 interneurons; paired Student's t test

for each cell type; p < .005 with the significance level determined by

Bonferroni correction for multiple comparisons) (Figure 6b). Several

subtypes also have significant changes in the CoV ISI. A decrease in

the CoV ISI indicates less variability in the timing of neuron firing and

was observed for CA3 pyramidal cells, CA3 interneurons, and CA1

pyramidal cells (Figure 6c). Uniquely, CA3 basket cells exhibited a sig-

nificant increase in CoV ISI (paired Student's t test; p < .01 for all

baseline to injury comparisons) (Figure 6c). None of the dentate sub-

types had significant alterations in their activity. These activity

changes were related to changes in synaptic strength. Of the overall

change in weight, CA3 pyramidal cells accounted for the majority at

76% (Figure 6d). When we divided this change among the outputs of

the CA3 pyramidal cells, we found that 80% of the change was in syn-

apses onto CA1 pyramidal cells (Figure 6e). The remaining 20% of the

change occurred within CA3 recurrent collaterals (Figure 6e). Alto-

gether, these results demonstrate a significant decline in activity from

reduced potentiation capacity.

Finally, we evaluated the effects of STDP impairment on the

aggregate activity signals. We observed changes in in signal power

commensurate with the changes in firing rate. Specifically, the dentate

did not show any significant decreases in power (Figure 7a). In con-

trast, CA3 had a significant reduction in broadband power, affecting

the theta, alpha, beta, and gamma bands (p < .01) (Figure 7b). Of these

changes, the most important is the loss of theta power since this fre-

quency band regulates the overall function of area CA3. CA1 also

F IGURE 6 Impaired spike-timing-
dependent plasticity (STDP) decreases
activity in CA3 and CA1. (a) A raster plot
of activity after injury shows a similar
pattern to baseline activity. (b) CA1 has
the largest percentage decrease in firing
rate. Asterisks (*) indicate significant
difference between firing rate at baseline
versus injury (paired t test with

Bonferroni correction; p < .005). (c) The
coefficient of variation of the interspike
interval (CoV ISI) alters the most in the
CA3 subregion. Asterisks (*) mark
significant differences between CoV ISI at
baseline versus injury (paired t test with
Bonferroni correction; p < .005). (d) CA3
pyramidal cells (PCs) account for the
largest percentage change in the total
output strength of the network. (e) Most
of the change in output strength of CA3
PCs is in their synapses onto CA1
pyramidal cells
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displayed significant loss of power in the theta, beta, and gamma

bands (p < .01) (Figure 7c). Again, the theta and gamma bands are criti-

cal to the regional function, so these reductions are especially notable.

Surprisingly, however, these shifts in power did not affect the PAC

that is characteristic of CA1 (baseline: 6.2e-3 ± 2.3e-3 vs. STDP

impairment: 6.7e-3 ± 3.0e-3; paired Student's t test; p > .05) (Figure

7d,e). There was a modest, yet significant, decline in phase coherence

between the theta oscillations of CA3 and CA1 (baseline: 0.96 ± 0.01

vs. STDP impairment: 0.95 ± 0.16; paired Student's t test; p < .01)

(Figure 7f). These results suggest that STDP impairment affected the

longer-range communication between subregions more so than the

local communication within a single area.

4 | DISCUSSION

In this work, we developed a neuronal network model of the hippo-

campus, including all three principal subregions of the DG, CA3, and

CA1. We diligently incorporated physiological detail by relying on lit-

erature resources for electrophysiological and anatomical connectivity

information. After developing individual neuron models and assem-

bling the connectivity matrix, we measured and validated the overall

network activity in several ways. First, we aimed to keep the average

firing rate of each subtype within a literature-defined range. Beyond

this raw measure of activity, the overall pattern of activity across the

three subregions mimicked known frequency characteristics described

in the literature. Specifically, CA3 has theta rhythms while CA1 mir-

rors these same theta rhythms and also exhibits gamma oscillations.

Finally, the model displays phase coherence between theta signals in

CA3 and CA1 as well as PAC, an additional higher-level feature, in

CA1. Importantly, these features developed spontaneously without

external constraints or explicitly encoding these frequencies, unde-

rscoring the need to study hippocampal subregions as an integrated

system. Despite the size and level of complexity of the model, we

were able to incorporate specific algorithms of HSP and STDP, broad-

ening the future applications of the model. We demonstrated the

importance of STDP within this work by revealing how a small alter-

ation could impact network activity and behavior, reducing broadband

power in CA3 and CA1 and phase coherence between CA3 and CA1.

In designing and constructing this model, we made several simpli-

fications as we sought to balance biological fidelity and computational

efficiency. First, we used a point neuron model, which neglects

detailed morphology information, and simplified physical geometry,

which lacks more complex lamellar structure. However, we find that

the network activity recapitulates important features of firing rate and

oscillation frequency, suggesting that these simplifications do not

F IGURE 7 Impaired spike-timing-dependent plasticity (STDP) decreases broadband power in CA3 and CA1 but does not affect phase-
amplitude coupling in CA1. (a) The dentate gyrus (DG) does not have significant changes in power after STDP impairment. (b) After injury, CA3
loses power in the theta, alpha, beta, and gamma bands but does not significantly decrease power in the delta band. (c) CA1 has significantly less
power in the theta, beta, and gamma bands, with the largest decrease in theta (paired t test with Bonferroni correction; *p < .01, **p < 1e-5 for
(a–c)). (d) The phase-amplitude relationship does not change after STDP impairment. The sine wave shows an idealized theta waveform for
comparison, and the peak of the gamma amplitude appears during the rising phase of theta. (e) There is no significant difference between the
modulation index pre- and post-injury. (f) In contrast, there is a significant decrease in coherence between the theta rhythms of CA3 and CA1
after STDP impairment (paired t test; p < .01)
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detract from the validity of our model for assessing higher-level net-

work features. Related to this simplification, we evaluated activity

oscillations by aggregating simultaneous spikes across each subregion.

We did not calculate a precise LFP or other electrophysiological corre-

late because such approximations are highly inaccurate for point neu-

rons. As such, point neurons lack the compartmental morphology

necessary to generate and measure dipoles, a prerequisite for produc-

ing an accurate LFP (Graben & Rodrigues, 2013; Mazzoni et al., 2015).

Using compartmental neuron models was at odds with our goal of

developing a detailed network model while retaining computational

efficiency. Addressing the limitation of generating more accurate LFP

correlates is outside the scope of this study, but others are working

on this very subject (Camusas-Mesa & Quiroga, 2013; Einevoll et al.,

2013; Graben & Rodrigues, 2013; Mazzoni et al., 2015). In addition to

using point neurons for computational efficiency, we also used the

Izhikevich neuron model to ensure the network model could run on a

desktop computer. While other spiking neuron models have superior

biophysical interpretability, the Izhikevich model is efficient and vali-

dated on neuron spiking patterns, the key feature for our analysis.

Furthermore, the Izhikevich model is sufficiently adaptable in its for-

mulation to simulate many types of neurons, so it is well suited to the

heterogeneity of hippocampal neurons that we sought to incorporate

in our model. Interestingly, although the single neuron models primar-

ily display regular spiking behavior, more complex rhythms arise with

synaptic connectivity across the network. Finally, this hippocampal

network model remains less than full-scale with a limited number of

neurons and receptors. To achieve a model with biological complexity

and computational efficiency, we could not include all interneuron

subtypes. Since many types of interneurons account for a nominal

percentage of the overall cell population, the major subtypes specified

in our model could accurately represent baseline regional activity. Still,

to account for this limitation, we incorporated extra variance around

interneuron parameters to represent a larger set of possible interneu-

rons. In addition, this is a flexible platform and could easily be adapted

to include an additional neuron subtype or receptor if the research

question demanded it.

Aside from the limitations of the model, the method of injury

(STDP impairment) is itself a simplification because the mechanisms

underlying changes in plasticity after mild TBI are not well known.

Although memory impairment is a common complaint for TBI patients,

plasticity impairment remains an understudied mechanism of injury,

especially mild injury. Previous work has demonstrated LTP impair-

ment in both acute brain slices from animals after in vivo lateral fluid

percussion injury and organotypic slice cultures after in vitro blast

injury (Aungst et al., 2014; Effgen et al., 2016; Schwarzbach et al.,

2006; Vogel et al., 2016, 2017). Aside from these assessments of LTP

in hippocampal slice, the study of plasticity impairment has been lim-

ited. The LTP deficit is associated with reduced CaMKII expression

and disruption of synaptic proteins like PSD-95 (Schwarzbach et al.,

2006; Vogel et al., 2017). Our implementation amalgamates these

effects into an overall reduction in synaptic potentiation. We chose to

impair only the potentiation of synaptic strength in STDP, as injury

does not generally impair the long-term depression in acute brain

slices after TBI (Schwarzbach et al., 2006). Injury may also implicate

other neural plasticity mechanisms, including HSP. While we did not

explicitly incorporate a deficit in our HSP algorithm, we would expect

such a change to support the results presented here. Since STDP has

a shorter timescale than HSP, STDP is often the dominant mechanism

when activity changes rapidly (Zenke et al., 2017). Our analysis was

also limited to effects on neural activity; however, there is no direct

link between the model and place fields, a measure of memory

encoding, as detected with in vivo recording in behaving animals

(Dombeck et al., 2010). Certainly, many other mechanisms might

impact overall network plasticity. For instance, altering neurotransmis-

sion, intrinsic excitability of neurons, or the balance of excitation and

inhibition in the network would alter the network firing rate and

thereby intersect with STDP. Future work might address the interac-

tion between the reduced capacity for synaptic potentiation and other

injury mechanisms, such as cell loss or axonal degeneration. Since

NMDA receptors are specifically associated with LTP induction

(Madison et al., 1991; Malenka & Nicoll, 1993) and are mechanically

sensitive to physical injury (Singh et al., 2012; Zhang et al., 1996),

NMDA receptor damage might be a particularly interesting addition.

Furthermore, LTP impairment may be an evolving condition, and this

implementation consisted of a single intervention. While some elec-

trophysiology studies have demonstrated deficits up to 28 days post-

injury, LTP impairment may resolve depending on factors like the hip-

pocampal subregion of interest (Aungst et al., 2014; White et al.,

2017). Whether the circuit would regain preinjury activity levels if

LTP impairment resolved is an open question.

The literature corroborates many of our initial findings in healthy

networks. On a basic level, it is known that the DG is generally less

active and less excitable than CA1 (Hsu, 2007; Paterno et al., 2017).

Among the most compelling results is that the network supports both

theta and gamma rhythms in CA1. These characteristic frequencies

facilitate information transfer throughout the network (Canolty &

Knight, 2010; Colgin, 2015; Sun et al., 2013). Not only do we find that

our model generates these frequencies, but we also see theta-

modulated gamma oscillations in CA1. PAC in which the amplitude of

the gamma wave is coupled to the phase of the theta cycle is a well-

studied phenomenon in CA1 (Belluscio et al., 2012; Canolty et al.,

2006; Mormann et al., 2005; Soltesz & Deschenes, 1993). PAC puta-

tively supports memory processing by facilitating the temporal organi-

zation of neural activity (Colgin, 2015; Fell & Axmacher, 2011).

Recapitulating PAC in our model of the “healthy” hippocampus

implies it would be a worthwhile tool to study how injury mechanisms

contribute to changes in hippocampal function after injury. Moreover,

theta frequency in the hippocampus is also known to modulate activ-

ity in the prefrontal cortex and to enable spatial memory in animals

(Buzsáki, 2005; Colgin, 2013; Hanslmayr & Staudigl, 2014; Jin &

Maren, 2015; Tamura et al., 2017), connecting our modeling results to

spatial memory deficits after mild TBI (Folweiler et al., 2018; Paterno

et al., 2017). Other efforts to explore how cross-frequency coupling

varies dynamically by brain region and cognitive task have also begun

to establish how forms of cross-frequency coupling like PAC could

represent a functional link between network communication across
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spatiotemporal scales (Canolty & Knight, 2010). Across the brain,

cross-frequency coupling is associated with functions as wide-ranging

as emotion (Schutter & Knyazev, 2011), motivation (Schroeder &

Lakatos, 2009; Schutter & Knyazev, 2011), decision-making (Canolty &

Knight, 2010; Schroeder & Lakatos, 2009), and attention (Lakatos

et al., 2008; Schroeder & Lakatos, 2009)—all functions which may be

affected by TBI.

Perhaps, the most striking effect of STDP impairment in our model

is the broadband decrease in power observed in CA3 and CA1.

Paterno et al. observed a similar reduction of broadband power in CA1

in acute hippocampal slices from animals that had undergone lateral

fluid percussion injury (Paterno et al., 2016). Others have found that

TBI attenuated specifically theta rhythms in the hippocampus of rats

(Fedor et al., 2010; Lee et al., 2013, 2015). In patients with mild TBI,

quantitative EEG analysis has revealed that injury symptoms are

accompanied by changes in EEG power spectra (Modarres et al.,

2017). Gosselin et al. found that concussed athletes had lower alpha

power and higher delta power than controls did (Gosselin et al., 2009),

suggesting an overall shift from higher to lower frequencies. Interest-

ingly, the delta band is the only frequency band that was not signifi-

cantly attenuated in CA3 or CA1 in our work. These results suggest a

decrease in higher frequency power is an indicator of damage. This

concept is also corroborated by earlier work in our lab on a model of

network synchronization in which certain patterns of damage

disrupted the network's ability to produce higher frequencies (Schumm

et al., 2020).

The relative vulnerability of area CA3 of the hippocampus has

long been a question of interest in the TBI field with some studies

supporting the concept that CA3 is uniquely susceptible to injury

while others contradict the idea (Cherubini & Miles, 2015; Mao, Elkin,

et al., 2013; Witgen et al., 2005). Evidenced by reduced activity,

power, and phase coherence, our results corroborate that the CA3

subregion is a weak point within the broader hippocampal circuitry

when plasticity is impaired throughout the entire circuit. CA3 suscep-

tibility is partially attributable to high activity owing to its structural

(recurrent collaterals) and functional properties (lower inhibition),

which raise the likelihood of plasticity-induced changes in synaptic

strength as compared to other hippocampal subregions. Such charac-

teristics make CA3 highly sensitive to alterations in the properties of

STDP specifically and may also enhance the influence of this area

across the hippocampus after TBI. In contrast, with its characteristic

high inhibition, which remains unchanged by this injury mechanism,

the DG has lower activity with less opportunity for STDP to interact,

thereby contributing to overall stability under these conditions. There-

fore, the DG appears largely unaffected by this form of plasticity

impairment under baseline conditions. Together, these results indicate

that specific injury mechanisms may differentially target some areas

of the hippocampus more than others. Although area CA3 is challeng-

ing to study with traditional electrophysiological approaches, our

model offers unique insight as to why it may be vulnerable to injury—

namely high activity makes it prone to rapid synaptic changes that

propagate downstream. Specifically, we showed decreased synaptic

strength in CA3, and corresponding functional deficits manifest as

reduced activity and power in both CA3 and CA1. Since the hippo-

campus and plasticity are crucial to the function of learning, we are

interested in exploring network-based learning mechanisms with our

model in future work. We anticipate that learning would put effects

of damage into higher relief since exogenous stimulation would intro-

duce an additional challenge to the network that it is likely unable to

meet with potentiation deficits.

At a larger network scale, a decline of coherence between subre-

gions without a decrease of PAC within a single subregion suggests that

STDP impairment more strongly impacts long-range projections, which

likely has functional implications. Since longer projections generally have

longer propagation delays, distant synapses require precise modulation

of spike timing to increase synaptic weight. With a global reduction in

potentiation, distant synapses may no longer attain the requisite

strength for coupling, contributing to aggregate decoupling with more

remote regions. Although we are not aware of evidence showing this

decline in coherence within the injured hippocampus, a number of func-

tional MRI studies after TBI exhibit clear shifts in functional connectivity

(Bonnelle et al., 2011; Mayer et al., 2011; Nakamura et al., 2009; Sours,

George, et al., 2015; Venkatesan et al., 2015). Even though, the effects

vary depending on factors such as injury severity, methodology, and

brain regions of interest, many have found that injury decreases coher-

ence of macroscale brain regions (Costanzo et al., 2014; Mayer et al.,

2011; Palacios et al., 2017; Stevens et al., 2012). Furthermore, abnor-

malities in functional connectivity are correlated and predictive of symp-

tom expression and cognitive deficits after traumatic injury (Mayer

et al., 2011; Palacios et al., 2017; Stevens et al., 2012). With the effect

on more distant connections, our work indicates that uniform impair-

ment in plasticity can play an important role in rewiring broader circuitry

within the brain. As such, our work raises the possibility that a synaptic

scale pathology in TBI can have much broader consequences on brain

function.

Finally, our work adds to past studies that examine other forms of

neuropathology in TBI and begins to form a more comprehensive view

of how different injury mechanisms perturb the function of damaged

neural circuits. In our previous work on STDP and injury, we investi-

gated how STDP can act as a homeostatic mechanism to restore base-

line function in networks after injury, enabling the network to absorb

damage and mitigate functional deficits (Gabrieli et al., 2020; Schumm

et al., 2020). Potentiation impairment, as modeled here, would likely

reduce the protective, or insulating, role that STDP provides against

neurodegeneration. Likewise, deafferentation in a model of cortical

circuitry can lead to the emergence of strong bursts of epileptiform

activity (Volman et al., 2011). Introducing STDP may alleviate patho-

logical bursting behavior, but this method of self-repair in the network

would be limited under conditions of STDP impairment. Finally, STDP

also significantly moderates the elevated activity that appears as a

result of damage to mechanosensitive NMDA receptors (Gabrieli

et al., 2021), and plasticity impairment would reduce or eliminate this

activity-rate compensation across the network. Furthermore, in larger

scale brain networks, STDP impairment may preferentially disrupt the

coupling of more distant regions, and multiple injury mechanisms may

co-occur across subregions of a single network. Considering the
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interactions among several injury modalities suggests a general pro-

pensity to develop a less coherent circuit with more variable activity

across the network after TBI. Although there is some evidence that

mild TBI produces this type of change in network activity, future work

that systematically examines the contribution of individual injury

mechanisms is necessary to delineate whether these processes work

in either an additive or a compensatory manner to affect cognitive

processing.

Overall, this model comprises an adaptable framework for explor-

ing the hippocampus in both health and disease. As such, it is poised

to address many scientific questions about TBI, neural pathology, and

neuroscience more broadly. Beyond TBI, many pathologies implicate

the hippocampus, including Alzheimer's disease, schizophrenia, and

post-traumatic stress disorder, among others (Small et al., 2011).

Moreover, this work points toward an opportunity to link neuron-

based network models and macroscale models of the whole human

brain. Much like how the computational mechanics field has created

models of the brain's mechanical response at different length

scales (Ahmadzadeh et al., 2014; Finan et al., 2012; Mao, Zhang, et al.,

2013), these multiscale models represent a means to connect injury

mechanisms at the cellular/subcellular scale to overall impairments in

cognitive function inferred through models of neural dynamics. In

addition, this approach offers a tool for understanding how impair-

ments emerge from several simultaneous injury mechanisms, a com-

mon occurrence in TBI and other acquired neurological disorders. In

the long term, this work would facilitate a meaningful prediction of

which therapies at the cellular level may be most beneficial for

improving outcome after TBI and other neurological disorders.
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