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community structure but
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Patients who suffer from traumatic brain injury (TBI) often complain of

learning and memory problems. Their symptoms are principally mediated

by the hippocampus and the ability to adapt to stimulus, also known

as neural plasticity. Therefore, one plausible injury mechanism is plasticity

impairment, which currently lacks comprehensive investigation across TBI

research. For these studies, we used a computational network model of the

hippocampus that includes the dentate gyrus, CA3, and CA1 with neuron-

scale resolution. We simulated mild injury through weakened spike-timing-

dependent plasticity (STDP), which modulates synaptic weights according

to causal spike timing. In preliminary work, we found functional deficits

consisting of decreased firing rate and broadband power in areas CA3

and CA1 after STDP impairment. To address structural changes with these

studies, we applied modularity analysis to evaluate how STDP impairment

modifies community structure in the hippocampal network. We also studied

the emergent function of network-based learning and found that impaired

networks could acquire conditioned responses after training, but the

magnitude of the response was significantly lower. Furthermore, we examined

pattern separation, a prerequisite of learning, by entraining two overlapping

patterns. Contrary to our initial hypothesis, impaired networks did not exhibit

deficits in pattern separation with either population- or rate-based coding.

Collectively, these results demonstrate how a mechanism of injury that

operates at the synapse regulates circuit function.
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Introduction

Traumatic brain injury (TBI) is a debilitating condition
that involves dysfunction across diverse neural circuitry. Often
a result of impacts to the head, TBI is pervasive with up to
2.5 million cases recorded in 2014 (Cancelliere et al., 2017;
Taylor et al., 2017). The incidence of TBI has risen along with
increasing societal awareness of the issue (Prince and Bruhns,
2017), owing in part to the effects of concussion on adolescents
and young adults (Giza et al., 2017). Fortunately, most
patients with mild TBI recover relatively quickly (<3 months)
(Ruff, 2005); however, others experience prolonged symptoms,
including headaches, reduced processing speed, and attention
or memory impairments (Ruff, 2005; Prince and Bruhns, 2017).
Recent evidence points to the myriad consequences of TBI
across the spectrum, ranging from poor outcome in severely
brain injured patients (Kondziella et al., 2022), the broad and
persisting impairments that can occur after mild TBI (Lopez
et al., 2022), how TBI continues to increase risk for other
neurological disorders which include epilepsy (Mariajoseph
et al., 2022) and the substantial employment and economic
consequences of TBI across the severity spectrum (Gaudette
et al., 2022).

Memory deficits are among the most common and
potentially detrimental complaints among TBI patients
(Mcallister et al., 2001; Nicholl and Curt LaFrance, 2009;
McAllister, 2011). The hippocampus is a well-studied brain
structure known especially for its contributions to memory
processes (Sanders et al., 2015; Jeffery, 2018; Genon et al., 2021;
Slotnick, 2022). Earlier work has shown that the hippocampus
is vulnerable to TBI and easily damaged (Kotapka et al.,
1994; Raghupathi, 2004; McAllister, 2011; Paterno et al.,
2017). Behavioral studies in rodents have proved hippocampal
involvement in both working and episodic memory and that
deficits occur after TBI across the severity spectrum (Smith
et al., 2015; Paterno et al., 2017). Spatial memory, a subtype of
episodic memory, has also been extensively studied with in vivo
TBI models, which exhibit protracted dysfunction after mild
injury (Dawish et al., 2012; Paterno et al., 2018).

The prevailing theory of memory describes three distinct
phases—encoding, maintenance, and retrieval (Tulving, 1985;
Josselyn et al., 2015). Encoding is the construction of a
persistent neural representation, or memory, of an experience,
maintenance entails preservation of the memory over time, and
retrieval is the active process of recall or accessing the memory
anew. The hippocampus is involved in all three procedures
(Paterno et al., 2017), but precisely how TBI perturbs these three
phases remains unclear. The process of forming memories is
supported by synaptic plasticity, a mechanism by which circuits
are strengthened or weakened. In classical electrophysiology,
such enduring, use-dependent increases in synaptic strength
are encompassed by the phenomenon of long-term potentiation
(LTP), or the enhancement of synaptic transmission efficiency.

After TBI, several groups have demonstrated changes in synaptic
plasticity and failures in LTP (Albensi et al., 2000; Sanders et al.,
2000; Schwarzbach et al., 2006; Aungst et al., 2014; Wilson
et al., 2016; White et al., 2017), especially in area CA1 of the
hippocampus (Schwarzbach et al., 2006; Cohen et al., 2007),
suggesting plasticity impairment may underlie post-injury
behavioral deficits in memory tasks. The inability to induce
LTP is associated with reduced CamKII phosphorylation and
synaptic protein disruption, which together represent a lower
capacity for synaptic potentiation (Schwarzbach et al., 2006;
Vogel et al., 2017). If LTP impairment represents a potentiation
deficit and potentiation undergirds memory formation, we
would anticipate encoding problems to ensue after injury.
Surprisingly, there is no consensus about which phase of the
memory process is most disrupted after injury.

Beyond the biological basis of memory and the disruption
posed by TBI, the adaptation of microcircuit architecture
through learning remains largely unaddressed in the existing
literature. One tool used at the macroscale is modularity
for community detection in large networks. Communities are
clusters of nodes with connections to one another that facilitate
performing a collaborative function (Sporns and Betzel, 2016).
The division of the brain into functional subnetworks is
well-supported at the macroscale (Sporns and Betzel, 2016).
Specific to learning, one group examined how networks evolve
over the course of learning through dynamic community
realignment (Bassett et al., 2011). How the concepts of
modularity and learning integrate in microscale circuits is
unknown. While attention and learning are often studied in
macroscale brain networks, there are few existing studies of
learning in biologically derived microscale neural networks
(Izhikevich, 2006; Guise et al., 2015; Chavlis et al., 2017; Gabrieli
et al., 2020a). A few groups have documented how connectivity
adapts with stimulation and development in vitro (Whittington
and Traub, 2003; Draguhn and Buzsáki, 2004; Penn et al.,
2016), and some models have considered learning-related input-
output relationships. However, these are limited by either a
lack of plasticity or specific physiological network structure.
For instance, Chavlis and colleagues analyzed the effect of
dendritic atrophy on pattern separation in a computational
model of the dentate gyrus (Chavlis et al., 2017); however, since
the model does not incorporate plasticity, the results do not
invoke classical potentiated learning. Examining community
structure in a computational model of the hippocampus
facilitates finer resolution analysis than could otherwise be
obtained experimentally because we can observe the evolution
of thousands of neurons over time. Furthermore, we can
study the effects of an isolated mechanism of injury that has
circuity-level implications. Among many possible outcomes
of secondary injury sequelae, plasticity impairment can be
directly linked to learning and memory dysfunction. Reports
of learning-dependent network changes in this important,
memory-related microcircuit are currently lacking.
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In these studies, we use a model of three integrated
subregions of the hippocampal formation (namely, the DG,
CA3, and CA1) that comprise the classical trisynaptic
circuit. The model was constructed according to known
electrophysiology and anatomical connectivity data. Although
TBI likely includes a plethora of mechanisms, we isolated the
effects of impaired potentiation. We simulate one effect of mild
TBI as STDP impairment by reducing potentiation in the circuit
and establish that this deficit reduced activity and broadband
power in the network (Schumm et al., 2022). Here we extend
those results by demonstrating how STDP impairment affects
the structural network, focusing specifically on community
organization. STDP impairment causes realignment among
excitatory neurons in CA3. We also implement a learning
paradigm using overlapping input patterns to study pattern
separation across the hippocampal subregions. Networks with
STDP impairment exhibit minor learning impairments but no
pattern separation deficits, despite significant activity differences
and modified community structure. These results should be
interpreted given the limitations of this work; the computational
network model is not full-scale, and the mechanism of injury
(plasticity impairment) does not encompass the full scope
of potential dysfunction post-TBI. However, the approach
provides an opportunity to isolate the effects of potentiation
deficits in a network model of all three primary sub-regions of
the hippocampus.

Materials and methods

Briefly, the model focuses on the dentate gyrus (DG),
CA3, and CA1 as the primary subregions of the hippocampal
formation (Figures 1A,C). The areas follow a primarily
feedforward topology with the DG sending projections to CA3
which terminates in CA1 (a summary of the modeling methods
follows. See Schumm et al., 2022 for more information about the
model parameters).

Network structure and model
dynamics

The network is a system of nodes that represent neurons
and edges that designate the connections between them. For
each point neuron, we applied the Izhikevich integrate-and-fire
neuron model, which uses the following system of differential
equations to determine the spiking behavior of a neuron over
time (Izhikevich and Edelman, 2008):

Cv′ = k (v− vr) (v− vt)− u+ I (1)

u′ = a
[
b (v− vr)− u

]
(2)

if v ≥ vp, then

{
v = c

u = u+ d
(3)

Where v is the membrane potential in millivolts (mv), and u is
the recovery variable. C is the membrane capacitance (pF), vr

is the resting membrane potential, vt is the threshold potential,
and vp is the membrane potential at the peak of the spike. I
is current in picoamperes (pA). The dimensionless parameters
a, b, c, d, and k are adjusted to represent different subtypes
of neurons. The current (I) aggregates receptor-based ionic
currents, including AMPA, NMDA, and GABA-A receptors, and
1 Hz noise input that drives the network and follows a gamma
distribution (k = 2, θ = 1/2) (Izhikevich and Edelman, 2008;
Gabrieli et al., 2020b; Schumm et al., 2020, 2022).

There are 10 different types of neurons represented in
the model across the three anatomical subregions (Schumm
et al., 2022). The dentate consists of granule cells, mossy cells,
basket cells, and interneurons. Areas CA3 and CA1 each have
pyramidal cells, basket cells, and interneurons with parameters
specific to that subregion. Inhibitory neurons account for
approximately 10% of the neurons in each subnetwork
(Woodson et al., 1989; Aika et al., 1994; Bezaire and Soltesz,
2013; Bezaire et al., 2016). The subtypes have characteristic
electrophysiology and connectivity, which are represented
through functional and structural features of the model,
respectively. Broadly, the connectivity of the hippocampus
follows a feedforward architecture (see Schumm et al., 2022 for
detailed connectivity information). Granule cells, the principal
excitatory neurons of the dentate, synapse onto CA3 neurons
but have no connections to one another under physiological
conditions. CA3 pyramidal cells are known to have a relatively
high proportion of recurrent collaterals, but the majority of their
axons project to CA1 pyramidal cells. In total, there are 8,885
neurons in the model, which converts to a scale of approximately
1:185 principal neurons in the rat hippocampus.

Plasticity implementation and
impairment

The model incorporates two primary forms of synaptic
plasticity—spike-timing-dependent plasticity (STDP) and
homeostatic plasticity (HSP). STDP is a form of order-
dependent Hebbian learning. The process relies on precise
spike timing between neurons and strengthens synapses when
neurons fire causally (i.e., when the upstream neuron fires
before the downstream neuron) (Feldman, 2012). Synaptic
strengthening and weakening occur according to the following
equation (Effenberger et al., 2015):

4w(w) =

A+ (w) exp
(
−

tpost−tpre
τ

)
if tpost − tpre > 0

A− (w) exp
(
−

tpost−tpre
τ

)
if tpost − tpre ≤ 0

(4)
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FIGURE 1

Modeling STDP impairment in a network model of the hippocampus. (A) The hippocampus consists of several regions connected in a
predominantly feedforward topology with information passed from the DG to CA3 to CA1. These three regions are represented in the network
model. (B) According to classical STDP, synapses between neurons with causal spikes (positive spike timing) are strengthened, but synapses
between neurons with acausal spikes (negative spiking timing) are weakened. With STDP impairment, peak strengthening, or potentiation, is
decreased. (C) At baseline, each region has a distinct pattern of firing activity. (D) After STDP impairment, firing rate significantly decreased in
areas CA3 and CA1. (E) The power in the theta band, which is important for information processing and hippocampal function, also significantly
decreased after injury. *p < 0.01.

Where w is the weight of the connection between two neurons.
A+ and A− determine the magnitude of maximal synaptic
change. The A+/A− ratio is often biased toward strengthening
and equaled 1.05 in this work (Song et al., 2000). τ is the
plasticity time constant and was approximated as 20 ms
(Song et al., 2000). Finally, tpre and tpost are the timing of pre-
and post-synaptic spikes, respectively.

Similar to previous models, plasticity applied to excitatory-
to-excitatory synapses only (Song et al., 2000). While there are
documented cases of inhibitory plasticity, inhibitory STDP is
highly variable (Lu et al., 2007; Caporale and Dan, 2008), making
it difficult to implement in the model without further empirical
study within this circuit. To stabilize connection weights in the
network (Zenke et al., 2017), we incorporated synaptic scaling,
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a specific form of HSP that operates at the level of individual
neurons (Tetzlaff et al., 2011). The activity of each neuron is
compared to a target firing rate, and all the synapses of the
neuron are modified to shift the actual firing rate closer to the
target firing rate (Turrigiano et al., 1998; Turrigiano and Nelson,
2004). The following equation describes a threshold formulation
of HSP adapted from (Effenberger et al., 2015):

if |(vo − vt)/vt| > 0.50 (5)

4w (w) = −
γ

Wmax

(
vo − vt

vt

)
(w2) (6)

Where w is the weight of connection, γ is the dimensionless rate
of change and equals 10−8 in these studies, vo is the observed
firing rate, vt is the target firing rate, and Wmax is the maximum
excitatory weight of that neuron subtype. The function has a
threshold such that synaptic weights are adjusted for neurons
with firing rate change greater than 50% of their target firing
rate (vt) over the course of 120 s. This threshold ensures that
the network continues to adapt with STDP without creating
neurons with unconstrained, runaway activity.

STDP is associated with the well-studied phenomenon
of long-term potentiation (LTP) observed in brain slice
electrophysiology (Feldman, 2012). LTP describes the prolonged
increase in synaptic efficacy of a circuit and is believed to support
learning at the organismal level. TBI leads to deficits in spatial
learning and LTP (Albensi et al., 2000; Aungst et al., 2014;
Paterno et al., 2017; White et al., 2017), especially within CA1 of
the hippocampus (Schwarzbach et al., 2006; Cohen et al., 2007).
We sought to mimic a plasticity deficit and effects of mild TBI
by altering the STDP algorithm in our model. To achieve this
impairment, we reduced the maximal amount of potentiation in
the model by 10% (A+ = 0.9 instead of 1.0 in Equation 4 above)
(Figure 1B). In our previous work, we demonstrated that this
modest decrement contributed to significant decreases in firing
rate and signal power in impaired networks (Figures 1D,E).
Simulations ran for 20 min without HSP to expedite synaptic
settling and then 30 min with HSP. Simulations with STDP
impairment were run for an additional 30 min. Analysis was
performed on the final 5 min of simulation time for both
baseline and impaired networks.

Modularity analysis for community
detection

Large network architectures can be partitioned into several
subnetworks that perform specialized functions (Figures 2A,B).
These modules or communities generally contain densely
connected nodes that are more weakly connected to other nodes
outside the module. There are many methodological options
for conducting community detection in networks (Sporns and
Betzel, 2016). Since our networks are directed, weighted, and

signed in addition to being large (more than 3,000 nodes),
we required algorithms that could accommodate networks
with this combination of characteristics. Modularity is one
common technique used to detect the community structure
of a network. Reorganizing the original matrix based on its
underlying community structure takes several steps that we
implemented with functions from the publicly available Brain
Connectivity Toolbox (Rubinov and Sporns, 2010). Overall,
we followed a procedure of modularity maximization which
seeks to find the optimal network partition that maximizes the
modularity quality function (Q) (Sporns and Betzel, 2016):

Q (γ) =
1

2m

∑
i,j

[
aij − γ pij

]
δ(σi, σj) (7)

Where ai,j is the number of connection between modules i and
j, pi,j is the expected number of connections between modules
i and j according to a null model, 2m is the total number of
connections, γ is the resolution parameter, and δ (σi,σj) is the
Kronecker delta function.

The resolution parameter (γ) determines the scale of the
modules that can be detected such that larger modules are
detected with smaller gamma values. For hypothesis testing, a
null model was generated by rewiring the original matrix while
preserving the original input and output degree distributions.
In gamma optimization, modularity (Q) is calculated for both
experimental and null matrices across a sweep of gamma
values (Figure 2C). The value of gamma that yields the largest
difference in Q between the experimental and null matrices was
used for subsequent steps. Gamma was optimized for minute
26 of each baseline simulation and held constant for ensuing
timepoints and impaired models. With the optimized gamma
parameter, we partitioned the matrix into communities many
times to ensure robustness (Blondel et al., 2008). An association
matrix was generated from the partition ensemble to obtain the
consensus community partition. A null association matrix was
also generated from a permuted partition ensemble, which is
generated by permuting each column of the original partition
ensemble. This null association matrix was used to threshold
the experimental association matrix, thereby removing low
weight connections. Consensus clustering produces an optimal
partition with community assignments for each node, or
neuron. Based on these assignments, the original matrix was
reordered to represent the underlying community structure. We
report the modularity (Q), the number and size of modules, and
the composition of modules in the hippocampal networks.

Learning and pattern separation

The hippocampus plays a key role in the broad functions
of learning and memory, which depend on long-lasting, if
not permanent, changes to network circuitry. These network
modifications are supported by plasticity mechanisms like STDP

Frontiers in Cellular Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fncel.2022.977769
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-16-977769 November 18, 2022 Time: 14:44 # 6

Schumm et al. 10.3389/fncel.2022.977769

FIGURE 2

Modularity methods. (A) Networks can consist of interconnected modules or communities, where similar nodes are grouped with one another.
(B) The matrix shows a network representation of community structure where neurons are grouped by module membership. (C) The original
empirical matrix is rewired to produce the null matrix, which is a random directed graph with the same input and output degree distributions as
the original matrix. The process of community detection maximizes modularity Q to find the optimal community partition. The same
parameters are applied to the null matrix and module quality Q is measured for both matrices. Hypothesis testing compares the values of Q
between the network of interest and the null model to verify the significance of the identified modular structure. The network is reordered
based on community membership. From the reordered matrix, module size and composition can be analyzed. Created with BioRender.com.

that encode persistent responses to network stimulation. More
specifically within the hippocampal formation, the dentate
is known to execute the function of pattern separation, a
crucial learning task in which similar incoming patterns become
increasingly different from one another as they exit the network.
In contrast, area CA3 with its recurrent collateral structure
better supports pattern completion whereby partial pattern
representations are completed as they pass through the network.

Although there are many ways to test learning in a neural
network, given the size of our networks (>8,000 nodes), an
unsupervised learning algorithm was preferable to a supervised
approach, so we evaluated learning with a similar method to
our previous work (Gabrieli et al., 2020a). To summarize this
method, we applied two protocols to assess learning. During

training, the network was stimulated and able to adapt with
plasticity to encode responses to periodic input over 30 min.
During testing, static networks were stimulated for 6 min.
Networks were tested before and after training to determine how
training modified the network response.

The networks were first settled as described previously for
30 min of simulation time with 1 Hz noise and then trained
with exogenous 1 Hz stimulus. For each of two patterns, we
simultaneously stimulated a set of 200 input neurons in the
DG and measured the response in all three subregions. The
input patterns overlapped by 50% with 100 neurons that were
common to both patterns and 100 neurons that were unique to
each stimulus. The simulation ran for an additional 30 min with
1 Hz noise and 1 Hz stimulation of each pattern to encode the
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activity response before the network was tested. The response
was measured in the 200-ms epoch immediately following
stimulation of either pattern 1 or pattern 2. Since learning
is defined by training-dependent changes in network activity,
we tested the response of untrained and trained networks to
the two input patterns in order to determine which neurons
augmented their activity after the training period. The activity
of each neuron post-training was normalized by its activity
before training to account for neurons with inherently high
activity. The 200 neurons that increased their firing the most
from untrained levels comprised the desired, target response.
The remaining neurons made up the off-target response where
increases in activity are undesirable. Thus, the response for each
subregion consists of a target component of 200 neurons that
respond maximally to the stimulus and an off-target component
of the remaining principal neurons. The signal-to-noise ratio
was measured as the ratio of the target to off-target response.
Finally, this paradigm was repeated for two training conditions.
One set of networks was trained under baseline conditions,
and another set of networks underwent training with STDP
impairment to test whether reduced potentiation interferes with
the ability to encode patterned responses.

To evaluate pattern separation across the subregions of
the network, we turned to several additional metrics. First, we
examined the extent to which the target output populations
from patterns 1 and 2 differed by calculating the percent overlap
among the two populations for each network. More formally, we
measured the change in population distance via the Hamming
distance, which calculates the proportion of positions that differ
between two binary vectors:

PD4 = Dout − Din (8)

D =
1
N

N∑
j = 1

Xj 6= Yj (9)

Where PD1 is the change in population distance. Din and
Dout are the Hamming distance between the input and output
patterns, respectively. Xj and Yj are binary vectors representing
patterns 1 and 2, and N is the length of the binary vectors.
By this metric, identical vectors have a Hamming distance
of 0 while two unique vectors have a Hamming distance of
1. If a network performs pattern separation, the Hamming
distance of two output populations will be greater than that
of the corresponding input populations (Chavlis et al., 2017).
If PD1 > 0, the network performs pattern separation. If
PD1 < 0, the output patterns are more similar than the input
patterns. A second feature of pattern separation accounts for
rate differences between the output patterns (Chavlis et al.,
2017). For this analysis, we focused on the target neurons that
were common responders to both patterns and measured the
mean Spearman distance between the pattern 1 and pattern 2
responses of common neurons. The Spearman distance (SD) is

calculated as one minus the Spearman rank correlation between
two vectors:

SD = 1−
(rs − rs)(rt − rt)

′

√
(rs − rs)(rs − rs)′

√
(rt − rt)(rt − rt)′

(10)

rs =
1
N

N∑
j

rsj =
N + 1

2
(11)

rt =
1
N

N∑
j

rtj =
N + 1

2
(12)

Where rs and rt are the rank vectors of xs and xt , representing
the normalized rate response pattern 1 and pattern 2,
respectively. N is the length of the vectors and number of
common neurons between patterns 1 and 2.

Statistical analysis

For statistical comparisons between baseline networks and
rewired, null models, we used Student’s t-test. To compare
baseline and impaired networks, we applied a paired Student’s
t-test with Bonferroni correction to determine significance for
cases of multiple comparison. Statistical testing also included
repeated measures ANOVA with Tukey-Kramer post-hoc test for
comparisons with multiple timepoints.

Results

Modularity in baseline networks

For modularity analysis, we narrowed our focus to areas
CA3 and CA1 due to network size and because these
two subregions displayed the largest injury effects in our
preliminary analysis of functional changes after impairment
(Figure 3A). To establish whether the hippocampal networks
had detectable community structure (Figure 3B), we compared
them to null models generated by rewiring the connections
of the original matrix while preserving the input and output
degree distributions. We found that the number of modules
was significantly lower in the hippocampal model matrices
than in the randomized networks, indicating that empirical
communities are more integrated than predicted by random
models (Baseline hippocampal: 6 ± 0.5 vs. Randomized:
24.9± 1.5; Student’s t-test; p < 1e-10) (Figure 3C). As expected,
modularity (Q) was significantly higher in experimental baseline
networks than in randomized controls (baseline hippocampal:
0.269 ± 0.002 vs. Randomized: 0.089 ± 0.001; Student’s t-test;
p < 1e-10) (Figure 3D). High values of Q mean that the detected
communities have higher internal connectivity than predicted
by chance. Together, these results confirm that the hippocampal
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networks have significant modular structure as compared to
null models. Furthermore, we evaluated modularity Q for the
last 5 min of simulation time at baseline and found no change
in Q over time (One-way ANOVA; F-statistic = 0.08; p > 0.5)
(Figure 3E). Therefore, we used the final connectivity matrices
(from min 30) to compare baseline and impaired networks in
subsequent analysis.

Effects of spike-timing-dependent
plasticity impairment on community
structure

We next compared the community structure of baseline
networks with that of STDP impaired networks (Figures 4A,B).
Models with STDP impairment ran for an additional 30 min,
and the ending connectivity was compared to the pre-injury
connectivity using the same modularity algorithm and holding
gamma constant. Modularity Q decreased significantly after
plasticity impairment (Baseline: 0.26± 0.01 vs. STDP Impaired:
0.24 ± 0.02; paired Student’s t-test; p < 0.01) (Figure 4D).
However, the number of modules did not differ (Baseline:
5.0± 1.0 vs. STDP Impaired: 5.3± 1.3; Student’s t-test; p > 0.1)
(Figure 4E). While the average number of modules per network
remained the same, we did identify trends in the sizes of
modules after injury. Modules derived from networks with
STDP impairment were more likely to fall at the extreme ends
of the size range (Figure 4C). In particular, there are more
small communities below a size of 250 nodes. On a network
level, the size range between the largest and smallest module of
each network increased after STDP impairment, reflecting the
evolution of these smaller communities (Baseline: 1,129 ± 333
vs. STDP Impaired: 1,439 ± 332; Student’s t-test; p < 0.05)
(Figure 4F).

The shifts in module size suggested a broader realignment
of neurons among existing communities, and we further
hypothesized that the detected community structure might
reflect the anatomical designations of the hippocampal circuitry.
Therefore, we analyzed the neuron subtype composition
of each module for both baseline and impaired networks.
Each module was characterized based on the percentage of
neurons from CA3 vs. CA1 and the percentage of inhibitory
neurons. We found that excitatory neurons from CA3 tended
to segregate into their own communities (Figure 5A). The
remaining communities contained most of the CA1 excitatory
neurons (pyramidal cells) as well as inhibitory neurons from
both CA3 and CA1. Accordingly, we identified a significant
relationship between the percentage of inhibitory neurons
in the module and the percentage of CA1 neurons. As the
inhibitory percentage increased, the percentage of CA1 neurons
decreased, indicating that these additional inhibitory neurons
were anatomically derived from CA3 (Y = 0.40X + 0.005; linear
regression; R2 = 0.75; p < 1e-5). After STDP impairment,

we found that CA3 excitatory neurons continued to form
separate communities; however, the relationship between the
percentage of inhibitory neurons and CA1 neurons disappeared
(Figure 5B). This occurs due to the appearance of many small
modules that contain excitatory neurons from both CA1 and
CA3. Most likely, some neurons from the CA3 excitatory
modules realign with excitatory neurons from CA1 to form
these small communities.

Pattern separation in baseline and
impaired networks

Learning and memory are crucial hippocampal functions
supported by synaptic potentiation. As a mechanism of synaptic
weight modification, STDP facilitates use-dependent circuit
adaptation. To test whether and how STDP impairment affects
higher-level network functions, we implemented a method
of unsupervised learning characterized by training-dependent
changes in neural activity (Figure 6A). Baseline networks were
trained with STDP impairment or under control conditions.
During training, two overlapping sets of 200 neurons in the DG
were stimulated in addition to receiving baseline noise input.
The two stimulus patterns were interleaved and stimulated at
1 Hz. During testing, the same two input patterns were activated
in a static network. Networks were tested before and after
training to determine the relative change in firing rate on a
neuron basis. Not including those neurons stimulated with
input patterns, the rest of the principal excitatory neurons in
the network were divided into two groups of responders. For
each subregion (DG, CA3, and CA1), those that increased their
spiking activity the most were termed target neurons, and the
remainder were classified as off-target neurons. Target and off-
target neurons were not identified a priori but rather based on
their response to the training paradigm.

Although we hypothesized that limiting potentiation would
interfere with the encoding phase of memory, we found that
both baseline and STDP impaired networks were capable of
encoding conditioned responses to input stimulation. The target
neurons had significantly higher average normalized firing rate
than their off-target counterparts across all three subregions and
both conditions (Student’s t-test; p < 1e-5 for all conditions)
(Figures 6B,C). We also computed the signal-to-noise ratio
(SNR) as the target activity divided by the off-target activity
and found that STDP impaired networks expressed lower SNR
in all three subregions of the hippocampus with the most
significant change in CA1 (Paired Student’s t-test; p < 0.02
for all subregions) (Figure 6D). This decrease in SNR appears
primarily driven by a decrease in firing among target neurons.
Although significant, the magnitude of the difference was
modest.

Thus far in our analysis of the learning paradigm, we
focused only on the magnitude of the output; however, we
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FIGURE 3

Hippocampal model networks have significant community structure compared randomized control networks. (A) A representative baseline
network organized by anatomical structure (CA3 vs. CA1). (B) A representative network reorganized by module. (C) The number of modules is
significantly higher in the randomized networks than at baseline (p < 1e-5). (D) Modularity, Q, is significantly lower for randomized networks
(p < 1e-5). Randomized controls rewired connections in the original network while preserving the degree distribution. (E) There was no
significant change in modularity over time at baseline. *p < 0.01.

also investigated whether the response to each pattern differed.
Given the observed decrease in SNR among the responder
neurons, we sought to determine whether this decrease affected
the ability of the circuit to perform pattern separation by
discriminating between the two overlapping input patterns.
Successful pattern separation requires that the output patterns
be more different than the input patterns (Figure 7A).
Accordingly, we evaluated the amount of overlap between the
groups of target neurons for each pattern, finding that the mean
percentage of overlap was 16 and 13% for the DG and CA1,
respectively (Figure 7B). This is well below the 50% overlap
of the input patterns, indicating strong pattern separation.
Interestingly, the percentage of overlap among target neurons
from CA3 was 48% on average (Figure 7B), so this area did
not execute pattern separation. This is most likely attributable
to the recurrent collaterals in CA3 that putatively make the area
uniquely adept at pattern completion, the ability to complete
an output response based on partial input information. Due
to the limited ability to potentiate synapses, we hypothesized
that STDP impairment would limit the ability to encode unique

output patterns. However, we found that the percentage of
overlap did not decrease in networks that were trained with
impairment. In fact, the change in population distance between
the input and output populations increased in the DG and
CA3 of impaired networks, suggesting that pattern separation
was more successful in these subregions (DG: 0.18 ± 0.06 vs.
0.24± 0.04; paired Student’s t-test; p < 0.001. CA3:−0.15± 0.04
vs. −0.03 ± 0.05; p < 0.001. CA1: 0.21 ± 0.03 vs. 0.21 ± 0.02;
p > 0.1 for CA1) (Figure 7C).

In addition to distinct populations of responsive neurons,
rate coding is another attribute of pattern separation (Chavlis
et al., 2017). Since most of the neurons in the target populations
were unique to one pattern or the other, we were interested in
the neurons that activated with both patterns and whether these
common neurons responded preferentially to either pattern.
We calculated the normalized rate difference between pattern
1 and pattern 2 activity for all common neurons (Figure 7D).
To compute the distance between the response vectors, we
evaluated the mean Spearman distance across networks. We
found that the only subregion to show a significant change
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FIGURE 4

Spike-timing-dependent plasticity (STDP) impairment decreases modularity in the CA3-CA1 network. (A) A representative network organized by
community assignment shows five modules at baseline. (B) The same representative network has five communities after STDP impairment, but
individual node assignments can change resulting in different module size characteristics. (C) Histograms of module size across all 10 networks
show that there are more modules at the extreme ends of the size range after STDP impairment. (D) Module quality Q decreased significantly
with injury (*p < 0.01). (E) The average number of modules per network did not change after injury. (F) The range of module size increased
significantly after injury (*p < 0.01).

after STDP impairment was CA3, but there were no significant
differences in rate coding among common neurons of the
DG or CA1 (paired student’s t-test with Bonferroni correction
for multiple comparisons; p < 1e-5 for CA3) (Figure 7E).
Therefore, although STDP impairment reduced the total SNR,
rate coding was still effective for pattern separation among
common responder neurons. While no deficits were observed in
population- or rate-based analyses of pattern separation in these
circuits, these results do not preclude the possibility that there
may be subtle differences in temporal coding based on specific
spike timing.

Nodal flexibility in target neurons

Finally, we assessed modularity in trained baseline and
STDP impaired networks. Similar to untrained impaired
networks, trained circuits with STDP impairment had lower

modularity than untrained baseline networks (Repeated
measures ANOVA with Tukey-Kramer post-hoc for multiple
comparisons; p < 0.05) (Figure 8A). Trained baseline networks
did not significantly differ from either untrained baseline
or STDP impaired networks (Figure 8A). After verifying
community structure in trained networks, we investigated
how community affiliations changed over time. To do so,
we applied the concepts of “flexibility” and “promiscuity”
(Figure 8B). As it relates to network theory, flexibility describes
whether nodes change their community affiliation at different
time points. Nodes with high flexibility frequently associate
with different modules. Promiscuity is a related yet distinct
concept that quantitatively captures whether nodes associate
with several unique modules or only a few. A highly flexible
node could have low promiscuity if it shifts between only two
unique communities. We analyzed flexibility and promiscuity
in the aggregate target and off-target populations of CA3 and
CA1. Target neurons, which increased their activity the most
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FIGURE 5

Module characterization by underlying neuron type reflect
hippocampal anatomy. (A) At baseline, one subgroup of
modules is comprised primarily of CA3 excitatory neurons
(within circle). Predominantly CA1 modules contain most of the
inhibitory neurons from both CA3 and CA1. Therefore, there is a
significant relationship between the percentage of inhibitory
neurons and the percentage of CA1 neurons in these modules
(inset) (R2 = 0.75; linear hypothesis test; p < 1e-5). As the
percentage of inhibitory neurons increases, the percentage of
CA1 neurons decreases (inset). (B) After STDP impairment, there
remains a subgroup of modules comprised of CA3 excitatory
neurons (within circle). However, a new subgroup of small
modules develops. These are made up of excitatory neurons
from both CA1 and CA3. The appearance of these small
excitatory modules eliminates the relationship between
inhibitory tone and the percentage of CA1 neurons (inset)
(R2 = 0.03; linear hypothesis test; p > 0.1). *p < 0.01.

after training, were most likely to fall in the highest or lowest
quintiles of the flexibility distribution (Figure 8C). These
neurons also had low promiscuity, indicating that changes
in community assignment included few unique modules
(Figure 8D). Together, these results suggest that target output
neurons have comparatively stable community affiliations
since even those that were flexible were associated with lower
promiscuity. In contrast, off-target neurons fell relatively evenly
into the flexibility and promiscuity quintiles (Figures 8C,D).
We found no significant differences in these properties after
STDP impairment.

Discussion

In these studies, we examined the community structure of
a neuronal network model of the hippocampus. At baseline,
we found that the CA3-CA1 networks displayed significant

modular structure in which excitatory neurons from CA3
(pyramidal cells) reliably segregated into distinct communities.
The remaining neurons, including CA1 pyramidal cells and
inhibitory neurons from both subregions, formed separate
modules. After STDP impairment, modularity decreased
significantly, and more small modules appeared. With their
small, spurious nature, these modules are purportedly less
functionally well-defined. We then trained the networks with
an unsupervised learning algorithm to test the critical function
of pattern separation across the subregions of the circuit. In the
learning process, we identified a critical group of target neurons
that showed the largest rate-dependent training effect. STDP
impairment during the encoding phase of pattern acquisition
reduced the magnitude of the learning effect; however, impaired
networks executed pattern separation successfully as analyzed
with both population- and rate-based coding. Finally, we
found that target neurons had a unique modularity-derived
profile characterized by low nodal promiscuity, which indicates
that these target neurons were relatively stable and affiliated
with few unique network communities. In comparison, off-
target neurons followed more homogenous flexibility and
promiscuity distributions.

There are several limitations to the current studies that
influence the interpretation of this work. Fundamentally,
the hippocampal model is not full-scale and contains a
limited number of cell and receptor types. It does not have
lamellar structure or complex geometry; however, the synaptic
connectivity is faithful to the literature and the most important
attribute for the network-based analysis presented here. We
use a point neuron model of Izhikevich integrate-and-fire
neurons that is more phenomenological than other, more
biophysical neuron models. This drawback is balanced by high
computational efficiency, which enabled the development of
a large network model of the hippocampus, and by extensive
use and validation of cell-specific spike timing across different
neuron types (Izhikevich, 2003, 2004; Izhikevich and Edelman,
2008; Pena et al., 2018; Muddapu et al., 2019). Similarly, we
only modeled some of the ionic currents within each neuron,
not including either longer duration NMDA currents (from
NR2B containing NMDARs), additional GABAR subtypes, or
different types of voltage gated calcium channels. Excluding
these currents will alter both the rate and duration of firing
frequency, but are less likely to affect the relative change in these
patterns which occur when neuronal networks are altered after
injury.

Our simulation of STDP impairment as a consequence
of mild TBI is also a limitation of these studies. Despite the
prevalence of learning and memory deficits after TBI, there
is not extensive literature surrounding plasticity impairment.
Beyond inhibiting long-term potentiation in hippocampal
circuitry, injury reduces CaMKII expression and synaptic
protein assemblies, thereby impeding synaptic strengthening
(Schwarzbach et al., 2006; Vogel et al., 2017). Given our
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FIGURE 6

Networks successfully encode patterned responses although STDP impairment decreases the signal-to-noise ratio. (A) Training consisted of
stimulating sets of 200 neurons in the DG. Baseline networks were trained once with STDP impairment and once under control STDP
conditions. Networks were tested before and after training to compare the activity response in each region. (B) Firing rates after training are
normalized by the response to stimulation in the untrained network. The gray dashed line is the reference point for activity in untrained baseline
networks. The activity of target neurons increases significantly from baseline while the average activity of off-target neurons remains the same
or decreases. (C) Networks with STDP impairment exhibit the same paradigm as baseline networks with higher activity in target neurons than in
off-target neurons. (D) The signal-to-noise ratio (on-target divided by off-target response) decreases significantly after injury in each region
(paired Student’s t-test, p < 0.02 with significance determined by Bonferroni correction).

results that STDP impairment did not have a strong negative
effect on learning and pattern separation, additional injury
mechanisms should be explored in future work. Since damage
is known to cause pattern separation deficits in both animals
and humans (Brock Kirwan et al., 2012; Paterno et al., 2017;
Hanert et al., 2019), our results suggest that some additional
mechanism beyond STDP impairment must contribute to those
effects. Upcoming modeling studies might also examine the
interplay between different plasticity algorithms since a stronger
homeostatic mechanism might compensate for larger decreases
in STDP-related potentiation, thereby preserving baseline
untrained activity levels while exposing larger learning deficits.

Lastly, we implemented an unsupervised learning paradigm,
which makes no a priori designation between desired and
undesired responses. For each of two patterns, we stimulated
a subset of 200 neurons in the dentate and identified the
most responsive neurons in all three hippocampal subregions

based on their normalized firing rate. We also implemented
training and STDP impairment at the same time to hold the
runtime constant between impaired and control networks. Yet,
we could also consider training networks that had already
adapted to STDP impairment controlled. It is possible that
training mitigated the effects of injury and that networks with
ingrained diminished activity are less responsive to training.
Although this unsupervised method of network learning cannot
address complex temporal coding, it has several advantages.
Since it is a computationally efficient post-hoc algorithm without
prior topological assumptions, it could be applied with spiking
data of this size and density. It also exploits our incorporation of
use-dependent plasticity (STDP) as one of the major advances
in a model of this size and biological fidelity. Therefore, this
method constituted a reasonable biological proxy despite its
unsupervised nature. One popular alternative in biologically
inspired neural networks is the detection of polychronous neural
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FIGURE 7

There is no pattern separation deficit in circuits with STDP impairment. (A) Pattern separation occurs when the output patterns differ more than
the input patterns do. In this study, we stimulated two patterns with 50% overlap in the population of input neurons. (B) For each region, the
output populations consisted of 200 target neurons for each pattern. The percent overlap in baseline networks was below 20% for the DG and
CA1. Similar to baseline networks, STDP impaired networks had low percentage overlap in the DG and CA1 with higher overlap in area CA3.
(C) The difference between the Hamming distance of the input population and the output population measures pattern separation where a
higher value indicates greater pattern separation. With STDP impairment, the distance between output populations was greater in the DG and
CA3 than at baseline (paired Student’s t-test, p < 0.02 with significance determined by Bonferroni correction). (D) The rate difference between
common neurons shows that common neurons responded preferentially to one pattern or the other. Common target neurons from the DG in
one representative network are shown. P1 = pattern 1; P2 = pattern 2. (E) The distance between the rate response to pattern 1 vs. pattern 2 was
computed as the Spearman distance. The rate distance for CA3 outputs was significantly different between baseline and STDP impaired
networks (paired Student’s t-test, p < 1e-5). *p < 0.01.
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FIGURE 8

Target output neurons have low promiscuity among network communities. (A) Both trained and untrained networks with STDP impairment
have lower modularity than untrained baseline networks. (B) Neurons that change their community affiliation frequently have high flexibility. If
their affiliation shifts between unique communities, those neurons also have high promiscuity. (C) Target neurons are more likely to fall in the
first or fifth quintiles of the flexibility distribution. (D) Target neurons have low promiscuity, most likely falling into the first two quintiles of the
distribution. *p < 0.01.

groups, which is better adapted to handling many neural groups
and memory traces and evaluating the maximal amount of
information that might be stored in a given circuit. While the
original algorithm requires computationally expensive, brute-
force computations, some groups are developing more efficient
alternatives inspired by the field of machine learning (Guise
et al., 2014; Chrol-Cannon et al., 2017). These approaches
might offer an opportunity to extend these results with a
quantification of the information storage capacity of this
hippocampal circuit.

Modularity is a useful framework for assessing the
architectural organization of a network. Large networks often
consist of several smaller subnetworks that are more densely

connected internally than they are externally (Sporns and
Betzel, 2016). This partitioned organization is posited to support
faster, more efficient processing by facilitating functional
compartmentalization (Sporns and Betzel, 2016; Khambhati
et al., 2018). By reducing the energy requirements for network-
wide modifications, a more modular structure is also a more
adaptable one (Bassett et al., 2011; Arnemann et al., 2015).
In the present study, we identify post-injury modularity
reduction, which may constitute an adaptation that increases
integration between communities to support overall activity
levels. This result further suggests that potentiation supports
baseline segregation in the hippocampal circuit. Although
there is also evidence of the opposite (Han et al., 2014, 2020),
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previous findings that TBI reduces modularity in functional
brain networks correlate with persistent post-concussive
syndrome (Messé et al., 2013; Arnemann et al., 2015). In
addition, more modular structure was predictive of better
training outcomes after injury (Arnemann et al., 2015); this
may occur because lower energy costs are associated with
adaptation in more highly segregated networks. The variable
response (increase vs. decrease) may relate to individual
heterogeneity, other measures of network-wide integration, or
whether the network is still in a state of active adaptation.
Aside from analyzing the microcircuit scale, differences
between our results and others may be attributable to
our focus on structural, instead of functional, connectivity.
Since functional connectivity is dynamic and malleable while
structural connectivity is more stable as a reflection of the
underlying neural anatomy, it is possible that the training effect
is larger for functional networks. Ultimately, the demonstrated
effects in structurally well-defined microcircuits corroborate
the idea that modularity may be a useful (bio)marker
of intervention-dependent network plasticity (Gallen and
D’Esposito, 2019).

With a modest amount decrement in STDP-related
potentiation, networks could still learn and execute pattern
separation. In another recent study from our group, we tested
the circuit-level consequences of NMDA receptor damage,
which increases network activity, in a generic circuit with a
similar learning paradigm (Gabrieli et al., 2020a). Since injury-
induced, elevated activity obscured the training effect, we found
the most detrimental outcome of NMDA receptor dysfunction
occurred during recall of previously trained patterns but also
tested injury during different phases of memory (Gabrieli
et al., 2020a). Here, we exclusively tested STDP impairment
during the encoding stage. In our preliminary work analyzing
impaired networks without exogenous stimulation, we found
significant declines in firing rate and signal power. Based on
those effects, we expect the maintenance phase would also
challenge STDP impaired networks, which would likely lose the
entrained response more quickly as overall activity decreases
without exogenous stimulation. This idea is supported by
behavior studies that find injured animals perform the task
successfully if tested quickly after training but not if the time
between testing and training is longer (Paterno et al., 2018).
If we integrated both STDP impairment and NMDA receptor
damage simultaneously, we expect that STDP impairment
might enhance pattern recall because the two mechanisms
have opposing influence on network activity. Alternatively, as
trauma-induced changes to NMDAR physiology will disappear
when receptors are replaced hours after injury (Giza et al.,
2006; Reger et al., 2012; Estrada-Rojo et al., 2018) and
plasticity impairments may persist for days after injury, one
might expect an acute early impairment in the retrograde
memory (Smith et al., 1991; Gorman et al., 1993; Whiting and
Hamm, 2008) with a longer lasting impairment in memory

acquisition (An et al., 2016; Luo et al., 2017; Paterno et al.,
2018).

As a measure of encoding, pattern separation conveys the
capacity to distinguish similar events and contexts; therefore,
this function underpins general learning abilities. TBI causes
behavioral deficits in spatial memory and spatial object
recognition in animal models of injury (Paterno et al., 2017,
2018; Folweiler et al., 2018). Moreover, using a standard T-maze
behavior paradigm, injured mice showed impaired working
memory up to 7 days post-injury, suggesting that TBI interferes
with the process of memory formation (Smith et al., 2015).
These trained behaviors depend on discrimination between
similar experiences. Recent findings also demonstrate that
injury impairs pattern separation in humans (Brock Kirwan
et al., 2012; Hanert et al., 2019). The dentate is traditionally
the primary focus of studies on hippocampal pattern separation
because its intrinsic properties of high inhibition and parallel
circuity intuitively support this filter function; however, there
is growing evidence that other subregions (CA3 and CA1) also
facilitate pattern separation. In fact, temporary CA1 lesions
impair pattern separation in humans (Hanert et al., 2019).
Since CA1 relays information processed by the hippocampus
to neocortical brain regions (Witter and Amaral, 2004), the
area clearly plays an important role in the wider circuitry,
making it an intuitively important subregion. For these reasons,
it is interesting that in our work changes in the DG and
CA3 appear to compensate for one another because the
population- and rate-based output distances measured from
CA1 do not differ. These results suggest that the output
patterns transduced by CA1 are essentially the same and that
the network adapts to maintain that final output. While one
might predict a larger effect of STDP impairment on pattern
separation, these subtle differences are an intuitive extension
of our collective results. With our preliminary functional
analysis in networks without learning, we found that the DG
was remarkably robust after STDP impairment. Specifically,
the average firing rate and signal power did not decrease
significantly. Given its intrinsically low rates of activity, the
DG is more resilient to minor changes in STDP. Others have
found that deficits in pattern separation are associated with
hyperexcitability and elevated activity in the DG (Myers and
Scharfman, 2009; Jinde et al., 2012; Chavlis et al., 2017),
which increases activation and thereby reduces the capacity
of the filter function. In general, STDP impairment reduces
synaptic weights in the network, making it more difficult to
activate. Although its impact on learning is more indirect,
NMDA receptor damage or inhibitory cell degeneration might
have outsized influence on pattern separation because these
mechanisms would increase spurious noise in the output
patterns. Finally, our analysis in this work focused on population
and rate coding; however, we cannot exclude the importance
of temporal coding because it is possible that the spike timing
changes while the activity rate remains stable. Indeed, previous
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results from our group indicate that networks adapt to preserve
firing rate first as other measures of spike timing exhibit longer
lasting changes after neurodegeneration (Gabrieli et al., 2020b).

One natural extension of this work is prospective
training or other interventions designed to facilitate active
recovery in damaged networks. For instance, a stimulation
protocol that could restore activity in a damaged network
would be of interest for rehabilitation (Pevzner et al.,
2016; Paterno et al., 2017), and certain types of stimulation
(frequencies, magnitudes, etc.) might bet associated with
better training outcomes. There is a clear need to investigate
stimulation in conjunction with injury and the role that
it may play in network recovery. It is often assumed that
concussed patients should limit exposure to any form of
stimulation because it mitigates their symptoms; however,
targeted stimulation may instead help resolve chronic
deficits (Pevzner et al., 2016). Relatedly, the functional
connectivity characteristics of our hippocampal network
should be examined more completely, as we may discover
a structurally modified network achieves nearly the same
functional organization that appeared before injury. This
analysis would enable us to address how closely functional
networks reflect underlying structural connectivity at the
microcircuit scale. At the macroscale, a link between axonal
tractography and a resting state functional network is
established (Greicius et al., 2009; Honey et al., 2009), but the
relationship between structural and functional connectivity is
not well-understood in microcircuits. Further, characterizing
functional networks from these simulations would offer an
opportunity to link this work with experimental results
measured via microelectrode arrays and make structurally based
insights about those empirical functional data (Kang et al.,
2015).

With this work, we investigate the modular network
structure of a computational model of the hippocampus, a
region of the brain that has well-characterized anatomy and
electrophysiology, and we examine the functional implications
of plasticity impairment on network-defined pattern separation.
These studies contribute to a growing body of work regarding
the circuit-level effects of cellular damage in neuronal networks
(Volman et al., 2011; Gabrieli et al., 2020a,b; Schumm et al.,
2020). Studying a posited substrate of physiological learning
with this biologically inspired computational model of the
hippocampus, which is known for its role in learning and
memory, guides new insights into both temporary and more
permanent impairments that could occur from cellular-based
changes after traumatic injury. In addition, combining this
cellular-level mechanistic insight with new tools in data
science (e.g., deep learning and machine learning) provides
an opportunity to create biologically inspired autonomous
learning models that could aid the recovery and repair of
damaged circuits. By understanding network-based learning in

this hippocampal circuit, we will not only advance practical
analytical tools, but we may also develop targeted interventions
to improve outcomes for patients with diseases of brain-network
organization.
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