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Accumulation of Amyloid B and Tau and the Formation of Neurofilament Inclusions Following
Diffuse Brain Injury in the Pig
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Abstract. Brain trauma in humans increases the risk for developing Alzheimer disease (AD) and may induce the acute
formation of AD-like plaques containing amyloid B (AB). To further explore the potential link between brain trauma and
neurcdegeneration, we conducted neuropathological studies using a pig model of diffuse brain injury. Brain injury was induced
in anesthetized animals via nonimpact head rotational acceleration of 110° over 20 ms in the coronal plane (n = 15 injured,
n = 3 noninjured). At 1, 3, 7, and 10 days post-trauma, control and injured animals were euthanized and immunohistochemical
analysis was performed on brain sections using antibodies specific for AB, B-amyloid precursor protein (BPP), tau, and
neurofilament (NF) proteins. In addition to diffuse axonal pathology, we detected accumulation of AR and tau that colocalized
with immunoreactive BPP and NF in damaged axons throughout the white matter in all injured animals at 3-10 days post-
trauma. In a subset of brain injured animals, diffuse AB-containing plaque-like profiles were found in both the gray and white
matter, and accumulations of tau and NF rich inclusions were observed in neuronal perikarya. These results show that this
pig model of diffuse brain injury is characterized by accumulations of proteins that also form pathological aggregates in AD

and related neurodegenerative discases.
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INTRODUCTION

While traumatic brain injury is one of the leading causes
of death and disability (1, 2), mounting evidence also sug-
gests that brain trauma may have prolonged effects and
initiate insidiously progressive neurodegenerative process-
es. Previously, postmortem histopathologic analysis of
brains from boxers with dementia pugilistica (‘‘punch-
drunk syndrome”) revealed neurofibrillary tangles (NFTs)
and diffuse plaques composed of amyloid B peptides
(ABs) similar to the hallmark lesions of Alzheimer disease
(AD) (3, 4). Subsequently, a single incident of brain trau-
ma was shown to induce the formation of AP plaques
within days following injury (5, 6). In addition, brain trau-
ma patients have been shown to have accelerated cognitive
decline during aging (7, 8) and an increased risk of de-
veloping AD, even if the injury occurred in the remote
past (9—-11). Moreover, we and others have recently ob-
served that brain trauma in the rat induces substantially
progressive neuron loss, axonal degeneration, and atrophy
that proceeds unabated for at least one year following in-
jury (12-13). Taken together, the results from these studies
suggest that neurodegenerative changes triggered by brain
trauma may follow a remarkably complex and prolonged
temporal course. However, the mechanisms underlying the
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relationship between brain trauma and neurodegenerative
processes remain unknown.

It has been observed that brain trauma in humans and
experimental animals induces marked accumulations of [-
amyloid precursor proteins (BPPs) (14—18), suggesting that
ample substrate is available for AR production. However,
experimental investigations of this relationship have been
hampered since accumulation of AP has not been observed
in standard rodent models of focal brain trauma (14-16, 18,
19). As previously suggested, the post-traumatic absence of
AR accumulation in rodents may reflect a difference in the
processing of BPP compared with humans (15, 19).

To further explore the potential link between brain
trauma and neurodegeneration, in the present study, we
used a well-characterized and clinically relevant model
of diffuse brain injury in the pig (20-22). The most sa-
lient feature of this pig model is the production of wide-
spread axonal pathology in the white matter resulting
from nonimpact rotational acceleration of the head. This
head rotation induces inertial loading to the pig brain that
replicates the forces experienced by the human brain dur-
ing traumatic events such as automotive crashes. The ra-
tionale to use this model was based on the observation
that many trauma patients who developed AP plaques
suffered from diffuse brain injury. In addition, this model
affords an opportunity to evaluate neurodegenerative
changes following diffuse brain trauma in an animal with
a relatively high order, gyrencephalic brain.

MATERIALS AND METHODS

In these studies, we carefully adhered to the animal welfare
guidelines set forth in the Guide for the Care and Use of Lab-
oratory Animals, US Department of Health and Human Servic-
es Publication, 85-23. All animal procedures were approved by
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TABLE
Summary of Antibodies Used for Immunohistochemistry
Antibody Epitope protein/amino acids Type Dilution Reference
369W BPP/645-694a P 1:1000 (44, 45)
22Cl11 BPP/60-100 M 1:5 (46-48)
13335 Ap/1-42 P 1:1000 49)
Karen BPP/N-Terminal P 1:800 (49)
2332 AB/1-17 P 1:4000 (50-52)
BCOS5 Ap/1-42(43) M 1:200 (53, 54)
4G8 AB/17-24 M 1:1000 (55, 56)
6E10 AB M 1:200 (51, 56, 57)
10A5 AB/1-28 M 1:50 (58, 59)
Tau-2 Tau/192-204 M 1:400 (60-62)
PHF-1 PHF-tau M 1:200 (63-66)
PHF-6 PHF-tau M 1:250 (67-69)
PHF-13.5 PHF-tau M 1:1000 (67) (69)
NR4 NF-L M 1:400 (70-72)
N52 NF-H M 1:400 (70, 73, 74)
Alz-50 A68 protein M 1:5 (75)

the University of Pennsylvania Institutional Animal Care and
Use Committee.

Preinjury Preparation

Eighteen miniature young adult swine (4 months of age, Han-
ford and Hormel strains), both male and female, weighing 17—
20 kg, were used for this study (n = 3 noninjured, n = 15 brain
injured). The animals were fasted for 12 h, after which anes-
thesia was induced with an initial injection of midazolam (400-
600 mg/kg, i.m.). Once sedated, animals received 2%-4% iso-
flurane via snout mask until they reached a plane of surgical
anesthesia. A venous catheter was then inserted in the ear, and
the animals were endotracheally intubated and maintained on
1.5%-2% isoflurane. Physiologic monitoring and apparatus in-
cluded noninvasive ECG electrode leads affixed to the and chest
and extremities, a pulse oximeter placed on the skin of the tail,
a rectal thermometer, and sampling tubes for end tidal CO, mea-
surement attached to the endotracheal tube. Arterial blood gas-
ses were also periodically evaluated pre- and postinjury. The
pigs were continuously monitored and all data from physiologic
monitoring were collected on a computer driven storage system.
Intracranial pressure monitoring was not performed since pre-
vious studies demonstrated only small transient changes using
the injury parameters applied in this study (20).

Brain Injury

Brain trauma was induced via head rotational acceleration as
previously described in detail (20). Briefly, the head of each
animal was secured to a padded snout clamp, which was mount-
ed to the linkage assembly of pneumatic actuator device that
converts the linear motion to an angular (rotational) motion.
Rotation of the sidearm is triggered by the release of pressur-
ized nitrogen into the actuator. For these experiments, the link-
age was adjusted to produce a pure impulsive head rotation 110°
in the coronal plane over a period of 20 ms, with the center of
rotation close to the brain center of mass. Ten seconds prior to
injury isoflurane anesthesia was withdrawn. The injury param-
eters were set to induce biphasic head rotational acceleration

with a predominant deceleration phase. Following injury the
animals were released from the device. All animals received
buprenorphine (0.1 mg/kg, i.m., g 12 h, p.r.n) for postoperative
analgesia. It is important to note that previous studies with these
techniques demonstrated that injured animals were awake and
ambulatory within 8 hours of injury (20).

Histopathology

At 1-10 days after brain injury the animals received an over-
dose of pentobarbital (150 mg/kg, i.v.) and were transcardially
perfused with saline following by 4% paraformaldehyde (n
3, sham (no injury); n = 3, 1 day; n = 3, 3 days; n = 6, 7
days; n = 3, 10 days). The brains were removed, postfixed in
4% paraformaldehyde and stored in phosphate buffer saline and
cryoprotected with sucrose. Subsequently, the brains were
blocked into 0.5 cm coronal sections for gross examination and
photography. A series of 40-pm-frozen sections were cut from
the front face of each block and mounted on microscope slides.
Some blocks were cut into 3—5-mm-thick blocks and processed
for paraffin embedding in an automated tissue processor (Shan-
don Hypercenter XP, Shandon Scientific Instruments, Cheshire,
UK). Serial 6 wm sections from these blocks were cut on a
rotary microtome and mounted on poly-L-lysine-coated slides.
Primary antibodies specific for NF proteins, BPP, AB, and nor-
mal tau as well as paired helical filament (PHF) tau in AD NFTs
used in these studies are outlined in the Table. Immunostaining
was performed on free floating and paraffin-embedded sections
using an avidin-biotin-immunoperoxidase complex method.
The sections were incubated with primary antibody overnight
at 4°C and then incubated at room temperature for 1 hour each
with the appropriate secondary and tertiary antibodies, followed
by enzymatic development with 3,3’-diaminobenzidine. Omis-
sion of the primary antibody or application of control serum on
adjacent sections provided a negative control. Double labeling
was performed with fluorescein isothiocyanate (FITC) and Tex-
as red fluorescent secondary antibodies. Positive controls for
NFTs and AB plaques were performed on human AD tissue and
run in parallel with the pig tissue.
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RESULTS
Physiology and Behavior

Consistent with previous reports, immediately follow-
ing trauma, no substantial changes in arterial blood gases,
pulse oximetry, or end tidal CO, were observed following
injury. All animals began to awaken within 15 min fol-
lowing injury. Although the animals were able to am-
bulate typically within 1 hour following injury, they ap-
peared to have slightly sluggish responses to sensory
stimuli (startle reflex, tactile response) for up to 8 hours
post-trauma. However, by 24 hours postinjury, all of the
animals appeared completely normal based on gross neu-
rosensory examination (normal startle reflexes, gait, root-
ing behavior, eating, and drinking).

Axonal and Neuronal Soma Pathology

Consistent with previous findings, axonal bulbs and
varicose axonal swellings were observed following trau-
ma at all timepoints evaluated (1 day-10 days) (Fig. 1).
These axonal pathologies were identified by antibodies
targeting BPP (Karen, 369W, 22C11) and NF proteins
(NR4, N52). Axonal pathology was widespread through-
out the brain and found in combination with gliosis most
commonly in the root of gyri and at the interface of the
gray and white matter (data not shown). No tissue tears
and almost no vascular disruption were noted in regions
of axonal injury. Modest neuronal damage was primarily
found in the CA1l and CA3 subfields of the hippocampus
as evidenced by pyknotic neurons and a general thinning
of the pyramidal cell layers. No overt neuronal damage
was observed in the cortex.

Accumulation of AR and Tau in Axonal Bulbs

At 3-10 days post-trauma we found that AR and tau
accumulated in most axonal bulbs found throughout the
brains, demonstrated by all specific antibodies utilized
(AB immunostains: 2332, 13335, BCOS5, 4GS, 6E10 and
10A5; Tau immunostains: Tau-2, PHF-1, PHF-6 and
PHF-13.5) (Fig. 2). Positive staining with antibodies spe-
cific for PHF tau suggests that highly phosphorylated tau
(like that in AD NFTs) accumulated in these brains. No
AP or tau accumulations in axons were detected at 1 day
post-trauma. Colocalization of NF proteins, PP, AB, and
tau was found in most, but not all, axonal bulbs dem-
onstrated by multiple immunostains with fluorescence
microscopy (Fig. 3A-H). However, no A or tau was
found accumulating in axonal swellings (Fig. 31, J).
Therefore, AP and tau accumulation was limited to the
terminal ends of disconnected axons.

AB in Plaques

At 3-10 days postinjury, we found A(B containing
plaque-like profiles in the pig brain tissue (stained with
antibodies 2332, 13335 and BCOS5) (Fig. 4). These
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Fig. 1. Representative photomicrographs of pig brain sec-
tions demonstrating axonal pathologies following brain trauma.
Numerous axonal bulbs were found in the subcortical white
matter in sections stained with antibodies against BPP (A) and
NF-H (B). NF-H immunostains also revealed varicose swellings
of axons in the deep white matter (C). Scale bar = 50 pm.

plaques were predominantly found in white matter with
axonal pathology as well as in layer III of the cortex, and
these findings were confirmed by positive staining in
identical regions of adjacent thin (6 wm) sections. How-
ever, the pig AB plaques did not stain as robustly as
plaques from positive control AD brains, and they were
not very numerous (the most plaques found in any sec-
tion was 10). In addition AP containing plaques were
only found in approximately one third of the injured an-
imals, which also represented the group with the highest
total amount of axonal pathology.
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Fig. 2. Representative photomicrographs demonstrating Ap and tau accumulation in axonal bulbs of brain injured pigs. AR
was identified with several specific antibodies, including 10A5 (A), 13335 (B), 2332 (C), 4G8 (D), 6E10 (E), and BCOS5 (F). Tau
staining was also found with several specific antibodies including PHF-1 (G), PHF-13.5 (H), and PHF-6 (I). Scale bar = 50 um.

Tau Accumulation in Neurons

Accumulation of tau was found in the cytoplasm of
neurons throughout the frontal, parietal, and temporal
corticies at 3—10 days after brain injury (identified with
antibodies; Tau-2, PHF-tau, PHF-1, PHF-6, and PHF-
13.5) (Fig. 5C-E). The frequency and prevalence of this
staining also appeared to correspond with the relative ex-
tent of axonal pathology. Our AD brain sections also
demonstrated cytoplasmic staining with the same set of
antibodies (Fig. 5A, B).

Neurofilament-rich Inclusions in Neurons

At 3-10 days post-trauma we found NF immunore-
active inclusions in the cytoplasm of neurons in the pa-
rietal and temporal cortices. These inclusions had a
highly dense core surrounded by cytoplasm similar to
the Lewy body (LB) inclusions found in human neuro-
degenerative diseases such as demential with LBs
(DLB) and Parkinson disease (PD) (Fig. 6A—G). Strong
NF immunostaining of these inclusions was found in
adjacent thin sections (6 wm). However, we only found

J Neuropathol Exp Neurol, Vol 58, September, 1999
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Fig. 3. Representative photomicrographs demonstrating coaccumulation of AB, BPP, tau, and neurofilament in axonal bulbs
following brain injury in the pig. Double immunolabeling with fluorescent staining demonstrated colocalization of AB (A) with
NF-H (B), Tau (C) with AB (D), AB (E) with BPP (F), and BPP (G) with tau (H). In another type of axonal pathology, varicose
swellings, typical BPP accumulation was found, demonstrated by light microscopy (I). However, in the same section, AP staining
was not found in varicose axonal swellings, demonstrated by fluorescence microscopy (J). Scale bar = 50 pm.

this pathology in the same subset of animals that dem-
onstrated AP plaque-like profiles (i.e. approximately one
third of the injured animals).

DISCUSSION

In this study we found that inertial brain trauma in the
pig produced diffuse axonal pathology in combination
with several unique pathologic features that may be sug-
gestive of neurodegenerative processes. The most re-
markable and consistent finding was extensive AR and
tau accumulation in damaged axons following trauma. In
addition, in a subset of brain injured animals, diffuse Ap-
containing plaque-like profiles were found in both the
gray and white matter, and accumulations of tau and NF
rich inclusions were observed in neuronal perikarya. To
our knowledge, this is the first report of these collective
findings in an animal model of brain trauma.

The observation of widespread AB accumulation in
damaged axons following inertial brain injury in the
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pig may have important implications. It has previously
been suggested that aberrant conversion of PP to AB
at synapses may play a critical role in the evolution of
AD. This same aberrant processing of BPP has been
proposed to be initiated by brain trauma in humans,
leading to the formation of diffuse AR plaques in the
gray matter within days following injury (5, 6). How-
ever, the most abundant accumulations of BPP resulting
from brain trauma are found in damaged axons in the
white matter (6, 17). Nonetheless, previous studies
have not identified colocalization of AP with the axonal
pool of BPP in studies of brain injured humans or in
rodent models of brain trauma (14-16, 18). The ability
to identify AR in damaged axons in the present study
may reflect the use of highly specific AB antibodies in
conjunction with a gyrencephalic animal model of dif-
fuse axonal pathology.

It is important to consider that this axonal pool of AB
may be released into the surrounding tissue from lysis or
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Fig. 4. Representative photomicrographs of tissue sections immunostained for AR demonstrating plaque formation. Typical
AP plaques in the gray matter of an Alzheimer disease brain (A and B). AB plaques in pig brain following trauma in the gray

matter (C and D), and white matter (E and F). Note the axonal bulb staining for AB in proximity to a plaque (arrow, E). Scale
bar = 50 pm.

leakage of axonal bulbs. While AP alone has not been
shown to be substantially toxic in vivo (23, 24), we have
previously proposed a “‘two hit” hypothesis whereby AR
may potentiate damage when combined with brain injury.
Using transgenic mice that overexpress mutant human
BPP and eventually develop AB plaques (25), we found
that brain trauma at an age prior to plaque formation
induced massive neuron death accompanied by a marked
increases in soluble AR peptide levels (19). Moreover, a
recent report has also described a large increase in AR
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peptides in the cerebrospinal fluid of brain injured pa-
tients (26). Our present results suggest that damaged ax-
ons are one potential source for a massive increase in
soluble AR following brain trauma. Collectively, these
data provide corroborative evidence that the production
and release of AB plays a role in the delayed pathogenesis
of brain trauma.

The colocalization of BPP and AP in damaged axons
in the present study appeared to be limited to a specific
morphologic subtype of axonal pathology. The major

J Neuropathol Exp Neurol, Vol 58, September, 1999
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Fig. 5. Representative photomicrographs of tau staining in neurons. Typical pathology of tau staining in neurons in Alzheimer
disease brains (A and B). Neuronal staining with various specific antibodies targeting tau is also found in brain injured pigs (C-

G). Scale bar = 50 pm.

morphologic characteristics or ‘“phenotypes” of post-
traumatic axonal pathology include 1) varicose swellings
encompassing long regions of injured axons, and 2) dis-
crete axonal bulbs (also referred to as retraction balls and
terminal clubs), characterized by individual rounded
swellings at the terminal end of disconnected axons (20,
27). In the present study, BPP accumulated in both dis-
crete axonal bulbs and in elongated varicose axonal
swellings consistent with previous observations (15-17).
However, AR was only observed accumulating in axonal
bulbs, i.e. only in axon regions proximal to clearly iden-
tified axotomy. These data suggest that axotomy induces
a unique intra-axonal proteolytic milieu that favors the
production and accumulation of A in axonal bulbs. Con-
versely, this process does not appear to occur in damaged

J Neuropathol Exp Neurol, Vol 58, September, 1999

yet still connected axons, despite substantial swelling and
BPP accumulation.

In addition to the widespread accumulation of AB in
axonal bulbs, we also found a limited number of Af con-
taining diffuse plaque-like profiles at 3—10 days follow-
ing brain injury in the pig. These were found on adjacent
sections and were identified with several highly specific
anti-AB antibodies. Although this finding may appear
novel, it should be emphasized that the plaque-like pro-
files were relatively few in number and were primarily
identified in the white matter, a location inconsistent with
the distribution of AB plaques described in recent studies
of brain injured humans (5, 6). Nonetheless, the white
matter location of the AP plaques in brain injured pigs
may reflect the release of AR from damaged axons and
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subsequent extracellular aggregation in the same region.
Furthermore, the formation of Ap plaques appeared to be
related to the extent of axonal pathology.

Based on the identification of AP plaques in brain in-
jured humans, we and others have previously attempted
to elucidate potential AR plaque formation in rodent
models of focal brain trauma without success (1416, 18,
19). We did not even find acceleration or augmentation
of AB plaque formation following brain trauma in trans-
genic mice that otherwise go on to develop AR plaques
(19, 28). It is not presently clear whether the inability to
replicate the human condition of AB plaque formation in

989

rodent models of brain trauma is due to species effect or
mechanisms of injury. While results from the present
study may suggest that AR plaques are produced follow-
ing inertial diffuse brain injury in the pig, further studies
are needed to confirm this potentially important finding.

Another potential link between neurodegenerative
changes and diffuse brain injury in the pig is the accu-
mulation of the microtubule-associated protein, tau, in
damaged axons. Highly phosphorylated tau is the pri-
mary constituent of PHFs that form NFTs, one of the two
major pathologic features of AD (29-31). Since tau is an
integral structural protein in axons, it has been presumed

J Neuropathol Exp Neurol, Vol 58, September, 1999
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that it would accumulate in damaged axons with impaired
transport. However, axonal accumulation of tau has not
been previously observed following trauma despite sev-
eral investigative efforts (32, 33). The colocalization of
tau with AR in damaged axons observed in the present
study may have important implications since it is has
been suggested that tau potentiates AR toxicity in vitro
and facilitates the polymerization of AB peptides that
may lead to AR plaque formation (34, 35).

The accumulation of tau was also found in the cyto-
plasm of neurons of brain injured pigs in the present
study. Since these profiles were identified with antibodies
that recognize the highly phosphorylated forms of tau
that form AD PHFs, these profiles most closely resemble
the so-called “‘pre-tangle” somatodendritic tau lesions
seen in AD brains. Indeed, it will be important to perform
ultrastructural analyses of these lesions in future studies
to determine if tau filaments are present in these perikar-
yal tau accumulations. Recently, neuronal staining for tau
has also been found following brain injury in the rat (36).
These findings may have important clinical implications
since NFTs have been found in the brains of boxers, but
no NFT-like lesions have been detected in the human
brain following a single incident of brain trauma (3, 4).

Yet another unexpected finding in this study was that
NF proteins, the building blocks of NFs, formed inclu-
sion bodies in neurons following brain injury. While cy-
toplasmic NF rich inclusions, known as LBs, are signa-
ture lesions of DLB and PD, they have not previously
been reported following trauma in humans. Nonetheless,
accumulations of NFs are well documented in damaged
axons following brain trauma in humans and experimen-
tal animals (20, 27, 37, 38). NF proteins are components
of LBs, but alpha-synuclein may be the major building
block of these lesions in PD and DLB (39). In addition,
LBs are very common in the AD brain (40, 41). However,
the mechanisms of development and the role of NF pro-
tein inclusions in neurodegenerative diseases have yet to
be elucidated following brain trauma. Recent studies have
also shown accumulation of NF protein in neuronal peri-
karya following trauma in a nontransgenic animal model
of brain injury (42) and that LB-like inclusions may ren-
der neurons more vulnerable to degenerate following
brain trauma in a transgenic mouse that overexpresses a
NF hybrid protein (43). Since the predominant pathology
in the pig diffuse brain injury model is damage to axons,
not cortical neurons, our finding of cytoplasmic NF in-
clusions suggests that impaired axonal transport may play
a role in the perikaryal accumulation of NF proteins.

Taken together, the results from the present study dem-
onstrate that several pathologic characteristics of neuro-
degenerative diseases may also be found following dif-
fuse brain injury in the pig. Accordingly, our results
support the proposed link between brain trauma and the
initiation of neurodegenerative processes. It is not clear
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if the markers of neurodegenerative changes found ac-
companying diffuse axonal pathology in our pig model
are consequences of injury specific mechanisms (i.e. in-
ertial brain injury), or a general response of a gyrence-
phalic brain to trauma. Nonetheless, mechanisms of trau-
ma-induced neurodegenerative processes may be further
explored using this unique model.
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