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Abstract—While individual susceptibility to traumatic brain
injury (TBI) has been speculated, past work does not provide
an analysis considering how physical features of an individ-
ual’s brain (e.g., brain size, shape), impact direction, and
brain network features can holistically contribute to the risk
of suffering a TBI from an impact. This work investigated
each of these features simultaneously using computational
modeling and analyses of simulated functional connectivity.
Unlike the past studies that assess the severity of TBI based
on the quantification of brain tissue damage (e.g., principal
strain), we approached the brain as a complex network in
which neuronal oscillations orchestrate to produce normal
brain function (estimated by functional connectivity) and, to
this end, both the anatomical damage location and its
topological characteristics within the brain network con-
tribute to the severity of brain function disruption and injury.
To represent the variations in the population, we analyzed a
publicly available database of brain imaging data and
selected five distinct network architectures, seven different
brain sizes, and three uniaxial head rotational conditions to
study the consequences of 74 virtual impact scenarios.
Results show impact direction produces the most significant
change in connections across brain areas (structural connec-
tome) and the functional coupling of activity across these
brain areas (functional connectivity). Axial rotations were
more injurious than those with sagittal and coronal rotations
when the head kinematics were the same for each condition.
When the impact direction was held constant, brain network
architecture showed a significantly different vulnerability

across axial and sagittal, but not coronal rotations. As
expected, brain size significantly affected the expected change
in structural and functional connectivity after impact.
Together, these results provided groupings of predicted
vulnerability to impact—a subgroup of male brain architec-
tures exposed to axial impacts were most vulnerable, while a
subgroup of female brain architectures was the most tolerant
to the sagittal impacts studied. These findings lay essential
groundwork for subject-specific analyses of concussion and
provide invaluable guidance for designing personalized
protection equipment.

Keywords—Functional connectivity, Kuramoto model, Fi-

nite element model, Subject-specific analysis.

INTRODUCTION

More than two million individuals experience a
concussion (also known as mild traumatic brain injury)
every year in the United States.53 Despite the increased
awareness and promising progress in the past decades
to establish biomarkers for concussion,8, 34 to investi-
gate the potential causes of cognitive impairments in
some concussion patients,28, 50 and to improve pro-
tective equipment to reduce its incidence,19 the
underlying pathophysiology for concussion is not fully
understood. Experimental work demonstrates the
severity of diffuse brain injuries is generally associated
with the magnitude of head kinematics41, 42, 48 and
implies a threshold exists that separates safe from un-
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safe impacts. However, concussions have been diag-
nosed in athletes within a large range of impact
severity,59 and it is common to observe impacts of
similar severity will produce concussions in some
individuals but not others. With improvements in
technology to accurately measure the exposure during
an impact in contact and non-contact sports,23, 51 these
datasets will become increasingly important to capture
the range of real-world impacts associated with con-
cussion.

Certainly, one primary factor for determining rela-
tive injury risk is the characteristics of external loading
inputs to the head and the resulting kinematics. With
similar magnitudes of impact severity, different impact
directions can result in significantly different biome-
chanical responses according to human in-situ experi-
ments and finite element (FE) simulations1, 69 and
would significantly affect physiological and neurocog-
nitive outcomes as reported in experiments on non-
human primates,24, 60 pigs,9, 15 and piglets.65

A second, much less studied, aspect associated with
concussion risk is the many inter-subject variations
that exist in a population. Even simple anatomical
features of the brain, such as its size and general shape,
show a wide range in the population. These physical
differences motivated studies to investigate the influ-
ences of brain sizes by global scaling.37 In addition,
considerable variability in white matter architecture
exists among the population.12 Subject-specific changes
to white matter architecture may explain at least a
portion of variants on biomechanical responses25 and
result in diverse injury outcomes of a head impact
based on brain network analysis.4 Admittedly, the
factors mentioned above are only some of the variants
that might affect injury susceptibility. Several addi-
tional features, some of which relate to the physical
properties of the braincase and its contents and others
relating to the potential variation in pathobiological
response among a population, can contribute further
to differences in injury risk.

In the past decade, many advances emerged to
facilitate a more thorough examination of individual
risk to head impact. Advanced mesh morphing tech-
niques efficiently generate subject-specific models from
a generic FE model template while maintaining the
same high mesh quality.26, 70 Likewise, voxel-based
modeling techniques are a rapid and efficient way to
develop anatomically accurate FE models by directly
converting voxels of neuroimaging to hexahedral ele-
ments.27, 46 Although these subject-specific FE models
were able to address the inter-subject variability
introduced by brain anatomy from a biomechanical
perspective, the influences of these variables on the
susceptibility to brain injuries cannot be assessed by
FE modeling alone. These existing models are effective

to relate an impact to the expected areas of tissue
damage throughout the brain, especially in combina-
tion with tissue-specific injury criteria. However, these
models are unable to predict the functional conse-
quences of an impact and therefore can only provide a
limited estimation of how one impact may be more
damaging than another.

In response to this analysis gap, we take advantage
of past work which studies the brain as a complex
network, whose cognitive functions are dictated by the
oscillatory and coherent activity of anatomically dis-
tinct brain regions.20 The structural links among brain
regions are revealed through advanced brain imaging,
and the functional coupling among brain areas is
measured directly in human subjects. Models to merge
brain structure and function exist, and are utilized to
simulate biophysically plausible neural activity and
mimic the synchronization and self-organization phe-
nomena of the brain network.11, 22, 40 These large-scale
computational models, coupled with hemodynamic
models, have enriched our understanding of the alter-
ations on functional networks when the brain’s struc-
ture is attacked by diseases like tumors, Alzheimer’s
disease, and traumatic brain injury.3, 10, 18, 32, 66 Re-
cently, an interdisciplinary computational model for
predicting traumatic brain injury was developed by
coupling biomechanical models with neurodynamic
models,73 which provides a novel perspective to
studying the brain’s organization and functioning fol-
lowing an injurious impact and a tool for character-
izing these variabilities using a common
scale—functional connectivity (FC).

In this study, we examine the relative importance of
head impact direction, brain morphology, and
anatomical connectivity on the susceptibility of dif-
ferent subpopulations to head impacts that could cause
concussion. Rather than attempting to identify the
relative risk from every possible impact for every
individual brain architecture, we concentrate our ef-
forts on studying idealized impacts that are approxi-
mately at the threshold for causing a concussion, and
we studied the response to these impacts for five pro-
totypical brain (white matter) architectures and seven
brain sizes. Our work shows the most prominent fea-
tures that can disrupt the brain functional connections
after impact and finds the important variables to
consider when studying subject-specific concussion risk
and thus provide guidelines for developing better per-
sonal head protection equipment.

METHODS

A complete overview of the methods can be found
in Fig. 1.
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Computational Modeling

Finite Element Modeling

We used the anisotropic FE brain model developed
in Wu et al.70 with macroscale anatomy representative
of the 50th percentile male (based on anthropometry:
175 cm height, 78 kg weight) as the baseline model.
Axonal tracts were explicitly modeled as one-dimen-
sional cable elements based on a population-averaged
tractography atlas. Both the tracts and brain tissue
were modeled using a hyper-viscoelastic constitutive
model calibrated with brain-tissue experimental data.
In the model, elastic membranes envelop the brain with
fluid-filled cavities modeled as linear viscoelastic
materials. The FE model was previously evaluated
with brain deformation under blunt impacts and rapid
rotation,2, 70 and demonstrated good biofidelity com-
pared to the other state-of-the-art models.

Kuramoto Model and Hemodynamic Model

The resting-state neural activity was simulated using
the time-delay Kuramoto model of oscillators,38, 75

whose coherent behavior obeys the following delay
differential equations.

_hi ¼ xi þ K
XN

j¼1

Cijsinðhjðt� s �DijÞ � hiðtÞÞ; i ¼ 1; _s;N

In which the oscillators, whose phases (hi) were
initialized randomly with uniform distribution, corre-
spond to cortical regions of interest (ROI) and connect
based on information of network architectures. xi is
the intrinsic frequency of each oscillator, uniformly
distributed with 60 Hz mean and 1 Hz standard devi-
ation to simulate fast oscillatory activity in the gamma
frequency band.10 Cij is the coupling strength between

nodes i and j, determined by structural connectivity
normalized by the mean non-zero edge weights. Dij is

the distance matrix normalized by the mean fiber
length. The global coupling strength (K) and mean
delay (s) are 7.6 and 5.9 ms respectively to achieve
moderate synchronization and high degree of
metastability,73 where the model best approximates
empirical resting-state functional magnetic resonance
imaging.11, 22 The Balloon–Windkessel hemodynamic
model21 was used to simulate the blood-oxygen-level-
dependent (BOLD) signal by taking sinðhiÞ as neural
activity input. Simulations were run for 200 s, the first
20 s were discarded to remove transient effects, and the
remaining 180 s of the simulated BOLD were used to
calculate the simulated FC matrix based on the Pear-

FIGURE 1. Overview of methods. (a) Variables in this parametric study; (b) Structural connectivity; (c) Computational
neurodynamic and hemodynamic models of the healthy subject; (d) Simulated functional connectivity of the healthy subject; (e)
Idealized sinusoidal head kinematic pulse; (f) Finite element brain model; (g) Computational neurodynamic and hemodynamic
models following an impact; (h) Simulated functional connectivity following an impact, the alterations of the simulated FCs after an
impact indicate the risk of injury. FC functional connectivity, PCFC Pearson correlation score that measures the changes between
healthy and disrupted functional connectivity matrices.
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son correlation between these regional activities. The
model assumes that neuronal ensembles exhibit self-
sustained oscillations in the gamma frequency band
and the local gamma neural activity alone can induce
correlations at the BOLD level. Several electrophysi-
ological studies have reported the existence of oscilla-
tions in this frequency band7 and much experimental
and theoretical evidence supports a strong association
between gamma-band modulations and BOLD varia-
tions.39, 47, 62

Lesion Method

Mounting evidence indicates concussion involves a
range of axonal pathophysiology because of mechani-
cal damage to the white matter tracts.63, 64 Corre-
spondingly the functional deficits induced by
concussion would be a result of lesions to the edges
from the neural network perspective. The edge-based
method detailed in Refs. [73] was used to correlate
strain results from the FE simulations to the alter-
ations in the structural brain networks. For a given
head impact, the maximum tensile strain of the axonal
tracts connecting each pair of ROIs was computed,
resulting in a maximum axonal strain (MAS) matrix
(100 9 100). Based on the in-vivo, tissue-level,
mechanical risk function of axonal damage with re-
spect to axonal strain (P MASð Þ),5 the structural con-

nectome (Cij) after a certain impact can be weakened

based on the strain matrix in each edge:

Cij ¼ Cijð1� P MASð ÞÞ. Subsequent neurodynamic

and hemodynamic simulation using the lesioned
structural connectome generated the disrupted func-
tional connectivity after the impact. Lesion effects
could then be evaluated by comparison of the dis-
rupted and healthy functional connectivity matrices.

Parametric Space

Loading Conditions

We applied idealized rotational pulses of sinusoidal
pulse shape to the FE models about each anatomical
axis of the head to better characterize the influence of
impact directions on the susceptibility to concussions.
The x-axis was defined along the intersection of the
Frankfort and mid-sagittal planes in the posterior-to-
anterior direction (corresponding to coronal rotation).
The y-axis was defined along the line joining the two
superior edges of the auditory meatus in the left-to-
right direction (corresponding to sagittal rotation).
The z-axis is laid in the mid-sagittal plane perpendic-
ular to the Frankfort plane and in the superior-to-in-
ferior direction (corresponding to axial rotation). As
concussion is widely understood to be an injury pri-

marily caused by rotational motion, translational
kinematics were not investigated in this study.43 The
selected angular acceleration and angular velocity

magnitudes were x ¼ 60rad/s, a ¼ 5Krad=s2, informed
by existing concussion data,52, 58, 61, 74 and represent a
relevant level of head kinematics for a high probability
of concussion.

Variability in Brain Morphology

To reflect the variability of brain morphology and
connectivity in the young adult population, we used
high-quality neuroimaging data from the healthy par-
ticipants of the human connectome project (HCP),
including over 1200 healthy adults with a range of ages
from 22 to 35 years. To reduce the dimension and
complexity of the parametric space, we characterized
the variability of brain morphology using a single
metric: intracranial volume. Male and female subjects
with the closest intracranial volume to the 5th, 50th,
and 95th percentile in the HCP database were selected
as samples to reflect the variation in brain morphology
(Fig. 2).

Subject-specific FE models were generated by mesh
morphing from the baseline FE model. The morphing
technique was implemented to precisely match the in-
ner cranial geometry of the FE brain models to the
target subjects. An in-depth explanation of the mor-
phing methodology was presented in Alshareef et al.2.
The dura surface was used to match the segmented
brain geometry from magnetic resonance imaging
(MRI) through rigid-body alignment and affine
transformation. The registration between the two sur-
faces was used to interpolate a 3D volume registration,
using radial basis functions with thin-plate spline, to
morph the baseline model to match the subject-specific
brain. We used this technique to generate morphed
models with comparable element quality to the base-
line brain model.

Variability in Structural Networks

We used the diffusion MRI from the same HCP
data to infer the variability of structural connectivity
(SC) in the young adult population. SC matrices were
generated using Schaeffer 100 parcellation following
the same procedure described in Refs. [73]. A recent
study55 showed the SC matrices in HCP data
(n = 1065) can be categorized into four non-overlap-
ping groups (two male and two female groups) by
performing modularity analyses. A representative
structural network was selected for each group by
identifying the closest geodesic distance67 to the aver-
age SC matrix for the group (the mean weights of each
edge). A baseline structural network was also selected
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as its closest geodesic distance67 to the average SC
matrix of the whole HCP database. Together, five
structural networks (Fig. 3) and their distance matrices

(Dij) were used to represent the variability in the young

adult population and perform neurodynamic simula-
tions.

FIGURE 2. Brain volume variations and morphed subject-specific finite element models. F95:95th percentile female, F50:50th
percentile female, F5:5th percentile female, M95:95th percentile male, M50:50th percentile male, M5:5th percentile male, B* baseline
FE model, the baseline FE model represents the brain of a 50th percentile male based on height and weight.

FIGURE 3. Representative matrices of structural connectivity in the HCP database. B* baseline subject 108020, M1 male 1 module,
M2 male 2 module, F1 female 1 module, F2 female 2 module.
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Simulation Matrix

Combinations of the independent variables lead to a
total number of 108 simulated scenarios (Fig. 4).
Among them, the healthy subjects of different brain
sizes are repeated scenarios, and the total number of
unique simulations is 87. All FE simulations were
solved using LS-DYNA (v971 R9.2.0, double preci-
sion; LSTC, Livermore, CA). The neurodynamic and
hemodynamic simulations were solved using the
Runge–Kutta methods implemented in MATLAB
(2019b, The MathWorks Inc., Natick, MA).

Data Analysis

The integrated FE, neurodynamic, and hemody-
namic simulations predicted the simulated functional
connectivity for each scenario. The differences between
simulated FC of the impact scenarios and their healthy
status FC were quantified by the Pearson correlation
(PCFC) score through unrolling the FC matrices into
vectors. References [73, 74] showed a good negative
correlation between the Pearson correlation of FC and
the probability of injury by reconstructing head im-
pacts in professional American football athletes.
Lower PCFC indicates a higher risk of brain injury for
the specific impact scenario. ANOVA (analysis of
variance) analysis with hierarchical type II sums of

squares method was used to test the significance of the
variables after fitting a multiple regression model
between PCFC and the predictors (direction, networks,
sizes) and their interactions. During the ANOVA
analysis, direction and networks were considered as
categorical variables and size was considered as a
continuous variable. Once the variables were deemed
significant, Kruskal–Wallis tests with Bonferroni cor-
rection were conducted between all categories to elu-
cidate the differences.

RESULTS

Pearson Correlation Analysis Results

The relationship between the variables, their inter-
action, and Pearson correlation scores (PCFC) was
well-characterized by a multiple regression model

(R2 ¼ 0:917). The results of the subsequent ANOVA
(Table 1) indicate that impact direction contributed
significantly to the model (p < 0.05) and explain
67.1% of the variability. The other significant factors
ranked by their contribution percentage were the
interaction between impact direction and network
architecture, brain size, and the interaction between
impact direction and brain size (p < 0.05). Since im-
pact direction was the most significant factor, we fur-
ther conducted ANOVA for each impact direction.
The variability was contributed largely by network
architecture (> 50%) for axial and sagittal impacts,
while the variability during coronal impacts was
mainly explained by brain size.

For comparison, similar ANOVAs were also done
by considering the Pearson correlation between the
SCs before and after impact (PCSC) as the continuous
outcome. Although the resulting significant variables
were almost consistent with those of PCFC analysis, the
variability was less explained by the network archi-
tecture, which indicated the variation increased when
the neural regions of the structural network interacted
and coordinated to form a functional network.

The direction-dependent results showed the
increased disparity of FC from the healthy status when
the head motions change from axial to sagittal to
coronal with decreased PCFC scores (Fig. 5a). This
result indicated the risk of injury was higher in axial
rotation than that in sagittal rotation, and coronal
motions had the lowest risk of injury. The size-de-
pendent results showed decreased PCFC scores, thus
increased injury susceptibility as the brain size
increased, although the influence of size on injury
susceptibility was less significant than that of impact
direction (Fig. 5b). When the results were grouped by
different directions, the size-dependent injury suscep-

FIGURE 4. Summary of the simulation matrix. Each path
represents a simulated scenario. In the ‘Directions’, S sagittal,
C coronal, A axial. B* non-impact baseline simulation; In the
‘Networks’, F2 female group 2, F1 female group 1, M2 male
group 2, M1 male group 1; B* baseline subject 108020; In the
‘Sizes’, F95 95th percentile female, F50 50th percentile female,
F5 5th percentile female, M95 95th percentile male, M50 50th
percentile male, M5 5th percentile male, B* baseline FE model.
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tibility was more pronounced with a negative correla-
tion between brain size and PCFC in coronal scenarios

(Fig. 6). When distinguishing by directions, the influ-
ence of network architecture also emerged, the PCFC

TABLE 1. Summary of ANOVA results.

Directions Variables
PCFC PCSC

DF P-value CP DF P-values CP

All 

Direction 2 0.000 67.1% 2 0.000 87.2%

Network 4 0.079 1.5% 4 0.173 0.2%

Size 1 0.000 7.7% 1 0.000 5.6%

Direction: Network 8 0.000 10.2% 8 0.002 0.7%

Direction: Size 2 0.000 4.5% 2 0.000 5.0%

Network: Size 4 0.386 0.7% 4 0.511 0.1%

Error 47 8.1% 47 1.2%

Axial

Network 4 0.001 53.1% 4 0.112 5.9%

Size 1 0.003 19.2% 1 0.000 84.6%

Network: Size 4 0.215 9.4% 4 0.776 1.1%

Error 13 18.3% 13 8.3%

Coronal

Network 4 0.001 26.6% 4 0.386 12.4%

Size 1 0.000 51.2% 1 0.001 49.1%

Network: Size 4 0.03 11.9% 4 0.901 2.8%

Error 13 10.3% 13 35.7%

Sagittal

Network 4 0.002 54.0% 4 0.000 31.6%

Size 1 0.143 4.2% 1 0.000 56.6%

Network: Size 4 0.072 19.2% 4 0.019 6.8%

Error 13 22.5% 13 5.0%

DF degree of freedom, CP contribution percentage.

Darker green color indicates a higher contribution percentage, and darker yellow color indicates smaller P-values.

FIGURE 5. Distribution of Pearson correlation scores between lesioned and healthy functional connectivity. (a) Influence of
impact directions; (b) Influence of brain sizes. Stars and lines are drawn to highlight significant differences between pairs of
groups according to Kruskal–Wallis one-way analysis of variance with Bonferroni correction: *p £ 0.05, **p £ 0.001, ***p £ 0.0001.
The number of data points in each category is indicated below the violin.
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scores of some types of network architecture are sig-
nificantly different from the others under certain
rotations (Fig. 7). For example, the male 1 module
(M1) is more vulnerable than male 2 module (M2) in
axial rotation; the female 1 module (F1) has a higher
tolerance to injury than M1 in sagittal rotation.

Supplemental Analysis

We conducted several reliability analyses as detailed
in the supplemental material to examine the effect of
(a) time delay, (b) damage thresholds/injury severities,
(c) lesion method (node-based method as detailed in
Refs. [73]), (d) sex as a variable and considering the
sex-differences in axonal damage threshold. These re-
sults confirmed that (i) the greatest variability was at-
tributed to impact direction, and under specific impact

direction, injury susceptibility could be affected by
brain size and/or network architecture; (ii) the vari-
ability of functional susceptibility (PCFC) contributed
by network differences was more significant than the
variability of structural susceptibility (PCSC) con-
tributed by the variances in network architecture.
These results also showed that (i) the consideration of
time delay and nodal lesion had minimal effects on the
findings; (ii) the influence of the structural network
may also depend on injury severity, and differences
caused by network architectures started to disappear
when the injury becomes more extensive; (iii) The sig-
nificance of sex as a covariate only appeared when
assuming the female axonal damage threshold was
lower than the male axonal damage threshold. For
example, when the female threshold was lowered by
5% strain (from 15 to 10%), the sex only explained

FIGURE 7. Distribution of Pearson correlation scores between lesioned and healthy functional connectivity to show the influence
of brain networks per impact direction. Stars and lines are drawn to highlight significant differences between pairs of groups
according to Kruskal–Wallis one-way analysis of variance with Bonferroni correction: *p £ 0.05, **p £ 0.001, ***p £ 0.0001. The
number of data points in each category is indicated below the violin.

FIGURE 6. Distribution of Pearson correlation scores between lesioned and healthy functional connectivity to show the influence
of brain sizes per impact direction. Stars and lines are drawn to highlight significant differences between pairs of groups according
to Kruskal–Wallis one-way analysis of variance with Bonferroni correction: *p £ 0.05, **p £ 0.001, ***p £ 0.0001. The number of data
points in each category is indicated below the violin.
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7.9% of the variation, far less than the 45.1 and 15.4%
contributed respectively by impact directions and net-
work architectures.

DISCUSSION

This work investigated the influence of impact
directions, brain morphology, and network architec-
tures on the susceptibility of concussion among the
adult population using computational modeling.
Consistent with past work, our results show a primary
effect of impact direction on the outcome (predicted by
functional connectivity) after impact, with axial mo-
tions more injurious than either sagittal or coronal
rotations. The heterogeneous outcome of an impact
could also be explained by brain morphology alone or
the combination of brain morphology and impact
direction. Although not statistically significant, larger
brains generally had a higher risk of injury. Statisti-
cally, the baseline male brain (B) was more vulnerable
to the small female brain (F5) under coronal impact. In
certain loading directions, different network architec-
tures also contribute to heterogeneous injury out-
comes, but determining if there exist specific types of
network architectures that are always more vulnerable
to concussion in real-world loading conditions remains
to be elucidated.

The direction-dependent susceptibility of brain in-
jury found in this study is consistent with the biome-
chanical responses of human in-situ brain experiments
and FE simulations,1, 69 assuming brain deformation
correlates with injury risk. However, this finding is
unable to corroborate with the in-vivo experiments on
non-human primates and piglets. Gennarelli et al.24

found that non-human primates are most susceptible
to axonal damage in coronal rotation, most tolerant in
sagittal motions, with axial motion showing an inter-
mediate level of impairment. In another primate study,
however, coronal impact tolerance of concussion was
estimated about twice as high as sagittal impact tol-
erance.60 More recent studies on piglets show coronal
rotations induce lower axonal injury volumes than
axial and sagittal head rotations, and sagittal rotations
led to increased behavioral deficits compared to axial
rotations.65 These findings are not consistent with the
current study and the past human in-situ and FE
studies, but the significant inter-species differences in
the brain–skull anatomy and relative brain/brainstem
orientation may provide the most direct explanation of
these differences. For example, piglets lack pro-
nounced falx cerebri, a meningeal partition between
the two hemispheres in the human brain, which was
believed to significantly influence the biomechanical
response.30, 31 The contradictory results would also

result from different viewpoints on TBI severity. The
above studies classified the severity of TBI based on
either subjective symptoms as outcomes or quantifi-
cation of brain tissue damage, while this study assesses
the severity of TBI by the quantitative changes of
functional connectivity. Our study approaches the
brain as a complex network in which neuronal
ensembles act in concert to ensure normal function,
therefore, both the anatomical damage site and its
topological characteristics within the brain network
play an essential role in disrupting brain function and
causing injury. For these network alterations to
become clinically useful, though, much more multi-
modal quantifiable data (including imaging and
biomarkers) is required to unravel exactly how net-
work organization changes in response to different
types and stages of brain damage, as well as a con-
sensus approach on network construction and analysis.
Once these obstacles are resolved, the network method
carries the potential to allow more objective diagnosis,
to monitor recovery processes, and to evaluate effec-
tive treatment options.

The size of the brain is a significant factor influ-
encing injury susceptibility. Larger brains tend to have
an increased risk of injury, though not necessarily
following a strictly monotonic increasing trend due to
the other factors. Influences of brain size on mechan-
ical brain response have been long known and can be
analytically explained by dimensional analysis and
scaling laws.49, 71 Characterizing morphological vari-
ations by intracranial volume is a simplification and
leaves out several other factors influencing the brain’s
biomechanical responses. The shape of the brain can
be very different, as evident by the six HCP specimens
selected in this study (Fig. 2), although its influence
may be minimal according to previous studies.2 The
current study also lacks the consideration of subject-
specific internal brain anatomy26 and physical prop-
erties of the brain,76 as well as the brain–skull inter-
face,78 to alter the biomechanical response of the brain.
Quantifying the variation of these factors in the pop-
ulation is a challenging open question and requires
further investigation and better data collection.

Besides the main study variables (loading directions,
size, network architecture) investigated, there is
growing interest in sex as a biological variable affecting
TBI vulnerability. The prevalence of concussion in
some sports-related and military-related activities is
reported to be higher in females than males but the
overall picture is not clear with complicated and often
contradictory findings.29, 45 Whether there are differ-
ences in outcome from TBI in males and females can
be approached by examining whether there are corre-
lations between sex and the independent variables
studied here. First, there may be differences in loading
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conditions related to how males and females acquire
their injuries, females are more likely to receive injuries
from assault or violence, while males are more likely to
receive work-related injuries and motor vehicle colli-
sions.14 Second, brain size is correlated with sex, as
males normally have larger brains (Fig. 2). Third, the
sex category is not a major predictor of the variability
of human brain network architecture.55 Fourth, sexual
dimorphism of axon structure in the brain may also
contribute to different axonal damage thresholds, as
investigated in the supplemental analysis. The mixture
of these factors might influence the outcome in studies
of sex differences in TBI, without considering the
epidemiological characterization of head impact
exposure and precise characterization of the effect of
sexual dimorphism, our results suggested that if the
effects of size was accounted for, sex alone did not
contribute significantly to the variability of brain in-
jury risk.

Variability across structural connectivity and their
potential influence on the susceptibility of concussion
has been noticed in the past.4, 25 This is the first study
that attempted to quantify this effect on concussion
compared to the other factors inferred by a relatively
large MRI database. Despite its large sample size, the
HCP subjects represent a tight demographic profile of
healthy adults between the ages of 22 and 35 with twins
and siblings. Thus, by using this dataset, we have likely
underestimated the variations of network architectures
in the general population. It will be essential to see how
findings from this particular set of subjects generalize
to broader age ranges. Both the functional and struc-
tural connectivity patterns seem to be similarly affected
by older age and the observed changes seem to par-
ticularly affect the default mode network.16 Another
limitation of this study is only incorporating the FE
models with a simplified generic mesoscopic fiber
architecture extracted from the population-averaged
tractography for all the scenarios. Considering the
inclusion of axonal tracts only introduced minimal
effects on strain outcomes in previous studies,70, 77 the
influence of the variation in fiber architecture from the
biomechanical aspect is expected to be negligible.

In this study, the underlying assumption is that the
disruption of functional connectivity is associated with
concussion. Although growing clinical evidence sug-
gests that TBI may cause changes in (resting-state)
functional connectivity,13, 44, 54, 68 these findings were
obtained from relatively small sample sizes with a
cross-sectional design. It is unknown how the brain
function of the injured subjects compared to pre-injury
brain function. Concussion patients were normally
examined at least days post-injury in those clinical
studies. It is still an open question about how signifi-
cantly the length of post-injury time would affect the

functional response. The validity of this connection
between concussion and the functional network re-
mains to be strictly examined. On the other hand,
structural connectivity is known to shape functional
connectivity, but this relationship remains complex.
For example, functional connections can exist between
two brain regions despite the absence of direct struc-
tural connectivity.33 Our results did demonstrate the
benefit of functional network analysis compared with
structural networks as the variability contributed by
the network architecture increased.

The validity of the findings in this study also de-
pends on the fidelity of the computational models. To
directly validate our models would require injury data
with an amount of subject-specific information
including head kinematics, diffusion and functional
MRI before and after impact, and clinical outcomes. A
single set of data including such information currently
does not exist. Efforts have been made to construct and
validate each model with full use of the data available.
The brain FE model was validated using in-situ
experimental brain deformation under high-rate rota-
tional head motion.2 The current model showed better
biofidelity than the other two commonly used FE
models (GHBMC and SIMon) when validating against
approximately 5000 individual point displacement time
histories from six specimens, each with four loading
severities in the three directions of controlled rotation.
The construction of the Kuramoto model was guided
by the resting-state functional connectivity of the
healthy HCP subjects.73 The main assumption made
when applying the Kuramoto model to simulate large-
scale neural dynamics is that the self-sustained gamma-
frequency oscillations are responsible for resting brain
activity. The role of ongoing neural oscillations in the
processing and perception of information across dis-
tributed neuronal ensembles is not well understood,
previous research provided evidence for the relevance
of different frequency band oscillations for the differ-
ent mechanisms underlying multisensory processing.36

Although the Kuramoto oscillators with a gamma-
band intrinsic frequency can generate slow fluctuations
(falling in the alpha and beta frequency bands)
resembling magnetoencephalography data,11 the brain
is likely to operate on multiple frequency channels
during rest,17 which may require a more complex
model than the Kuramoto implemented here. The le-
sion method was based on the correlation between
axonal stretch and axonal injury demonstrated in the
in-vivo animal model,5 in which the MAS tolerances
for the occurrence of electrophysiological impairment
and the occurrence of morphological damage for ax-
onal tracts are 15% and 17% respectively. Due to the
pitfall of numerical methods, caution should be taken
in applying the in-vivo thresholds to the FE simula-
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tion.27 To further check our results, we note the tol-
erance for 50% risk of concussion using the same FE
model was 12.3% in terms of 95th percentile global
MAS.72 It seems plausible, therefore, that using the in-
vivo thresholds of axonal tracts in this FE model would
generate realistic injury outcomes.

We believe this work is the first study to charac-
terize the disparities in vulnerability to concussion
caused by the variations in impact directions, brain
morphology, and network architectures. Our work
does not attempt to consider the possibility of an
individualized risk for concussion, a possibility that is
raised in some previous biomechanical studies.56, 57

Besides the factors investigated here, additional poorly
understood variabilities, such as biomechanical factors
(mechanical properties of brain components), patho-
physiological differences6 and neuroplasticity,35 could
also contribute to concussion tolerance but require
future investigation. As a result of the limited valida-
tion data, we can only infer how important these fac-
tors could play a role in concussion relative to each
other. The predicted alterations to the functional net-
works and the risk of concussion for a given scenario
should be interpreted with caution. We showed that, in
descending order of importance, impact directions, the
interaction between impact direction and network
architecture, brain size, and interaction between im-
pact direction and brain size contribute significantly to
the heterogeneous injury outcomes. This work high-
lights the prerequisite information to collect for sub-
ject-specific analyses with the ultimate goal of
mitigating concussions and facilitates the development
of more effective protective equipment in the long
term.
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