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a b s t r a c t 

The brain is a complex network consisting of neuron cell bodies in the gray matter and their axonal projections, 

forming the white matter tracts. These neurons are supported by an equally complex vascular network as well as 

glial cells. Traumatic brain injury (TBI) can lead to the disruption of the structural and functional brain networks 

due to disruption of both neuronal cell bodies in the gray matter as well as their projections and supporting cells. 

To explore how an impact can alter the function of brain networks, we integrated a finite element (FE) brain 

mechanics model with linked models of brain dynamics (Kuramoto oscillator) and vascular perfusion (Balloon- 

Windkessel) in this study. We used empirical resting-state functional magnetic resonance imaging (MRI) data to 

optimize the fit of our brain dynamics and perfusion models to clinical data. Results from the FE model were used 

to mimic injury in these optimized brain dynamics models: injury to the nodes (gray matter) led to a decrease in 

the nodal oscillation frequency, while damage to the edges (axonal connections/white matter) progressively de- 

creased coupling among connected nodes. A total of 53 cases, including 33 non-injurious and 20 concussive head 

impacts experienced by professional American football players were simulated using this integrated model. We 

examined the correlation of injury outcomes with global measures of structural connectivity, neural dynamics, 

and functional connectivity of the brain networks when using different lesion methods. Results show that injuri- 

ous head impacts cause significant alterations in global network topology regardless of lesion methods. Changes 

between the disrupted and healthy functional connectivity (measured by Pearson correlation) consistently corre- 

lated well with injury outcomes ( 𝐴𝑈𝐶 ≥ 0 . 75 ), although the predictive performance is not significantly different 

( 𝑝 > 0 . 05 ) to that of traditional kinematic measures (angular acceleration). Intriguingly, our lesion model for 

gray matter damage predicted increases in global efficiency and clustering coefficient with increases in injury 

risk, while disrupting axonal connections led to lower network efficiency and clustering. When both injury mech- 

anisms were combined into a single injury prediction model, the injury prediction performance depended on 

the thresholds used to determine neurodegeneration and mechanical tolerance for axonal injury. Together, these 

results point towards complex effects of mechanical trauma to the brain and provide a new framework for un- 

derstanding brain injury at a causal mechanistic level and developing more effective diagnostic methods and 

therapeutic interventions. 
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. Introduction 

Traumatic brain injury (TBI) poses a rising challenge to public

ealth. In 2014 alone, there were approximately 2.87 million TBI-

elated emergency department visits, hospitalizations, and deaths in the

nited States ( Peterson et al., 2019 ). Despite the increased awareness

f TBI among the general public and improved diagnostic classifica-

ion, management, and prognosis of TBI, the underlying pathophysiol-
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gy for TBI is not fully understood. A prevailing view is that the com-

lex neurocognitive and neuropsychological deficits experienced by TBI

urvivors, many of whom do not have a focal brain injury detected by

euroimaging or histopathological analysis, are not explained by dam-

ge restricted to a single brain area. Rather, the diffuse distribution

f the impact force leads to damage in several areas of the brain si-

ultaneously. Given that cognitive functions of the brain depend on

he coherent activity of complex brain networks ( Fries, 2005 ), there is
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ncreasing interest in using connectivity-based methods to understand

ow the diffuse patterns of damage throughout the brain interacts with

he brain’s inherent interconnectivity to cause the deficits following TBI.

o this end, a series of studies measure the temporal dependence be-

ween regional activities recorded by neuroimaging techniques such as

unctional magnetic resonance imaging (fMRI), electroencephalography

EEG) or magnetoencephalography (MEG) to infer changes in the brain

onnectivity after TBI ( Aerts et al., 2016 ). 

Several empirical studies utilized the network approach to evalu-

te changes in brain networks following TBI. For example, growing evi-

ence suggests that TBI may cause changes in (resting-state) functional

onnectivity ( Churchill et al., 2018 ; Meier et al., 2017 ; Plourde et al.,

020 ; Virji-Babul et al., 2014 ). Although brain networks of injured

nd healthy groups showed no statistically significant differences in

he global metrics (e.g., global efficiency, modularity, clustering coef-

cient), significant differences occurred in local network metrics ( Virji-

abul et al., 2014 ). Similarly, both increased and decreased functional

onnectivity within local functional brain networks were found during

he whole-brain analysis of resting-state fMRI ( Churchill et al., 2018 ;

eier et al., 2017 ). For example, functional connectivity of the anterior

efault mode network (DMN) ( Plourde et al., 2020 ) and a network of

rontal, temporal, and insular regions ( Churchill et al., 2018 ) was neg-

tively correlated with symptom severity; the functional connectivity

f a network with anti-correlated elements of the DMN and sensorimo-

or system ( Churchill et al., 2018 ) was positively correlated with symp-

om severity. These results suggest a link between TBI, local functional

etworks, and post-injury symptoms. However, these findings were ob-

ained from relatively small sample sizes with a cross-sectional design.

t is, therefore, unknown how the brain function of the injured subjects

ompared to pre-injury brain function. 

In parallel with these emerging clinical insights, computational neu-

oscience provides cellular- and systems-scale tools to shed light on un-

erstanding the alterations of physiology and cognitive abilities after

rain injury. At the systems level, the impact of lesioning structural

onnectomes in neural dynamics ( Váš a et al., 2015 ) and resting-state

unctional connectivity ( Cabral et al., 2012 ) show that TBI can cause

ignificant disruptions to brain information processing. The removal

f nodes from the network with specific network characteristics (e.g.,

odes with high eigenvector centrality; hub nodes) decrease network

ynchrony while increasing metastability ( Váš a et al., 2015 ). Alterna-

ively deleting and weakening edges (coupling strengths or connectiv-

ty) create functional networks with higher efficiency but less clustering,

mong other changes ( Cabral et al., 2012 ). 

These prior studies which systematically pruning an intact network

learly show the effect of removing nodes with particular characteristics,

hether it was nodes that were most connected to other nodes, or nodes

hat represented critical pathways among smaller subnetworks within

he brain. However, neurological diseases and disorders rarely follow

uch a systematic pruning process from the most connected to least con-

ected node, or any other “ordered deconstruction ” process. This is es-

ecially true of mechanical impact to the brain, which is complicated

ven more because the impact conditions experienced by one person is

ifferent from another. Indeed, we observed the regions most important

or network information flow do not generally align well with brain

egions that deformed the most during the impacts ( Anderson et al.,

020 ). However, it is unknown how the expected structural damage to

he brain from an impact could affect its functional state - e.g., would

 concussive impact more likely cause a change in the synchrony of the

rain compared to an impact that does not cause concussion? To answer

his question more completely, one would need to incorporate methods

o translate an impact to a change in the wiring of the brain, and then

onvert this change in wiring into an estimate of the functional brain

etwork properties that occur after impact. 

Computational models in biomechanics provide one part of this so-

ution by accurately estimating the local mechanical response of brain

issue for a given external load. After mapping these models to the brain
2 
tructures, finite element (FE) models provide an accurate representa-

ion of the macroscale brain anatomy ( Giudice et al., 2019 ) and meso-

copic white matter tractography ( Garimella and Kraft, 2017 ; Wu et al.,

019 b) to provide a realistic prediction of intracranial brain motion

or any given external head kinematics. These models are necessarily

alidated with experimental tests ( Alshareef et al., 2020 ; Hardy et al.,

007 ), and undergo constant refinement to adjust for changes in the size

f the brain, the physical characteristics of brain tissue, and the mode

f traumatic loading (e.g., impact versus blast overpressure exposure).

rom these biomechanical models, numerous kinematics-based metrics

 Gabler et al., 2018 , 2019 ) and tissue-level strain metrics ( Giordano and

leiven, 2014 ; Hajiaghamemar et al., 2020 ; Sahoo et al., 2016 ; Wu et al.,

021 b) emerged from the simulation of real-world or laboratory impacts

o more accurately predict the impact scenarios that are likely to cause

rain injury, and other impacts which could be considered safe. Until

ow, these biomechanical models are based on the premise that brain

egions are more likely to experience larger deformation during an in-

urious impact and the brain injury risk is solely from the severity and

xtent of this impact-based damage. Existing approaches provide no in-

erence on how brain deformations affect the global function of the brain

etwork. Recent efforts to integrate brain mechanics to network analysis

rovide encouraging insights into the underlying basis of cognitive im-

airments after TBI ( Anderson et al., 2020 ; Kraft et al., 2012 ; Wu et al.,

019 a), but the variety of these techniques face significant challenges

n merging the mechanical response and brain functional response, both

re vital steps to fully understand the mechanism of TBI ( Meaney et al.,

014 ). 

In this study, we combined a FE brain model, a neurodynamic model,

nd a hemodynamic model derived from neural dynamics to explore

ow an impact can affect the global function of brain networks. We

rst tuned the neurodynamic model to simulate empirical resting-state

unctional connectivity of a healthy brain. Once calibrated for a healthy

ubject, we utilized the FE model to simulate 53 head impacts experi-

nced by professional American football players ( Sanchez et al., 2019 )

ith known head kinematics and injury outcomes (no concussion, con-

ussion). Based on the results of FE simulations, lesions to the structural

rain network were implemented to assess the change in the regional

rain perfusion from the hemodynamic model. Together, combining the

esioned neurodynamic model and hemodynamic model provided esti-

ates of the brain functional connectivity after simulated impact. We

xamined the correlation of injury outcomes with global measures of

tructural connectivity, neural dynamics, and functional connectivity of

he brain networks. Our main hypothesis was that including measures

n the changes of brain network structural and functional properties af-

er impact would improve TBI prediction. Our findings show that sim-

lated injury to brain network dynamics produces complex changes in

ynchrony and network structure, mirroring changes observed in pa-

ients after TBI. Moreover, this approach highlights differences that can

merge in brain dynamics when injury patterns are changed. Together,

his approach provides an entry point for understanding brain injury at

 causal mechanistic level. 

. Methods 

.1. Simulation of healthy subjects 

.1.1. Neuroimaging data and preprocessing 

Publicly accessible, high-quality neuroimaging and cognitive data

rom the healthy participants of the human connectome project (HCP)

ere used in this study. Diffusion MRI data were reconstructed in DSI

tudio ( http://dsi-studio.labsolver.org ) using q-space diffeomorphic re-

onstruction (QSDR) ( Yeh and Tseng, 2011 ) with a mean diffusion dis-

ance ratio of 1.25. Deterministic whole-brain fiber tracking was per-

ormed with an angular cutoff of 55, step size of 1.0 mm, the minimum

ength of 10 mm, spin density function smoothing of 0.0, the maximum

http://dsi-studio.labsolver.org
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Table 1 

Parameters of Balloon-Windkessel hemodynamic model. 

Parameters Description Value 

𝛼 Grubb’s exponent 0.32 

𝜅𝑠 Rate of signal decay 0.65 (1/s) 

𝛾𝑓 Rate of flow-dependent elimination 0.41 (1/s) 

𝜏0 Hemodynamic transit time 0.98 (s) 

𝐸 0 The resting oxygen extraction fraction 0.34 

𝑉 0 Resting blood volume fraction 0.02 

𝑦

𝑘

𝑘
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ength of 400 mm until 1000,000 streamlines were reconstructed for

ach subject. 

A cortical parcellation atlas ( Schaefer et al., 2018 ), based on resting-

tate functional magnetic resonance imaging (rs-fMRI), was used to “fil-

er in ” the tracks that pass through the regions (100 regions clustered

nto seven networks) to generate a weighted structural connectivity (SC)

atrix (100 × 100) and a distance matrix (100 × 100). Each network

dge in the connectivity matrix corresponds to the number of stream-

ines that interconnect two regions normalized by the total number of

treamlines, and each network edge in the distance matrix is the inter-

egional mean fiber length. A generic structural network (ID:108,020,

ale) was selected to represent the population because its SC matrix was

losest to the average SC matrix ( n = 1065). The preprocessed empirical

s-fMRI ( Glasser et al., 2013 ) from the corresponding HCP subject were

lso parcellated using Schaefer’s atlas. Pearson correlation coefficients

ere calculated between each pair of ROIs to generate the functional

onnectivity (FC) matrix. One FC matrix was generated by taking the

verage of the FC matrices obtained using rs-MRI data acquired in 2

hase encoding directions (rfMRI_REST1_RL, rfMRI_REST1_LR). 

.1.2. Kuramoto model and hemodynamic model 

The resting-state cortical neural dynamical activity was simulated us-

ng the Kuramoto oscillators model with time delays ( Kuramoto, 1984 ;

eung and Strogatz, 1999 ), in which each oscillator was assigned to a

ortical node (or ROI) and connected based on coupling strengths and

ber lengths of brain structural connectivity. The synchronization be-

avior of a system of coupled oscillators ( N = 100) in the Kuramoto

odel obeys the following delay differential equations: 

̇
𝑖 = 𝜔 𝑖 + 𝐾 

𝑁 ∑
𝑗=1 

𝐶 𝑖𝑗 𝑠𝑖𝑛 
(
𝜃𝑗 
(
𝑡 − 𝜏 ∗ 𝐷 𝑖𝑗 

)
− 𝜃𝑖 ( 𝑡 ) 

)
, 𝑖 = 1 , … , 𝑁 

Where 𝜃𝑖 and 𝜔 𝑖 denotes the phase and intrinsic frequency of node 𝑖 .

hases were initialized randomly with uniform distribution between 0

nd 2 𝜋. Natural frequencies were uniformly distributed around a 60 Hz

ean with a 1 Hz standard deviation to simulate fast oscillatory activity

n the gamma frequency band ( Cabral et al., 2012 ). 𝐾 is the global cou-

ling strength, and 𝐶 𝑖𝑗 is the relative coupling strength between nodes 𝑖

nd 𝑗computed from the structural connectivity matrix. 𝐶 𝑖𝑗 was normal-

zed such that the average of all non-zero edge weights equaled 1. The

ean time delay ( 𝜏) and the individual time delay between nodes 𝑖 and 𝑗

as assumed to be proportional to 𝐷 𝑖𝑗 , which was calculated by normal-

zing the distance matrix by the mean fiber length. Model parameters

and 𝜏 were tuned with respect to empirical rs-fMRI data ( Fig. 1 ). The

ime delays ( 𝜏 ∗ 𝐷 𝑖𝑗 ) were rounded at 2 ms resolution to expedite the

ost time-consuming process of the simulation while preserving accu-

acy. The delay differential equations were numerically solved using the

xtended Runge–Kutta method ( Shampine and Thompson, 2001 ) imple-

ented in MATLAB (dde23.m, The MathWorks Inc., Natick, MA). 

The sine of the phases ( 𝑠𝑖𝑛 ( 𝜃𝑖 ) ) generated by the Kuramoto

odel were transformed into simulated blood-oxygen-level-dependent

BOLD) signals (y) using the Balloon–Windkessel hemodynamic model

 Friston et al., 2000 ), as detailed in the following equations: 

 𝑛 ( 𝑡 ) = 𝑠𝑖𝑛 ( 𝜃𝑛 ( 𝑡 ) ) 

𝜏0 𝜕 𝑣 𝑛 ( 𝑡 ) 
𝜕𝑡 

= 𝑓 𝑛 − 𝑣 𝑛 

1 
𝛼

𝜕 𝑓 𝑛 ( 𝑡 ) 
𝜕𝑡 

= 𝑠 𝑛 

𝜕 𝑠 𝑛 ( 𝑡 ) 
𝜕𝑡 

= 𝑟 𝑛 − 𝜅𝑠 𝑠 𝑛 − 𝛾𝑓 
(
𝑓 𝑛 − 1 

)

𝜏0 𝜕 𝑞 𝑛 ( 𝑡 ) 
𝜕𝑡 

= 

𝑓 𝑛 

( 

1 − 

(
1 − 𝐸 0 

) 1 
𝑓 𝑛 

) 

𝐸 

− 

𝑣 𝑛 

1 
𝛼 𝑞 𝑛 

𝑣 
0 𝑛 

3 
 ( 𝑡 ) = 𝑉 0 

( 

𝑘 1 
(
1 − 𝑞 𝑛 

)
+ 𝑘 2 

( 

1 − 

𝑞 𝑛 

𝑣 𝑛 

) 

+ 𝑘 3 
(
1 − 𝑣 𝑛 

)) 

 1 = 7 𝐸 0 

 2 = 2 

 3 = 2 𝐸 0 − 0 . 2 

The model parameters and corresponding parameters settings are

hown in Table 1 . The differential equations were numerically solved

sing the explicit Runge-Kutta method implemented in MATLAB

ode45.m, The MathWorks Inc., Natick, MA). Simulations were run for

00 s, with the first 20 s discarded to remove transient effects. We down-

ampled the simulated BOLD signals at a time-step of 0.72 s to achieve

he same resolution as the empirical data and then calculated the simu-

ated FC matrix based on pairwise Pearson correlation. 

We defined a bounded domain to tune the model parameters 𝐾 and

for a healthy subject. To simplify further computation, we restricted

he coupling strength to 0–20 and the mean delay time to a biologically

lausible 0–10 ms in the range of physiologically realistic values for

hite matter tracts ( Waxman, 2006 ). The cost function was defined as

he absolute difference between the mean strength of the simulated and

mpirical FCs. Since negative values might reflect anti-correlated de-

endencies, the absolute values were used when calculating the mean

trength. The optimization was performed using a manual search to find

he location of the minimum cost function on the bounded parameter

pace with a termination criterion of 1% absolute error. Initially, we con-

ucted an automatic optimization using the matlab fmincon function for

he subject (ID:103,007) provided in the supplementary material, but it

as a very time-consuming process given that each simulation takes

bout 20 h on our computers. Both the manual search and automatic

earch found the optimal location in a similar metastable regime, so a

anual search was performed on the final representative subject to the

rror limit (1%) specified. 

.2. Simulation of functional network following head impact 

Following model tuning for the resting-state functional connectivity

f the healthy subject, we investigated the correlation between network

easures and injury outcomes by simulating the head impact in profes-

ional American football games. An overview of the study workflow is

hown in Fig. 2 ; each step of this process is explained in detail in the

ollowing sections. 

.3. Finite element simulations and injury data 

The football impacts are helmet-to-helmet hits videotaped in pro-

essional American football games between 1996 and 2001 and experi-

entally reconstructed using anthropomorphic test dummies in a test-

ng laboratory ( Pellman et al., 2003 ; Sanchez et al., 2019 ). Apart from

he head kinematics and injury outcomes, individual brain anatomi-

al features and connectivities are not available. The concussion cases

ere independently verified by two team physicians who reviewed the
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Fig. 1. Summary of model tuning methods. (A) Diffusion MRI of the generic subject was used to reconstruct fiber tractography (B); The cortical regions were 

organized first into 100 areas (parcellations), which were then consolidated into seven networks atlas in MNI space (C); (D) The structural connectome (D) was used 

to build a Kuramoto oscillator model (E), the results of which were used in a Balloon–Windkessel hemodynamic model to estimate perfusion in each nodal area. 

A functional connectivity (F) was derived from the estimate of perfusion. The estimate of FC was compared to the measured resting state functional connectivity 

measured directly in the subject (I); (H) Schaefer’s 100 parcels seven networks atlas in fsLR32k space; (I) Empirical FC of the generic subject; (J) Cost function to 

minimize the difference between the simulated and empirical FCs provided an estimate of the model parameters which optimized the match between predicted and 

measured FC. 

Fig. 2. Summary of injury study. (A) Finite el- 

ement simulations of the football head impact 

provided an estimate of how nodes and edges in 

the brain network would be damaged after an 

impact; (B) Computational models used these 

estimates of how the nodes and edges within 

the network were affected by the impact to pre- 

dict resting-state brain networks after head im- 

pacts; (C) Using both measures from the neural 

dynamics and subsequent functional connectiv- 

ity, we assessed the utility of several neural net- 

work measures for predicting injury. 

4 
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linical information based on the definition of concussion used by the

merican Congress of Rehabilitation Medicine at that time (this defini-

ion is provided in the supplementary material). Of the verified concus-

ion cases, most players exhibited multiple symptoms; memory prob-

ems, cranial nerve symptoms, headaches, abnormal immediate recall,

izziness, and nonspecific cognition problems/complaints were the most

ommon symptoms and complaints. 

A three-dimensional finite element human brain model with white

atter axonal tracts explicitly modeled was utilized to simulate the re-

onstructed professional football impacts. The brain FE model to rep-

esent a 50th percentile male was previously validated for brain defor-

ation under various loading conditions and showed good biofidelity

 Alshareef et al., 2021 ; Wu et al., 2019 b). The embedded axonal tracts

ere extracted from the population-averaged tractography template

HCP-842) of the human connectome project ( Yeh et al., 2018 ). A total

f 53 valid cases, including 33 non-injurious and 20 concussive head

mpacts, were simulated by prescribing the six-degrees-of-freedom ex-

erimental linear and rotational head kinematics to the FE brain model

hrough the center of gravity of the head. All FE simulations were solved

sing LS-DYNA (v971 R9.2.0, double precision; LSTC, Livermore, CA). 

.4. Lesion methods: linking strain to the disruption of neural network 

Traumatic brain injury is considered a mixture of focal and diffuse in-

ury throughout the brain. The pathological consequences include neu-

onal injury, damage to the supporting vascular network, and disrup-

ion of the connections that exist across the brain architecture. From a

etwork perspective, the cognitive deficits induced by TBI would be a

esult of lesions to the nodes or the edges from the neural network per-

pective. To this end, two methods were used to correlate strain results

rom the above FE simulations to alterations in brain networks or the

eurodynamic model. 

Our first method linked the local deformation to a decline in neural

ctivity within individual brain regions. This model was based on the

ombined observations that (1) FE model-predicted tissue strain posi-

ively correlates with the percentage of the neuronal loss observed in

ivo ( Mao et al., 2010 ), and (2) both neuronal firing rate and oscillation

requency decreases as either neurodegeneration or neuronal inactiva-

ion increases ( Gabrieli et al., 2020 ). Mild traumatic brain injury does

ot lead to widespread neuronal degeneration, but it does cause disrup-

ion in the synchronization of networks in vitro and a broad reduction in

ctivation of neural circuitry in vivo ( Hansen et al., 2018 ; Nguyen et al.,

021 ; Rogers and Gross, 2019 ), presumably from the temporary inabil-

ty of some neurons to fire action potentials in the network ( Mott et al.,

021 ). From a modeling standpoint, this phenomenon can be modeled

y reducing the natural oscillator frequencies in nodes of the Kuramoto

odel in direct proportion to the peak deformation occurring within the

rain region represented by the node ( Fig. 3 , node-based method). In

his study, we use the cumulative strain damage measure (CSDM) to es-

imate the effect of an impact on the oscillation frequency of nodes in the

eural network. The brain FE model was segmented into 100 regions of

nterest (ROI) according to the Schaefer parcellation atlas after matching

he anatomy using a morphing technique ( Wu et al., 2019 b, Fig. 3 A–C).

or each ROI and impact condition, the fraction of the region experi-

ncing strain levels higher than a critical threshold of 15% (CSDM15)

r 25% (CSDM25) was calculated ( Fig. 3 E). Based on the correlation

etween strain, neurodegeneration level, and frequency ( Fig. 3 F), we

odified the oscillation frequency for each node in the Kuramoto model

 Fig. 3 G) for each impact. 

The second lesion method relates lesions to white matter tracts to the

eduction of SC edge strength using the parcellated mesh, the path of

hite matter tracts connecting different regions, and the predicted ax-

nal strain along these tracts ( Fig. 4 A–D, termed edge-based method).

he mechanical tolerance for axonal injury was expressed as a risk

unction (statistical modeling of the occurrence of injury) of the ax-

nal Lagrangian strain, determined by comparing morphological injury
5 
nd electrophysiological impairment to in vivo tissue strain produced

y dynamically stretching the optic nerve of an adult male guinea pig

 Bain and Meaney, 2000 ). When applying the edge-based method for a

iven head impact, the axonal deformation in the FE brain was mapped

o nodes of the network based on the parcellation atlas. The 100 ROIs

ere also used to segment the explicit tracts in the FE brain, the max-

mum tensile strain of the axonal tracts connecting each pair of ROIs

as computed, resulting in a maximum axonal strain (MAS) matrix

100 × 100) quantifying the brain deformation for a given impact case

 Fig. 4 D, E). Based on the risk function of axonal damage with respect

o axonal strain ( Fig. 4 F), the modified structural connectome ( Fig. 4 G)

fter a certain impact can be modified based on the strain metric in each

dge. 

.5. Potential injury metrics 

In this study, a variety of potential injury metrics were evaluated

or their correlation with brain injury. Depending on their underlying

nformation, these metrics belong to the five categories: measures de-

cribing head motion, tissue deformation, neural dynamics, structural

etworks, and functional networks. Head kinematic measures include

eak resultant angular velocity ( 𝜔 𝑚𝑎𝑥 ) and peak resultant angular accel-

ration ( 𝛼𝑚𝑎𝑥 ); tissue deformation metrics include the 95th percentile

aximum principal strain (MPS95) and CSDM25, these metrics have

reviously shown good correlation with injury outcomes for this dataset

 Anderson et al., 2020 ). 

Neural dynamical measures were evaluated as potential injury met-

ics. In the Kuramoto model, network dynamics were characterized by

he mean and the standard deviation of the amplitude of the instanta-

eous synchrony 𝑅 ( 𝑡 ) over time. We considered the mean 𝑅 ( 𝑡 ) and an

ndex of global synchrony and the standard deviation of 𝑅 ( 𝑡 ) as an index

f metastability. 𝑅 ( 𝑡 ) is defined by: 

 ( 𝑡 ) 𝑒 𝑖𝜃( 𝑡 ) = 

1 
𝑁 

𝑁 ∑
𝑛 =1 

𝑒 𝑖 𝜃𝑛 ( 𝑡 ) 

Common topological measures of the tested brain networks (includ-

ng modified SC and simulated FC) were also evaluated for their corre-

ation with the injury. These most used topological metrics were charac-

eristic path length (CPL) ( Watts and Strogatz, 1998 ), global efficiency

GE) ( Latora and Marchiori, 2001 ), local efficiency (LE) ( Wang et al.,

017 ), clustering coefficient (CC) ( Watts and Strogatz, 1998 ) and

odularity (M) ( Newman, 2006 ). A brief description of each metric

s provided in the supplementary material (Section A2, Table A1).

hese methods were initially developed to describe the topology of

etworks with unweighted (binary), undirected, and positive weight

inks. To compute distance-based graph metrics (e.g., the characteris-

ic path length or the global-efficiency) from weighted brain graphs,

he link weights were substituted with their reciprocal ( Rubinov and

porns, 2010 ). For correlation-based FC, self-connections were deleted,

nd negative weights were set to zero ( Rubinov and Sporns, 2010 ).

opological metrics were evaluated using the Brain Connectivity Tool-

ox ( Rubinov and Sporns, 2010 ). 

To quantify the differences between simulated FC of healthy subjects

nd tested subjects, the FC matrices were unrolled into vectors and the

earson correlation (PC) between the vectors themselves was computed.

eodesic distance (GD) ( Venkatesh et al., 2020 ) was also used to com-

are SC and FC matrices, given that SC and FC are positive semidefinite

atrices. 

.6. Simulation using random parcellation and random network 

Until now, our simulations focused on testing the correlation be-

ween changes in network dynamics and the likelihood of injury. To

est the strength of this approach, we repeated the same analysis above

sing random parcellation and random network wiring. In contrast to

he Schaffer 100 parcellation approach, we generated spatially random
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Fig. 3. Summary of the node-based method. (A) Schaefer parcellation atlas was converted into a voxel model in which each voxel in the MRI is converted to a single 

cubic hexahedral element; (B) The voxel model was then morphed to match with the FE model using a morphing technique described in ( Wu et al., 2019 a); (C) Solid 

elements in the FE model were segmented into different ROIs; (D) Maximum principal strain at a cross-section plane of the brain under a concussive impact (ID: 

2754); (E) CSDM matrix for the given impact; (F) Correlation between CSDM (percentage of neuronal loss) and normalized frequency; (G) Decreased frequency for 

each oscillator (1–100) after the head impact. 

Fig. 4. Summary of the edge-based method. (A) Maximum axonal logarithmic strain of a concussive impact (ID: 2754); (B) Schaefer parcellation atlas was converted 

into a voxel model in which each voxel in the MRI is converted to a single cubic hexahedral element; the voxel model was then morphed to the FE model; (C) Axonal 

tracts in the FE model was segmented out by ROIs; (D) Maximum axonal logarithmic strain matrix for the given impact; (E) Healthy structural connectivity; (F) 

Alteration of the original edge value in SC based on the probability of injury for axonal tracts, and mechanical tolerance for axonal injury based on Lagrangian and 

Logarithmic strain ( Bain and Meaney, 2000 ); (G) Injured structural connectivity. 
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Table 2 

Summary of simulation and analysis. A series of simulations evaluated the dynamics and functional connectivity that occurred in a healthy 

subject, and this same subject when different injury models (node-based, edge-based, combined) were used. As a comparison, we also 

evaluated the changes when starting with a randomized network. Measure of both the dynamics and functional connectivity were compared 

to kinematic measures of the impact, and traditional tissue-based injury criterion. 

Simulations 

Evaluated Metrics 

Neural dynamics 

Topological 

measures of FC Changes of FC 

Topological 

measures of SC 

Topological 

measures of SC 

Head kinematics and 

strain measures 

None N/A 𝜔 𝑚𝑎𝑥 , 𝛼𝑚𝑎𝑥 , 

MPS95, 

CSDM25 

Random Meta, Sync CPL FC , GE FC , 

CC FC , 

LE FC , 

M FC 

GD FC , 

PC FC 

N/A 

Node-based 

(CSDM25) 

Node-based 

(CSDM15) 

Edge-based CPL SC , 

GE SC , 

CC SC , 

LE SC , 

M SC 

GD SC , PC SC 

Combined 

(CSDM25) 

Combined 

(CSDM15) 
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ortical parcellations based on a Poisson disk sampling ( Messé, 2020 ).

e randomized the connections in the network by reshuffling the ex-

sting edges in the network; doing so preserved the weight, degree, and

trength distributions. We used this randomized network - which con-

isted of both the random parcellation and random network connections

 to simulate healthy subject dynamics and to predict changes that oc-

urred in our best performing injury model (node-based injury with a

ritical threshold of 15% (CSDM15)). The same parameter settings used

n the real subject (108,020) for Kuramoto model and hemodynamic

odel were adopted for these simulations. 

.7. Data analysis 

The different lesion methods and their combinations result in five

ypes of simulations; the available injury metrics for each type, along

ith the simulation using a randomized network, are summarized in

able 2 . Logistic regression analysis was used to evaluate the correla-

ion between continuous metrics and binary injury data (injury vs. no

njury). The receiver operating characteristic (ROC) curve was used to

ssess how well the metric discriminates individuals with or without

njury. ROC curves are summarized in a single value: the area under

he ROC curve (AUC). Delong statistical tests were used to determine

hether one measure has a significantly different AUC than another

easure ( DeLong et al., 1988 ; Robin et al., 2011 ). The Akaike informa-

ion criterion (AIC) was used to compare the goodness of fit and relative

uality of statistical models ( Akaike, 1974 ). The AIC is defined as 

𝐼𝐶 = −2 𝑙𝑜𝑔 ( 𝐿 ) + 2 𝑉 

Where 𝐿 is the maximum likelihood for the candidate model, 𝑉 is

he number of independent variables (Note that 𝑉 = 1 in this study). 

. Results 

.1. Kuramoto oscillator model parameters search 

Our first step developed a modeling pipeline to accurately represent

easures of functional connectivity in a human subject. To this end, the

lobal coupling constant ( 𝐾) and the mean time delay ( 𝜏) were opti-

ized to match the simulated healthy FC with the empirical FC data.

he simulated FC obtained at 𝐾 = 11 . 5 , and 𝜏 = 6 𝑚𝑠 showed the best

greement with the empirical FC measured from a subject with a struc-

ural connectivity matrix resembling the average connectivity across a

opulation of 1065 subjects ( Fig. 5 A). The optimal simulated FC and

mpirical FC also had similar global efficiency ( Fig. 5 B). In this set of

arameters, the oscillators are only moderately synchronized (Sync =
.560) and in a metastable regime (Meta = 0.127) ( Fig. 5 C and D). 
7 
.2. TBI metrics evaluation 

Using the extracted parameter sets ( 𝐾 = 11 . 5 and 𝜏 = 6 𝑚𝑠 ) from the

arameter search, we simulated the disruption of brain networks using

he node-based method, or the edge-based method, or the combined in-

ury method. A visualization of simulated FCs for an injurious and a

oninjurious impact using the edge-based method, compared with sim-

lated FC of the healthy subject, is depicted in Fig. 6 . Indicated by AUC

nd AIC ( Fig. 7 A–D), most topological measures of the SC (except for

odularity) performed as good as ( Fig. 7 E, 𝑝 > 0 . 05 ) the traditional mea-

ures ( 𝜔 𝑚𝑎𝑥 , AUC = 0.85; 𝛼𝑚𝑎𝑥 , AUC = 0.90; MPS95, AUC = 0.88; CSDM25,

UC = 0.88) in predicting injury outcomes. The prediction performance

f FC-related measures depended on lesion methods, but none of the

easures outperformed the traditional measures. The best predictive

odels using FC-based approaches occurred when using either a node-

ased method (CSDM15), or a combination of injury to the gray matter

odes and white matter edges in the network (Combined CSDM15). Re-

ardless of the specific injury methods, good correlations ( 𝐴𝑈𝐶 > 0 . 75 ,
𝐼𝐶 < 65 ) occurred between injury outcomes and predictors, including

ocal efficiency (LE FC ), clustering coefficient (CC FC ), and Pearson corre-

ation (PC FC ) of FCs ( Fig. 7 B and D). However, the directions of these

orrelations are not always consistent across injury methods ( Fig. 8 ).

hen using the node-based method, global efficiency (GE FC ), local ef-

ciency (LE FC ), clustering coefficient (CC FC ) were positively correlated

ith injury risk, while these metrics were negatively correlated with

njury risk when using the edge-based method. 

The combined model, which included the effect of impact to both

odes and edges in the functional brain networks, produced more com-

lex correlations to the presence or absence of concussive injury. As

entioned above, the node-based and edge-based injury had opposite

ffects on some measures of the FCs. Therefore, the prediction perfor-

ance was sensitive to the thresholds used to determine neurodegen-

ration and mechanical tolerance for axonal injury. If the threshold for

amage to the node oscillators was set at a higher value (CSDM25),

he combined (CSDM25) method performed poorly in predicting injury

ompared to the separate (node-based or edge-based) methods. How-

ver, if the threshold for injury to the nodes was set at a lower value

CSDM15), the performance of the combined (CSDM15) method did not

ignificantly ( Fig. 7 E) differ from the node-based model using the same

hreshold (CSDM15). When the CSDM threshold was set lower, the com-

ined model performance is influenced more by the node-based change

n frequency, instead of the edge-based reduction in structural connec-

ions. 

When the atlas-based parcellation and image-based brain network

ere replaced by a randomized network (with preserved weight, de-

ree, and strength distributions), several changes occurred. For unin-

https://en.wikipedia.org/wiki/Statistical_model
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Fig. 5. Response across parameter space. (A) Absolute differences between the mean absolute values of the simulated and empirical FC matrices; warmer colors 

indicate a better fit between model and measured dynamics (B) Absolute differences between the global efficiency of the simulated and empirical FC; Arrows in (a) 

and (B) indicate optimal coupling strength and mean delay parameter combinations. (C) Global metastability and (D) global synchrony. With parameters showing 

the best fit between measured and predicted functional connectivity (arrows), the network showed modest synchrony and high metastability. 

Fig. 6. Example of simulated FCs of injurious and noninjury impact, comparing with simulated FC of the healthy subject. (A) Simulated FC of injurious impact; (B) 

Simulated FC of noninjury impact; (C) Simulated FC of the healthy subject. The edge-based injury method was used for the shown examples. 
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Fig. 7. Summary of performance. (A) AUC of metrics which are not related to FC; (B) AUC of FC-related metrics; (C) AIC of metrics which are not related to FC; 

(D) AIC of FC-related metrics; A higher AUC indicates better performance, and a lower AIC indicates a better fit; (E) Uncorrected p-values obtained with DeLong’s 

test to determine whether one measure has a significantly different AUC than the measure of the highest AUC ( αmax ); Significant values were highlighted with color 

according to the 5% significant level. 
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Fig. 8. Example of the logistic regression between injury metrics and injury outcomes. (A) Results based on edge-based injury method; (B) Results based on node- 

based (CSDM25) injury method. Note that clustering coefficient (CC FC ) and global efficiency (GE FC ) were negatively correlated with injury risk when using the 

edge-based method, and positively correlated with injury risk when using the node-based method. 

Fig. 9. Distributions of neurodynamic and topological metrics across different initial structural network conditions. Networks were either real or randomized and 

were uninjured or injured. Significant tests ( t -test) were conducted between uninjured real network and uninjured random network, and between injured real network 

and injured random network, cases determined to be significantly different ( p < 0.05) were pointed out by the asterisk symbols. 

j  

t  

w  

l  

c  

c  

(  

a  

a  

𝑝  

N  

p  

d

 

a  

l  

(  

𝜏  

fi  

r  
ured networks, the randomization of the parcellations and the struc-

ural edge weights significantly changed modularity, but the changes

ere not reflected by the characteristic path length, global efficiency,

ocal efficiency, and clustering coefficients ( Fig. 9 ). Perhaps due to these

hanges in the network topology, randomization caused a significant in-

rease in synchrony ( p < 0.05) and marginal difference in metastability

 Fig. 9 ). As expected, injury caused significant changes in both structural

nd functional network measures, as the global topological measures

nd Pearson correlation of FCs were still correlated well ( 𝐴𝑈𝐶 > 0 . 8 ,
 > 0 . 05 ) with injury outcomes using a node-based method (CSDM15).
10 
ot all measures, however, remained good predictors of injury, and the

rediction performance of metastability and geodesic distances (GD FC )

egraded. 

A second consideration was whether these results were substantially

ffected when a different brain architecture was used. To test the re-

iability of our observations, we used a different network architecture

ID:100,307) and a different set of parameters (Fig. A1, K = 7.6, and

= 5.9 ms), as shown in supplementary Section A3. These results con-

rmed that (i) FC-related measures worked as well as traditional met-

ics for predicting injury; (ii) among the FC-related measures, good cor-
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elations occurred between injury outcomes and Pearson correlation

PC FC ) of FCs, and (iii) injury to a random network also led to significant

hanges in network function. 

. Discussion 

An interdisciplinary computational model for predicting TBI was

eveloped by coupling biomechanical models with neural dynamics

nd perfusion models. Although several studies ( Alstott et al., 2009 ;

abral et al., 2012 ; Honey and Sporns, 2008 ; van Dellen et al., 2013 ;

áš a et al., 2015 ) studies how targeted changes to the connection net-

ork - e.g., removing the top 5% of nodes with highest connectivity

 none of artificial lesioning approaches tried to mimic the actual de-

eneration patterns observed over time in neurological disease, or after

cute injury. Our approach used a method to affect both the strength

f connections across brain regions after an impact, as well as changes

hat could occur in nodal oscillators within a brain network after im-

act. Explicitly modeling how impacts could affect the initiation and

ransmission of information through brain networks led to a consistently

ood correlation with injury outcomes (AUC = 0.75–0.84), indicating a

otential predictive method for assessing outcome after impact. In com-

arison, intentionally randomizing the nodal organization and connec-

ions across nodal regions in the brain significantly affected the baseline

eural dynamics, and affected the ability of using some metrics (such as

etastability) to distinguish injured from uninjured networks. However,

ur different lesion methods had opposing effects between topological

easures and injury outcomes, thereby making it difficult to determine

he optimal scheme for predicting injury risk. Our work is the first study

o integrate both impact biomechanics and neural dynamics models to

nderstand how rapid head motions can lead to underlying structural

nd functional impairment to the brain. 

Conceptually, we built upon several past studies that used models

o link brain structure to functional connectivity across brain regions.

imilar to our study, neurodynamic models in this form ( Cabral et al.,

014 ; Fukushima and Sporns, 2018 ; Lee et al., 2017 ; Váš a et al., 2015 )

ere unable to reproduce empirical functional connectivity perfectly.

he lack of a perfect match between our model and the measured data is

ot surprising, given the relative simplicity of the model. Although one

ight consider the model choice as one reason for this discrepancy, pre-

ious studies ( Messé et al., 2014 , 2015 ) demonstrated that the prediction

ccuracy of the Kuramoto model is comparable to that of other major

omputational neurodynamic models (e.g., neural mass model). Still, a

lear pattern exists, which is sufficient to identify an area of parameter

pace where the model best approximates empirical data. The model

ptimally predicts empirical FC for a range of parameters where the

scillators exhibit relatively low synchrony and high metastability. This

attern corresponds to the same dynamical regime where the best agree-

ent with BOLD ( Fukushima and Sporns, 2018 ) or MEG ( Cabral et al.,

014 ) functional connectivity was found in previous work. 

Our results also explored how a random re-parcellation and rewiring

ffected the baseline levels of neurodynamics and functional connectiv-

ty, as well as the change which occurs after an impact. As expected, a

ompletely randomized network significantly changed the baseline mea-

ures of neural activity and functional connectivity relative to the orig-

nal network, although the changes were not well characterized by the

lobal topological measures of functional network. On its own, these

esults suggest the network topology is critically coupled to neurody-

amics and functional connectivity. Every impact we simulated led to a

road pattern of deformation throughout the entire brain; for this rea-

on, injury also affected our randomized network in a similarly diffuse

anner. Any impact generally caused reductions in nodal oscillator fre-

uencies, causing subsequent increase in functional coupling, regardless

f whether the network was organized or random. As impact intensity

ncreases, the deformation throughout the brain increases in extent and

agnitude ( Wu et al., 2021 ) to cause a more progressive loss in oscil-

ator frequencies and increase in synchrony and functional coupling.
11 
ogether, these observations suggest that the network configuration is

mportant to establish the baseline communication characteristics of a

etwork, but the injury effect is sufficiently widespread throughout the

etwork that any network, regardless of its configuration, will show

lear changes after an impact. 

When considering brain architecture, function, and impact condi-

ions together, our results show that network-based analysis can pro-

ide predictors of injury outcome that are equal to traditional methods

kinematics-based metrics and strain measures) that do not consider any

spect of either brain organization or dynamics. Our closest correlations

etween traditional injury threshold measures and network-based pre-

ictions of injury occurred when we focused on changes related to the

tructural connectome after impact. In many cases, the performance of

ost global measures of the SC is as good as traditional metrics of ro-

ational motions. This high correlation is expected because the changes

o the structural connectome are tied closely to deformation occurring

ithin the brain, which is influenced directly by the loading kinematics

 Alshareef et al., 2020 ; Gabler et al., 2018 ; Wu et al., 2020 ). Certainly,

he uncertainty in the loading impact conditions can affect the accuracy

f the injury predictions, as recognized before ( Anderson et al., 2020 ),

ut this factor would affect both kinematics and deformation-based pre-

ictors. One additional consideration for structural connectome-based

etrics would be the difference in the individual brain anatomy and

rchitecture, each of which could change the accuracy in predicting

oncussion risk across a population. To address this concern, though,

e confirmed that the general findings were observed when using a

ifferent network architecture and a different set of parameters in the

uramoto model. 

The reliability of inferences drawn from this model also depends on

he biofidelity and the accuracy of the mesoscopic fiber architecture

f the FE brain model. The FE brain model demonstrated good biofi-

elity compared to the other state-of-the-art models when simulating

he latest human brain deformation data ( Wu et al., 2019 a). The meso-

copic fiber architecture modeled in the FE model was extracted from

he population-averaged tractography. However, due to the high com-

utational cost, the resulting tractography included in the FE model only

as 3446 fiber tracts, which are greatly underrepresented compared to

he tracts (1000,000) reconstructed to calculate the structural connec-

ome. This discrepancy and the individual variability of the tractography

n the population would introduce error into the model especially when

sing the edge-based method. 

Perhaps the most challenging part of the analysis was to examine the

otential correlations that could occur between the functional network

rchitecture and outcome (concussion/no concussion) after impact. Ex-

ecting a clear distinction between injured and uninjured architectures

ay be too ambitious, as clinical data suggested brain networks of in-

ured and healthy groups showed no statistically significant differences

n the global metrics (e.g., density, global efficiency, modularity, cluster-

ng coefficient) of functional networks in the (sub)acute phase (within

hree months) after TBI ( Virji-Babul et al., 2014 ). Likewise, demonstrat-

ng a clear match between our predicted changes in functional architec-

ure and the clinical evidence of connectivity changes would be difficult,

s empirical studies measured connectivity days post-injury and the re-

overy of the connectivity could mask some of the immediate changes

ccurring right after impact ( Dall’Acqua et al., 2017 ). Moreover, these

opological measures were initially developed to describe unweighted

or binary), undirected networks (e.g., social networks), and the ex-

ension of these metrics to weighted, directed networks is not always

traightforward. To characterize FC with negative weights, we removed

egative connections from the networks prior to analysis. A possible

lternative procedure in brain graph analysis is to consider the abso-

ute value of the resulting correlation coefficient regardless of its sign

 Achard et al., 2006 ), which could also present difficulties in terms of

europhysiological interpretation ( Buckner, 2010 ). However, a prelim-

nary analysis of the injury prediction performance shows that the gen-

ral findings are relatively consistent when we use different procedures
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A  
or calculating topological measures of FCs (see Supplemental A3). Fi-

ally, our analysis used global measures of network architecture, which

s distinct from most empirical studies which focused on differences

f local measures between healthy and injured groups ( Borich et al.,

015 ; Churchill et al., 2018 ; Mayer et al., 2011 ; Meier et al., 2017 ;

urdaugh et al., 2018 ; Orr et al., 2016 ; Plourde et al., 2020 ; Virji-

abul et al., 2014 ). Future work could consider whether better corre-

ations would occur with local network measures. For example, head

otation direction was found to significantly affect the severity and out-

ome of injury ( Cullen et al., 2016 ; Gennarelli et al., 1987 ; Ibrahim et al.,

010 ). It is possible that the directional dependence of TBI outcome may

e due to the preferential changes in these local networks. 

Our results clearly demonstrate a delicate balance among the effects

f injury to both gray and white matter simultaneously. Removing or

educing the connectivity of strongly connected oscillating nodes in a

etwork would clearly impair the ability to synchronize the network, as

ell as the efficiency of transferring information through the network.

oth of these network features are considered important for cognitive

rocessing ( Aerts et al., 2016 ). However, the real-world impact condi-

ions we studied do not preferentially affect edges from only strongly

onnected nodes. Rather, edges throughout the network are affected

nd this distributive effect is most noticeable with a dramatic reduction

n the efficiency of the network. In comparison, it is well known that

he deformations (strain) within the brain are high along the periphery,

ear partitioning membranes, and in regions where separate brain areas

an shift quickly during impact (e.g., corpus callosum) ( Alshareef et al.,

020 ). For this reason, it is likely that any impact would significantly

ffect the broad network of gray matter nodes in our network and lead

o a more heterogeneous mix of oscillator frequencies. As a result, the

fficiency of the functional network tends to increase when consider-

ng the effect of only gray matter injury, in contrast to a reduction in

fficiency when only considering damage to the network edges. 

Clearly this balance between synchronizing and efficiently passing

nformation through a network will be affected by the thresholds used

n the different lesion methods. For example, increasing the threshold

or gray matter changes in the network dynamics will bias the predic-

ion towards the edge lesion methods, and vice versa. Our most accurate

rediction of injury occurred when gray and white matter damage oc-

urred at approximately the same mechanical threshold ( ∼15%). There-

ore, our results imply the mechanical tolerance of different parts of

he brain is similar. If proven correct, this finding would change our

erspective on how immediate neurological impairments occur follow-

ng concussion. Historically, mild traumatic brain injury was viewed as

 diffuse injury, where the microscopic damage appearing throughout

he white matter was considered the primary neuropathological com-

onent of the injury ( Johnson et al., 2013 ; Smith and Meaney, 2000 ).

ased on this observation, much of the past work considering the toler-

nce of the brain to impact focused on how the extent of white matter

amage would contribute towards injury risk ( Hajiaghamemar et al.,

020 ; Sahoo et al., 2016 ; Wu et al., 2021 ). Certainly, the long-lasting

mpairments after mild TBI may still link most critically to perma-

ent changes to the white matter ( Johnson et al., 2013 ; Shenton et al.,

012 ; Smith and Meaney, 2000 ), as neuronal degeneration is not con-

idered a primary feature of either the acute or chronic phase of mTBI

 Gardner and Yaffe, 2015 ). However, our findings indicate that changes

o the gray matter (nodes) and white matter (edges) are both important

or determining the network organization immediately after impact and

re therefore both critical for rebuilding and recovering network func-

ion after impact. Recovering oscillating nodes for promoting network

ecovery is conceptually consistent with clinical tools to stimulate differ-

nt cortical areas and treat neurological disorders, some of which show

romise for treating TBI patients ( Bonnì et al., 2013 ; Kundu et al., 2018 ;

aninotto et al., 2019 ). A key step in this network reconstruction process

ould be considering how the stimulation re-routes existing pathways

n the brain to counteract permanent changes to the network edges that

ould appear after mild TBI ( Castellanos et al., 2011 ; Kantak et al., 2012 ;
12 
uceyeski et al., 2019 ). In this manner, the accurate prediction of the

etwork structure after an impact would be equally important to deter-

ine safe and unsafe impact conditions, as well as potential restorative

trategies for cognitive function. 

This work contributes to bridging the missing link between the neu-

al network and injury biomechanics. We showed how rapid head mo-

ions could lead to the disruption of structural and functional networks

t a causal mechanistic level. This work provides a foundation for and

ighlights the possibility of applying network analysis in clinical prac-

ice for TBI. Since the individual information about the brain anatomy

nd network architecture of the involved football players is not avail-

ble, this study used one generic FE model and one generic network

rchitecture. Going forward, further work exploring a variety of brain

orphology and network architectures could shed light on the sus-

eptibility to concussion among the population under different impact

onditions and improve the design of subject-specific head protection

quipment. Because of its capability of considering different anatomical

actors from both biomechanical and neurodynamic perspectives, the

ramework developed in this study is a crucial tool to facilitate future

ulti-dimensional exploration. 
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