Three Common “Design Patterns” in Big Data Analysis

Caching / memo(r)ization: process a lot of data that repeats/partly overlaps’
process many different tasks in ‘parallel’ (3/12/2018)

Search and constraint solvers: find an item, a parameter, etc. that maximizes an objective

@3/14/2018 - Unsupervised data analysis

- Principal Component Analysis (PCA) -- Group similar features together (roughly)
- Clustering -- Group similar items together

How to they compare - time complexity:

Other Techniques

Supervised Learning

@03/26/2018 - decision trees
@03/28/2018 - regression, boosting and SVMs

- **Regression**
 - The Linear Regression Family
 - Principal Component Regression
 - Logistic Regression := linear regression + filtering using logistic function + binarizing results to 0&1

- **Boosting**

- **SVM**

@04/02/2018: Tuning and evaluating classifiers
@04/4/2018 - Artificial Neural Networks
@04/9/2018 - Convolutional Neural Networks

@04/11/2018 - Time Series

@04/16/2018 - TensorFlow

- Distributed TensorFlow
 - Recurrent Neural Networks (RNN) - Handles Time Series

@04/18/2018 - Online Learning

- Analyzing Real-Time Data Streams

@04/23/2018 - Stream Processing Systems

Visualization

@04/25/2018 - Data Science Ethics

- Tensorflow supports "half precision" floats -- float16.
 - Float32 is called "full precision"/"single precision".
 - Float64: "double precision".
- Shuffling = re-sharding = ...
Three Common “Design Patterns” in Big Data Analysis

Caching / memo(r)ization: process a lot of data that repeats/‘partly overlaps’

- Caches
 - In PySpark:
 - pyspark’s `.cache()`: useful even just for caching a file-loading process.
 - Spark gives 5 types of Storage level
 - `MEMORY_ONLY`
 - `MEMORY_ONLY_SER`
 - `MEMORY_AND_DISK`
 - `MEMORY_AND_DISK_SER`
 - `DISK_ONLY`
 - `cache()` will use `MEMORY_ONLY`. If you want to use something else, use `persist(StorageLevel.<*type*>)`.
 - By default `persist()` will store the data in the JVM heap as unserialized objects. (source)
 - It’s a trade-off between:
 - IO-efficient and re-useable
 - Redundant but parallel
 - Sometimes you may prefer parallelism more than IO-efficiency!
 - the whole `cache` can be considered as a `defaultdict` in Python, defaulting to computing and storing the executionPlan.
 - But it’s more than just naive key-lookups -- consider `A join B` and `B join A`: DFs are in different order but should yield identical results. There should be a "key interpreter/canonicalizer" that is aware of this (perhaps by a "sort tuple" procedure, as seen on page 11).
 - There’s a limit (e.g. capacity of your memory) to caches, so:
 - Manually, you should:
 - only cache things you gonna reuse
 - remember to `unpersist` when you are done with it
 - be aware of constantly updating data source -- validity of cached DFs may expire and thus should be dropped.
if by manual selection the cached data is still exceeding the memory's capacity, the computing platform may intervene and prioritize cached items:

- either by dropping Least Frequently Used (LFU) items
- or dropping Least Recently Used (LRU) items.

(code demonstrated on page 13, using another dictionary to store last access time)

- Difference between caching and memoizing: *(source)*
 - "memoization" is "caching the result of a deterministic function" that can be reproduced at any time given the same function and inputs.
 - "Caching" includes basically any output-buffering strategy, whether or not the source value is reproducible at a given time. In fact, caching is also used to refer to input buffering strategies, such as the write-cache on a disk or memory. So it is a much more general term.

- memoization
 - a key concept in dynamic programming

process many different tasks in ‘parallel’ (3/12/2018)

- **Task scheduling** (Multitasking/task switching)
 - key concepts: *(source)*
 - **Sync**: Blocking operations.
 - **Async**: Non blocking operations.
 - **Concurrency**: Making progress together.
 - **Parallelism**: Making progress in parallel. *Parallelism \(\subseteq\) Concurrency.*
 - Concurrency in Python
 - **Manual** approach: \(\text{data} = \text{operator(data)}\) approach - using \(\text{queue}\)
 - **Automatic** approach (Great reading: *(source)*)
 - \(\text{multiprocessing}\) populates multiple processes
 - \(\text{threading}\) uses threads
 - \(\text{concurrent.futures}\) is a simpler interface to those two above
 - \(\text{asyncio}\)

- **Random exploration via genetic algorithms**
 - randomness + parallelism
 - consider it a non-exhaustive search -- by using random sampling.
 - also this makes it a good candidate to make approximate algorithms

Search and constraint solvers: find an item, a parameter, etc. that maximizes an objective*
Planning consists of:

1. Defining start and goal states
2. Defining a sequence of actions and constraints about how they can be used
3. Defining a search strategy
4. Finding pruning methods

pruning

- forward chaining
- **backward chaining** -- allows for more advanced pruning, such as "branch-and-bound pruning"

@3/14/2018 - Unsupervised data analysis

Principal Component Analysis (PCA) -- Group similar features together (roughly)

- PCA can be viewed as: A rotation to a new coordinate system (a.k.a. "a projection to a **new space**") to **maximize the variance** in the new coordinates.
- PCA is scale-variant -- rescaling data w.r.t. any feature will change PCA result. Also, center ("mean") of data should really be at origin.
 - Thus, **standardization** is important.
 - but be aware of log-scaled raw features!
- Realized by computing the covariance matrix.
 - Its eigenvectors are our principal components (from original space to PCA-ed space).
 - To compute for them: use single value decomposition (SVD) with fast algorithms like "randomized SVD".
 - Its eigenvalues are the covariance explained. Use eigenvectors in descending order of this!
- Excessive principal components are merely capturing noise in the data.
- compare with: t-distributed Stochastic Neighbor Embedding (t-SNE)
 - non-deterministic (each run of t-SNE, even on the same set of data, can give different results)
 - Local-focused
 - coordinates mean nothing, Information is all in proximity.
 - which leads to the topic of clustering...

Clustering -- Group similar items together

- K-Means
- Minimizes within-cluster Sum of Squared Errors (SSE) (a.k.a. distortion function).
- Non-convex.
- K-means++: Initializes centroids as far away from each other as possible.
- K-means in SQL (see `.sql` file)
- pyspark.mllib.clustering has k-means packaged: KMeans, KMeansModel.
- Elbow method for choosing the right number of clusters
- Alternative to centroid is the "medoid": while centroid is the numerical average for continuous values, themedoid is for categorical features -- choosing the most representative/frequent point.

• Hierarchical clustering

 - Major difference with k-means: # of clusters is determined iteratively, rather than specified upfront.
 - Two approaches:
 - Agglomerative (a.k.a. AHC or HAC): start with single-item clusters and keep merging closest items. <- we will focus on this
 - Divisive: start with one cluster containing all datapoints. keep dividing till all clusters are single-points.
 - Distance between clusters
 - **Single** linkage:
 - Compute distance between the most similar members for each pair of clusters.
 - AHC: Merge the clusters with the smallest distance.
 - **Complete** linkage:
 - Compute distance between the most different members for each pair of clusters.
 - AHC: Merge the clusters with the smallest distance.

• Implementation in Spark

 - Spark.mllib contains divisive, not agglomerative
 - UBer has their own implementation of AHC

• Pros and cons

 - **Pros:**
 - Plots dendrograms -- helps taxonomy
 - Can stop at any number of clusters at will
 - **Cons:**
 - Does not scale well
 - (K-means too) assumes clusters have **spherical shape**

• Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

 - Each point is assigned to one label: (great read: source)
A point is a core point if it has more than a specified number of points (MinPts) within Eps—These are points that are at the interior of a cluster.

A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point.

A noise point is any point that is not a core point nor a border point.

- Handles non-spherically-clustered datasets!
- Noise tolerant.

How to they compare - time complexity:

(n: # of points; d: # of dimensions; k: # of clusters.)

- k-means: \(d \times n \times k \times \# \text{ of iterations} \times \# \text{ of restarts} \)
- Agglomerative: \(> d n^2 \)
- DBSCAN: depends on the region size; suffers from the curse of dimensionality

Other Techniques

- Locally sensitive hashing: ...
- MinHash: Hashing for Jaccard Distance

Supervised Learning

@03/26/2018 - decision trees

- types of supervised learning
 - **classification:** y is categorical
 - **Regression:** y is continuous

- Model may be:
 - Parametric: a known functional form -- we are here to estimate values
 - Linear and logistic regression
 - Non-parametric: no functional form assumed
 - decision trees and random forests
 - boosted models
 - semi-parametric: so many parameters as to be effectively non-parametric
 - e.g. neural networks

- Decision trees
 - can be used for feature selection
 - splits first on the option that provides the highest Information Gain
The more uniformly distributed the data is, the lower a Gini Index it has, the higher an Entropy it has.

very susceptible to overfitting
- if features are highly correlated, use PCA first
- balance training data amount for each label
- limit maximum depth
 - keep minimum number of samples for a split from being too low
 - prune after training

Ensemble version: random forest
- bootstrap -- sample (with replacement) for each member (individual decision trees).
- majority vote (or average) members' outputs.

Variation: extremely random forests
- Not only training data is randomly sampled,
 instead of looking for the most discriminative thresholds, thresholds are drawn at random for each candidate feature and the **best of these randomly-generated thresholds** is picked as the splitting rule. ([source](#)).

d-tree can tell repetitive features and mark them "less important".

summary
- decision trees
 - Fast to train
 - easily interpretable
- random forests
 - highly accurate
 - does not require hyperparameter search
- both
 - scale **invariant** -- these models are non-parametric!
 - handles both numerical and categorical data

@03/28/2018 - regression, boosting and SVMs

Regression

- **Parametric or not?** Linear regression models, and therefore logisitic regression too, are examples of parametric models.
- **A Word On Regularization**: No matter L2 regularization ("ridge"), L1 regression ("lasso") or PCR, they all decides for each feature how much it should be suppressed before fed into a linear regression model.
The Linear Regresion Family

- **Linear Regression**
 - minimizes root mean squared error (RMSE)
 - in practice, the $\sqrt{}$ is omitted - minimizes "MSE".
 - brightness: it has a closed-form solution, but there's potential problem:
 - space complexity: $X^T \cdot X$ can be big -- n^2. May not fit in memory.
 - time complexity: $n \cdot d^2$ (d is the # of features) -- can be big.
 - If $d>n$, then the X-inversion step will hit a singular point error and fail.
 - Scale invariant -- needs no normalization

- **ridge regression**: $= \text{Linear regression } + \lambda w^T \cdot w$
 - Minimizes MSE + L2 penalty
 - a.k.a. "ridge", "L2 regularization", etc.
 - idea: shrinks all the weights a little -- just shrink, not making any feature's weight go to zero.
 - NOT LONGER scale invariant

- **Elastic net**: $= \text{linear regression } + \lambda_1 w^T \cdot w + \lambda_2$ L1 penalty
 - L1 penalty is also called the "lasso".
 - Idea: L1 can drive least-important features' weights to zero.
 - now you have two hyperparameters for regulation: λ_1 and λ_2

Principal Component Regression

1. Do PCA on X.
2. Project X onto the PCXA loadings: $T = X \cdot W$ (nxk = nxp * pxk)
3. Use T as training data instead of X. Usually linear regression too.
4. To predict using this PCR model, project test examples to W, then feed into the "linear regression" sub-model.

- Often used in computational linguistics.
- Different from the ones introduced above: PCR can be called a "semi-supervised learning algorithm"
 - PCA part is unsupervised
 - actual regression part is supervised.
- just like PCA -- not scale-invariant

Logistic Regression := linear regression + filtering using logistic function + binarizing results to 0&1

- for binary labels (thus for classification, rather than prediction)
Since the output will be binarized to 0&1, the value before this binarization is considered to be the probability -- probability estimate: $\sigma(w^T \cdot X)$

Boosting

- train a series of dumb classifiers, each one focusing more on the examples mis-classified by the previous one.
- is an ensemble method

SVM

- also for classification.
- maximizing margin...
- "Soft margin": we can trade-off between margin width and violations of the border.
- Usually uses "hinge loss" -- don't care about correctly-classified examples.
- kernels - feature engineering (not covered)
 - linear
 - polynomial (order can be configured)
 - radial basis (a.k.a. gaussian)
- when use a kernel, not scale-invariant.

@04/02/2018: **Tuning and evaluating classifiers**

- Complexity - we want to find the optimal complexity that balances the training error and test error -- avoid underfitting and overfitting.
 - visualize with learning curves.
- k-fold cross validation
 - Holdout sets: part of training data held out and used like a test set.
- some curves:
 - validation curve: x-axis is the value of hyper-parameter; y-axis is the score.
take the peak.

- learning curve: x-axis is the percentage.
- Validation/test score should be also high. Don't let it drop -- it would be overfitting.
 - ROC curves:

 ![Learning Curves](image)

 - confusion matrix and all of those performance metrics. (probably omittable)
 - accuracy is often the wrong measure.
 - some are: error, precision, recall, F1 score.

@4/4/2018 - Artificial Neural Networks

- gradient descent
 - analytical or numerical derivative
 - variations in terms of training data granularity:
 - **(vanilla) gradient descent** requires all training data to be loaded to compute the gradient.
 - **stochastic gradient descent** calculates the gradient on a per-example basis, allowing for online-learning.
 - **Mini-batch**: updates the model every k observations -- a hybrid approach to the two above.
 - Can get caught in **local minima** -- alternative, **simulated annealing**, uses randomness.
 - according to a "cooling schedule", is initially more likely to randomly jump.
 - still no guarantee, but already less susceptible to local minima.
- logistic regression is actually a basic "artificial neuron"
- **activation function**
 - uses sigmoid function as "model" -- in this sense, it's similar to logistic regression.
 - Alternative to sigmoid function if you want a **hard classifier**: heaviside function.

- A neuron can take multiple inputs -- just like those features inputed in logistic regression.
 - with an extra "always-on" (i.e. always emitting 1) input, called "bias". Its effect to the neuron’s decision is controlled by its associated weight instead of its value itself.
 - regularization is NOT applied on it.

- \(\eta \) is the learning rate.

- A perceptron is a single layer of many such neurons.
 - consider this as multiple regressions running at once (each neuron being one).
 - still learns a linear boundary -- guarantees convergence if only the training data is linearly separable.
 - to deal with non-linearly-separable data,
 - SVM uses kernels
 - neural nets use extra layers. See below.
 - (doesn't mean that technically we cannot use kernels with perceptrons)

- Deeper networks are just models of multiple layers as such -- feed-forward networks
 - can deal with non-linearly-separable data.
 - **structure**: Input layer -> hidden layer(s) -> output layer
 - each layer can have multiple neurons.
 - activation function: usually ReLU ("rectified linear") here.

@4/9/2018 - Convolutional Neural Networks
Great reading: source.

- **for images**
- **CNN uses local receptive field**
- **types of layers**
 - **Convolution** connects the *receptive field* to a neuron in the next layer
 - often with overlap ("strides"). "Stripe" is the steplength.
 - Will hit border of image -- needs zero-padding (how much? also a hyperparam)
 - kernels in CNN are called "filters".
 - The spatial extent of this connectivity is a hyperparameter called the *receptive field* of the neuron (equivalently this is the filter size).
 - **Pooling** does aggregation (often: max)
 - pooling ("downsampling"): most often max-pooling, etc.
 - **Detection** uses sigmoid or RLU
 - usually uses ReLU as activation function -- Cheaper to calc deriv
- **back propagation**.
- **ways of regularization**:
 - L2
 - Max norm (L∞)
 - Early stopping
 - **Dropout**: randomly dropping out connections between layers (?).
- **techniques about Gradient descent**
 - Gradient descent
 - stochastic
- gradient clipping
 - Minibatch
 - Momentum
 - Learning rate adaptation
- learning rate adaption:
 - Adagrad: make the learning rate depend on previous changes in each weight
- Semi-supervised learning

@04/11/2018 - Time Series

- What makes a TS different from say a regular regression problem?
 1. It is **time dependent**. So the basic assumption of a linear regression model that the observations are independent doesn't hold in this case.
 2. Along with an increasing or decreasing trend, most TS have some form of **seasonality** trends, i.e. variations specific to a particular time frame. For example, if you see the sales of a woolen jacket over time, you will invariably find higher sales in winter seasons.

- some techniques
 - use a moving average to smooth out short-term fluctuations and highlight longer-term trends or cycles.
 - use `log()` if data appears to be exponential -- this can give something showing more linearity -- easier to deal with.

- Time series are **stationary** if they do not have trend or seasonal effects.
 - Summary statistics (such as the mean or variance) calculated over stationary time series are consistent over time.
 - Stationarity is an assumption underlying many statistical procedures used in time series analyses, so non-stationary data is often transformed to become stationary. **How to make a time series stationary:**
 - **Estimate and eliminate trend**
 - **Transformation** – e.g. take log, which penalizes higher values more than smaller ones.
 - **Aggregation** – take average for a time period like monthly/weekly averages
 - **Smoothing** – take rolling (moving) averages.
 - “weighted moving average” gives more recent values a higher weight than older values
 - In an “**exponentially weighted moving average**”, weights are assigned to all the previous values with a decay factor.
 - No data is left behind -- all taken in to consideration.
• **Polynomial fitting** – fit a regression model

• **Remove trend and seasonality**
 • **Differencing** – taking the difference with a particular time lag
 • **Decomposition** – modeling both trend and seasonality and removing them from the model.

• Converting a time series from one frequency to another
 • Downsampling – higher to lower frequency
 • Upsampling – lower to higher

• **Statistical test: Augmented Dickey-Fuller (ADF)**
 • Tests the null hypothesis that the time-series is non-stationary.
 • The more negative the Test Statistic is, the stronger the rejection of the hypothesis.

• how to make predictions with time series data
 • Models
 • **Auto-Regressive model AR(p)**
 • \[x(t) = c_0 + c_{t-1} x(t-1) + c_{t-2} x(t-2) + \ldots + c_{t-p} x(t-p) + \sqrt{t} \]
 • **Moving Average model (MA(q))**
 • \[x(t) = c_0 + c_{t-1} e(t-1) + c_{t-2} e(t-2) + \ldots + c_{t-q} e(t-q) + \sqrt{t} \]
 • \[e(t) = \sqrt{t} = \text{error in prediction at time } t \]
 • **Auto-Regressive Integrated Moving Averages (ARIMA)** forecasting
 • linear equation based three parameters, (p, d, q)
 • **p auto-regressive (AR) terms** (a.k.a. "lags of dependent variable"). For instance if p is 5, the predictors for x(t) will be x(t-1)….x(t-5).
 • **q moving average terms (MA)** (a.k.a. "lagged forecast errors in prediction equation"). For instance if q is 5, the predictors for x(t) will be e(t-1)….e(t-5) where e(i) is the difference between the moving average at ith time and actual value.
 • **d non-seasonal differences**
 • **How to determine p and q?**
 • Plot autacorrelation functions and partial autacorrelation functions and see when they cross an upper confidence interval.
 • For this data, p=q=2.
 • technique: **Differencing**
 • \[y(t) = x(t) - x(t-1), \text{ Then fit the model on } y(t) \]
 • Makes the process more stationary

@04/16/2018 - TensorFlow
• TensorFlow is based on a **Computation Graph** executed in parallel.
• All data are represented as tensors -- analogy to columns.
• Two sets of APIs:
 • one resembles sklearn
 • to initialize a classifier, you have to specify feature columns -- different from sklearn.
 • one lower level
• TensorFlow column datatypes (tf.contrib.layers.[])
 • for real-valued features: `real_valued_column`
 • for categorical features:
 • If you know all possible values: use `sparse_column_with_keys`.
 • If you cannot iterate over all categories (or simply want to allocate ordinal values to categorical values on the fly): use ` [...]_hash_bucket`.
 • choose bucket amount wisely -- balance between hashing collisions and memory consumption
 • use numerical feature as categorical: `bucketized_column`
 • For feature combinations: `CrossedColumns`

Distributed TensorFlow

• Master nodes know the whole Computation Graph.
• Worker nodes know only the operation it's assigned with.
 • worker 0 may be the "parameter server" and hold mutable data (weights, biases, etc.)
 • worker 1 may hold the training data and compute some operations.
• Data can be stored on a Spark cluster (i.e. in HDFS) and **streamed** to the TensorFlow cluster. Yahoo did this: [TensorFlowOnSpark](#).

Recurrent Neural Networks (RNN) - Handles Time Series

• two approaches to time series
 • use a standard neural net or CNN
 • such as a nonlinear AR(k) model
 • use a RNN
 • generalize HMMs or Linear Dynamical Systems
 • only choice if inputs are of varying lengths
• See standard hidden markov model: each "stage" takes the previous result as part of input.

• variations
 ○ Long Short Term Memory (LSTM)
 ○ gated RNNs
 ○ stacked RNNs

• can be used...
 ○ ... to predict the next observation given past observations (like an ARIMA model)
 ○ ... to map one sequence to another sequence ("encoder-decoder" structure)
 ▪ translates sentences from one language to another
 ▪ chatbot
 ▪ auto-caption image

@04/18/2018 - Online Learning

• Online learning methods
 ○ Least mean squares (LMS)
 ▪ Online regression -- L2 error
 ○ Perceptron
 ▪ Idea
 ▪ if we get it right: no change;
 ▪ if we got it wrong: \(\mathbf{w}_{i+1} = \mathbf{w}_i + y_i \mathbf{x}_i \).
 ▪ This makes \(\mathbf{w} \) look more like \(\mathbf{x}_i \), thus the hyperplane defined by \(\mathbf{w} \) is more orthogonal to this example of \(\mathbf{x}_i \).
 ▪ In practice, we use averaged perceptrons -- a cheap approximation to voted perceptrons.
 ▪ Return as its final model the average of all intermediate models
 ▪ sounds like a ensemble learning, but actually it just keeps one single, averaged model at any time.
 ▪ Better than voted perceptrons: run-time nearly as fast as single perceptron.
 ▪ can use kernels.
 ▪ variation: Online SVM -- Hinge loss
 ○ Online K-means

• different from Neural nets: we look at each example and throw it away.

Analyzing Real-Time Data Streams
- **Data Streams**
 - may not be periodic
 - update most often have a delay from actual event
 - timestamp reported may...
 - not be precise (time sync server problem, etc.)
 - has timezone problem (sometimes needed, sometimes to remove)
 - consider operations on data streams to be "continuous queries".
 - outputs can also be considered data streams
 - types
 - cumulative operations -- performed on all data streamed
 - **Rolling or windowed** operations (e.g. a "last-two-minute window").
 - tumbling windows: no overlap
 - sliding windows: move a fixed length every step (like a queue)
 - sliding + partitions windows: shards data according to key to two sliding windows

- architecture
 - lambda architecture
 - Apache Spark Streaming
 - ...

@04/23/2018 - Stream Processing Systems

(a wrap-up of streaming processing)

- **Apache Spark**
 - component:
 - data streams exposed as ever-changing **dataframes**
 - We define **windows** over streams
 - "joins/merges" make sense on windows, not much on streams themselves.
 - Based on “micro batching” – periodic invocations of Spark Engine on batches of tuples
 - To process:
 - **StreamingContext** gets started
 - **awaitTermination()** is run
 - Can process whatever is in the DataStream as a DataFrame
 - Can run **countByWindow()** etc. to get time-based or tuple-based windows

- Apache Storm (and Heron): distributed streams among distributed modules
components

- **spout**: interfaces with the world, produces streams
 - emits lists of tuples
- **bolt**: receive streams, optionally producing streams + read/update states.

structure: spouts and bolts are usually pipelined. They can also be **stacked** (for distributed computing).

promises robust execution (even when compared to Spark)

can be used to mimic MapReduce structure,

To Storm, **streamparse** is what **pyspark** is to Spark.

Visualization

- Get a **holistic** sense of **data** as we load + analyze it
 - histograms, scatter plots, correlations, time series

- Understand our **algorithms’ performance**
 - learning curve, validation curve, ROC graph

- Present information as part of a **report** or “**dashboard**”
 - figures illustrating performance (in the economic sense, etc.)

- Potential Kinds of Plots
 - Exploratory graphics – for the data scientist. Want to create rapidly, iterate,
 - Communication graphics – for you to communicate your findings, Again, iteration is important

- “Grammar of Graphics”
 - Basis of R’s **ggplot2**
 - Python port: **ggplot**
 - Divides plots into:
 - layers
 - data
 - aesthetic mappings
 - geometric objects
 - **statistical transformations**
 - position adjustments
 - scales
 - coordinate system
 - facets (groups)

- more advanced visualization in python
seaborn: Builds upon matplotlib with a focus on statistical plots
lightning + d3.js: “Dashboards”
 • requires server -- Jupyter is also a web server

@04/25/2018 - Data Science Ethnics

- Why do people do the right thing?
 - Morality (Ethnics)

- Ethical principles
 - Autonomy: The right to control your data, possibly via surrogates
 - Informed Consent: You should explicitly approve use of your data based on understanding
 - required in human-subjects research
 - must understand what is being done
 - must voluntarily consent to the experiment
 - must have the right to withdraw consent at any time
 - but no one requires them in “ordinary conduct of business”
 - consequently we are constantly subject to tests such as A/B tests.
 - Beneficence: People using your data should do it for your benefit
 - or at least Non-maleficence: Do no harm

- Differential privacy aims to maximize the accuracy of queries from statistical databases while minimizing the chances of identifying its records.

- we want results that are ...
 - reproducible
 - fair