Know For Midterm 2018

Mingyang Li

April 27, 2018

Abstract

This is meant for STAT512 by Professor Ewens at the University of Pennsylvania.

Part I
Concepts

1 Basic Aims of Statistics

• To estimate the range of a parameter optimally.
• To test hypotheses about the numerical value of the parameter optimally.

2 Statistics

Statistics is an inferential science based on observations involving randomness.

3 Quantities

• A "random variable", \(Y \), follows a distribution which depends on some parameter \(\theta \).

 – We want to estimate the parameter \(\theta \), but -- more often -- we estimate an one-to-one function of it, \(\tau(\theta) \). Whichever the case, the variable we want to estimate is called the estimand.

 – A function involving a R.V. \(Y \), \(f(Y,...) \), is also a RV.

• Any function \(f(Y) \) of the RV \(Y \) alone can be seen as an estimator for the estimand \(\tau(\theta) \) associated with its distribution.

 – If the mean of this function, \(E[f(Y)] \), happens to be the estimand itself, then this function -- as an estimator -- is unbiased.

 * The MVU ("minimal variance unbiased") estimator of \(\tau(\theta) \): The unbiased estimator of \(\tau(\theta) \) whose variance is \(\leq \) any other unbiased estimator of \(\tau(\theta) \).

 – The value an estimator takes on (or "yields") is called an estimate.

• Sufficient Statistics, \(w(Y_1,...,Y_n) \), of a parameter, \(\theta \), is a function of the \(n \) iid RVs whose JDF will become independent of this parameter if \(w \) is given.

 – The Minimal Non-Trivial Sufficient Statistics (MNTSS) has two constraints over the ordinary definition of SS:

 * Minimality: Any other SS can be reduced (read: "transformed via a function") into this SS.

 * Non-triviality: The dimension of this SS should be \(< n \). i.e, we have actually cut off some data / compressed the data.

• Others
“Average” is not “mean”:

- “Mean” (µ) is a parameter.
- “Average” can be either
 - a RV: Ŷ, or
 - a number: ŷ.

Variance: \(\text{Var}(Y) = \text{E}(Y^2) - \text{E}^2(Y) \).

Part II
Formulas

4 Gamma Function

- Definition: \(\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, dt \).

- Values:
 - \(\Gamma(1) = \int_0^\infty e^{-t} \, dt = 1 \)
 - \(\Gamma(2) = \int_0^\infty t \cdot e^{-t} \, dt = 1 \)
 - \(\Gamma\left(\frac{1}{2}\right) = \int_0^\infty \frac{1}{\sqrt{t}} e^{-t} \, dt = \sqrt{\pi} \)

- Recurrence Relation: \(\Gamma(x) = (x-1) \cdot \Gamma(x-1) \)
 - If \(x \) is integer: \(\Gamma(x) = (x-1)! \)
 - If \(x > 0 \) but is not int: Use the Recurrence Relation to strip the “x” to the lowest number \(\in (1, 2) \), then plug in the value as given in the table.

- Integrals involving Gamma Function:
 - \(\int_0^\infty t^{x-1} e^{-ct} \, dt = c^{-x} \cdot \Gamma(x) \)
 - \(\int_0^\infty g(t) \cdot e^{-h(t)} \, dt \): often helpful to set \(h(t) =: t' \).

5 The density functions of order statistics (OS) of \(n \) iid continuous RVs \(Y_i \sim f(y) \)

- The \(i \)-th OS alone: \(f_{Y_i}(y(i)) = \frac{n!}{(i-1)!(n-i)!} \left[F_Y(y(i)) \right]^{i-1} \cdot f_Y(y(i)) \cdot \left[1 - F_Y(y(i)) \right]^{n-i} \)

- The JDF of the \(i \)-th OS and the \(j \)-th OS: \(f_{Y_i,Y_j}(y(i),y(j)) = \frac{n!}{(i-1)!(j-1)!(n-i-j)!} \left[F_Y(y(i)) \right]^{i-1} \cdot f_Y(y(i)) \cdot \left[F_Y(y(j)) - F_Y(y(i)) \right]^{j-1-1} \cdot f_Y(y(j)) \cdot \left[1 - F_Y(y(j)) \right]^{n-j} \)

6 The Cramer-Rao Lower Bound of the Variance of an Estimator

- This Bound is achievable\(^1\) iff the JDF \(f_{Y_1,\ldots,Y_n}(y_1,\ldots,y_n;\theta) \) can be written in the “exponential family” form:

\(f_{Y_1,\ldots,Y_n}(y_1,\ldots,y_n;\theta) = h(y_1,\ldots,y_n) \cdot e^{C(\theta)+D(\theta) \cdot \tau_{\text{MLU}}(y_1,\ldots,y_n)} \)

\(^1\)“There exists an estimad of \(\theta \), \(\tau(\theta) \), that has an unbiased estimator, \(\hat{\tau}_{\text{MLU}}(y_1,\ldots,y_n) \), whose variance is this value.”

\(^2\)As you convert it into this form, in the same time, the MVU estimator \(\hat{\tau}_{\text{MLU}}(y_1,\ldots,y_n) \) is identified.
• The Bound is given by:\(^3\) \(\text{Var} [\hat{\tau}(y_1, \ldots, y_n)] \geq \)
\[
\text{Var} [\hat{\tau}_{\text{MLE}} (y_1, \ldots, y_n)] = -\frac{\partial^2 \tau (\theta)}{\partial \theta^2} \left(\frac{\partial \ln f_{Y_1, \ldots, Y_n} (y_1, \ldots, y_n; \theta)}{\partial \theta} \right) \]
\[
\text{is} \ - \ 1 \ \text{if} \ \tau (\theta) = \theta
\]
• Such estimad \(\tau (\theta)\) is given by
\[
\tau (\theta) = -\frac{\partial}{\partial \theta} C (\theta) \quad \text{or} \quad -\frac{A (\theta)}{B (\theta)}
\]
• After this estimad is found, its variance can be calculated by:
 - CR Bound
 - Traditional statistics
 - \(\text{Var} [\hat{\tau}(y_1, \ldots, y_n)] = \frac{-1}{\text{dim}(\theta)} \cdot \frac{d A(\theta)}{d B(\theta)}\)

7 **Sufficient Statistics (SS), \(w(Y_1, \ldots, Y_n)\), for a parameter \(\theta\)**

For \(n\) RVs, \(Y_1, \ldots, Y_n\), whose JDF is \(f_{Y_1, \ldots, Y_n} (y_1, \ldots, y_n; \theta)\), a function \(w := w(Y_1, \ldots, Y_n)\) is a SS for the parameter \(\theta\) iff the conditional distribution of those RVs – given \(w\) – is independent of \(\theta\): \(^4\)

\[
f_{Y_1, \ldots, Y_n} (y_1, \ldots, y_n | w; \theta), \text{ by definition } \equiv \frac{f_{Y_1, \ldots, Y_n} (y_1, \ldots, y_n, w; \theta)}{f_W (w; \theta)}
\]
\[
\text{this is equivalently: } \frac{f_{Y_1, \ldots, Y_n} (y_1, \ldots, y_n; \theta)}{f_W (w; \theta)}
\]
\[
\text{core of this "iff" } \Rightarrow \quad h (Y_1, \ldots, Y_n) \quad \text{(i.e., indep. of } \theta) \Rightarrow w(Y_1, \ldots, Y_n) \text{ is a SS for } \theta.
\]

(Reason for the equivalence on the second line: Since \(w\) is a function of \(Y_i\)'s, when \(Y_i\)'s are all specied, \(w\) is also determined.)

This expression is equivalent to:
\[
f_{Y_1, \ldots, Y_n} (y_1, \ldots, y_n; \theta) = f_W (w; \theta) \cdot h (y_1, \ldots, y_n) \quad \text{if } w(Y_1, \ldots, Y_n) \text{ is a SS for } \theta.
\]

If the support of \(Y_i\)'s is independent of the parameter \(\theta\), then this is also equivalent to:
\[
f_{Y_1, \ldots, Y_n} (y_1, \ldots, y_n; \theta) = g (w; \theta) \cdot h (y_1, \ldots, y_n) \quad \text{if } w(Y_1, \ldots, Y_n) \text{ is a SS for } \theta
\]

where \(g\) is any function of \(w\) (and thus of \(\theta\)).

7.1 **Minimal, Non-Trivial Sufficient Statistics (MNTSS) – How To Find**

7.1.1 **When the support of \(Y_i\)'s is independent of \(\theta\)**

Method 1: Factorization If:
• the JDF \(f_{Y_1, \ldots, Y_n} (y_1, \ldots, y_n; \theta)\) can be factorized into \(f_W (w; \theta) \cdot h (y_1, \ldots, y_n)\), and
• \(\text{dim} (w) < n,\)
then \(w\) is a MNTSS of \(\theta\).

Method 2: Smith-Jones (preferred) Assuming 2 sets of readings are obtained from the same set of \(n\) RVs, \(y_{11}, \ldots, y_{1n}\) and \(y_{21}, \ldots, y_{2n}\), we look at the ratio of their probability:
\[
R = \frac{f_{Y_1, \ldots, Y_n} (y_{11}, \ldots, y_{1n}; \theta)}{f_{Y_1, \ldots, Y_n} (y_{21}, \ldots, y_{2n}; \theta)}.
\]
If this can be simplified to \(\frac{g(y_{11}, \ldots, y_{1n})}{g(y_{11}, \ldots, y_{1n})}\), then this \(g(Y_1, \ldots, Y_n)\) is a MNTSS of \(\theta\).

\(^3\)The MVU estimator \(\hat{\tau}_{\text{MLE}} (y_1, \ldots, y_n)\) may not exist / be known by the time you evaluate this Bound.
\(^4\)\(w\) is like a sponge on a wet plate \(f_{Y_1, \ldots, Y_n}\): it *sucks up* all the information contained in the water \(\theta\).
\(^5\)i.e., the NUMERATOR and the DENOMINATOR are of the same form independent of \(\theta\).
Method 3: Exponential Family If the JDF can be written in the “exponential family” form, then the then-called MVU estimator, \(\hat{\tau}(Y_1, ..., Y_n) \) is a MNTSS of \(\theta \).

7.1.2 When the support of \(Y_i \)‘s does depend on \(\theta \)
- \((a, b(\theta))\): The only possible MNTSS is \(Y_{\alpha \beta} = \left(Y_{(n)} \right) \).
- \((a(\theta), b)\): The only possible MNTSS is \(Y_{\alpha \beta} = \left(Y_{(1)} \right) \).

Whichever the case, to confirm the MNTSS, \(f_Y(y; \theta) \) should be able to be factorized into \(g(y) \cdot h(\theta) \).

7.2 Rao-Blackwell Theorem
Supposing \(w(Y_1, ..., Y_n) \) is a SS for the parameter \(\theta \):
1. The MVU estimator of the estimable function, \(\tau(\theta) \), is some unique function of \(w \).
2. This unique MVU estimator of \(\tau(\theta) \) is \(E(\hat{\tau}|w) \), where \(\hat{\tau}(Y_1, ..., Y_n) \) is ANY unbiased estimator of \(\theta \).

They lead to 2 approaches\(^6\) to finding the MVU estimator of \(\tau(\theta) \):
1. Consider only function of \(w \) as possibilities.
2. Find any unbiased estimator of \(\tau(\theta) \), find its conditional expectation given \(w \), which exactly must be the MVU estimator we want to find.

8 Maximum-Likelihood Estimation (One-Parameter Case)
- The JDF, \(f_{Y_1, ..., Y_n}(y_1, ..., y_n; \theta) \), without changing its expression, can be thought as a “likelihood”\(^7\) \(L(\theta; y_1, ..., y_n) \).
- The “Maximum Likelihood Estimator” of \(\theta \), is denoted by \(\hat{\theta}_{MLE}(y_1, ..., y_n) \).
- The “Maximum Likelihood Estimate” of \(\theta \), a value of \(\hat{\theta}_{MLE}(y_1, ..., y_n) \), is the value at which \(L(\theta; y_1, ..., y_n) \) is maximized (usually we look at \(\ln L \) for simplicity).

8.1 Properties
- Invariance: Wrapping the parameter \(\theta \) with a monotonic function modified its MLE-tor alike.
- Relation with SS: The MLE-tor, \(\hat{\theta}_{MLE}(y_1, ..., y_n) \) is the same as SS \(w(y_1, ..., y_n) \).
- Asymptotic results\(^8\):
 - MLE is asymptotically unbiased: As \(n \to \infty \), \(E(\hat{\theta}_{MLE}(y_1, ..., y_n)) \to \theta \).
 - MLE asymptotically attains a normal distribution: As \(n \to \infty \), \(\hat{\theta}_{MLE}(y_1, ..., y_n) \sim N \).
 - MLE asymptotically achieves the CR Bound: As \(n \to \infty \), \(\text{Var}(\hat{\theta}_{MLE}(y_1, ..., y_n)) \to \text{the CR Bound} \).

9 Common Distributions

<table>
<thead>
<tr>
<th>Name</th>
<th>Expression</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal((\mu, \sigma^2))</td>
<td>(\frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{(y-\mu)^2}{2\sigma^2}})</td>
<td>(\mu)</td>
<td>(\sigma^2)</td>
</tr>
<tr>
<td>Gamma((\alpha, \beta))</td>
<td>(\frac{1}{\Gamma(\alpha)} \frac{1}{\beta^\alpha} y^{\alpha-1} e^{-\frac{y}{\beta}})</td>
<td>(\alpha)</td>
<td>(\alpha \beta^2)</td>
</tr>
<tr>
<td>Cauchy((\theta, \sigma))</td>
<td>(\frac{1}{\pi \sigma} \frac{1}{1+(\frac{y-\theta}{\sigma})^2})</td>
<td>D.N.E.</td>
<td>D.N.E.</td>
</tr>
<tr>
<td>“Chi-2”(\chi^2(\nu))</td>
<td>(\frac{1}{\pi^{\nu/2} \Gamma(\frac{\nu}{2})} y^{\nu/2-1} e^{-\frac{y}{2}}), (\sigma > 0)</td>
<td>(\nu)</td>
<td>(2\nu)</td>
</tr>
<tr>
<td>Binomial((n, p))</td>
<td>(\text{Prob}(Y = y) = \binom{n}{y} p^y (1-p)^{n-y}, y = 0, ..., n)</td>
<td>(np)</td>
<td>(np(1-p))</td>
</tr>
<tr>
<td>Poisson((\lambda))</td>
<td>(\text{Prob}(Y = y) = e^{-\lambda} \frac{\lambda^y}{y!}, y = 0, 1, ...)</td>
<td>(\lambda)</td>
<td>(\lambda)</td>
</tr>
</tbody>
</table>

\(^6\)Neither guaranteed to work.

\(^7\)If we encountered such observation, \(y_1, ..., y_n \), how likely is the parameter \(\theta \) to take on a particular value of \(\theta \)?

\(^8\)Due to the Invariance Property, all \(\hat{\theta}_{MLE}(y_1, ..., y_n) \) here can also be a function of that.
9.1 Conversion Between Distributions

- (Any) Normal Distribution \(\rightarrow\) Standard Normal Distribution: If \(Y \sim N(\mu, \sigma^2) \), then \(\frac{Y-\mu}{\sigma} \sim N(0,1) \).
- Standard Normal Distribution \(\rightarrow\) Chi-Square Distribution: If \(Y \sim N(0,1) \), then \(Y^2 \sim \chi^2(\nu = 1) \).

9.2 Properties of Chi-Square Distribution

- The sum of some \(\chi^2 \)-distributed RVs is another \(\chi^2 \)-distributed RV with a degree-of-freedom of the sum of those of the summand RVs: \(Y_i \sim \chi^2(\nu_i) \) for \(i = 1, \ldots, n \Rightarrow \sum_{i=1}^{n} Y_i \sim \chi^2(\sum_{i=1}^{n} \nu_i) \).

9.3 Properties of Poisson Distribution

- The sum of some Poisson-distributed RVs is another Poisson-distributed RV with a \(\lambda \) of the sum of those of the summand RVs: \(Y_i \sim \text{Poisson}(\lambda_i) \) for \(i = 1, \ldots, n \Rightarrow \sum_{i=1}^{n} Y_i \sim \text{Poisson}(\sum_{i=1}^{n} \lambda_i) \).
- If the sum of some Poisson-distributed RVs is fixed, then any partial sum of these RVs is a binomially-distributed RV whose
 - index \(n \) is equal to the fixed total sum;
 - parameter \(p \) is equal to the ratio \(\frac{\sum_{\text{partial sum}} \lambda_j}{\sum_{\text{total sum}} \lambda_i} \).
- (Continuing from above) When the summand RVs are iid, the partial sum of any \(j \) of them \(\sim \text{Binomial}(\text{total sum}, \frac{j}{n}) \).