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ABSTRACT

The thermal conductance of packed spheres has been
extensively investigated in the past, but the effect of packed-
layer thickness on thermal conductivity and the physical
mechanism of this effect have never been studied before. This
work analyzes the effect of thickness on the thermal
conductivities of packed-sphere layers based on statistical
distributions of unit packing cells of spheres. Percolation and
effective-medium approximation approaches are used to
calculate the thermal conductivities in the directions
perpendicular and parallel to the packed-layers. As in the case
of thin solid films, the thin packed-sphere layers exhibit
anisotropic thermal conductivity. The effect of packed-layer
thickness on the variation of the thermal conductivity, however,
has a different trend than that of thin solid films. With a
reduction in thickness, the perpendicular thermal conductivity
increases while the parallel conductivity decreases. In contrast
to the thin solid film case, the packed-sphere thickness effect is
due to the random distribution of the packed spheres, not to a
limitation of the mean free path of the main heat carriers. The
results indicate that the thickness effect becomes appreciable
when the packed-layer thickness is less than 10 times the sphere
diameter. A dramatic thickness effect is anticipated in
disordered composites with very different component
conductivities.

A. INTRODUCTION
There exist in the literature numerous studies on the thermal
conductance of stagnant packed spheres due to the excellent
thermal insulation characteristics of such materials (Kaviany,
1995; Nayak & Tien, 1978; Tien & Vafai, 1979). In
applications, these materials are often in the forms of thin layers
or films. The thickness effect on their thermal conductivities,
however, is unknown.

The thickness effect on electrical conductivity has already

been experimentally observed (Maaroof & Evans, 1994; Ottavi

et al,, 1978). Ottavi et al. (1978) observed an increasing slope of
resistance versus height for packed mixtures of conducting and
non-conducting spheres, indicating an increase of the elecrical
conductivity with decreasing thickness. Maaroof and Evans
(1994) measured the parallel resistance during the growth of Pt
and Ni films. In the early stages of growth, small clusters
nucleate on the substrate surface and grow into islands of the
condensed phase. With continued deposition the islands grow
until they come into contact. eventually creating a merallic
network which then in-fills to form the continuous film.
Maaroof and Evans (1994) observed a decrease of the film
resistance with increasing deposition thickness. The variarions
of the conductivity with thickness in such materials arise from
the random distribution of clusters, not from the confinement of
the mean free path of the heat carriers by boundaries. The
conductivity of each component in the composites is assumed to
be independent of the particle size.

For electrical conductivities, the attention is usually placed on
the conductance parallel to the film surface. For heat transfer,
variations of the conductivity in the perpendicular direction are
generally more important. The minimization of electronic and
mechanical devices causes the thickness effect to become
important in applications such as layers/films of thermal
insulation, conducting paste and micro-sensors. The thickness
effect is expected in both the perpendicular and parallel
directions (Neimark, 1990; Phelan & Niemann, 1997; Zhang &
Stroud, 1995).

This work analyzes the thermal conductance of packed
spheres in thin layers in the perpendicular and parallel
directions. In section B, the thickness effect on perpendicular
conductivity is investigated from the point of view of
percolation and statistical configurations of unit packing cells of
spheres. Section C studies the thickness effect on parallel
conductivity by the effective-medium approximation of
Kirkpatrick (1971). The discussion and conclusions follow in
section D.
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B. THE THICKNESS EFFECT ON THE
PERPENDICULAR CONDUCTIVITY

The percolation behavior of packed spheres

Electrical percolation phenomena in packed spheres have
been found experimentally (Lee et al, 1986; Ottavi, 1978).
Percolation represents the simplest model of disordered systems
(Bunde & Havlin, 1991). Many materials support percolation,
such as porous silicon (Vezin et al., 1992), silica aerogel
(Richter & Tien, 1994) and packed spheres (Ottavi et al., 1978),
Consider a square percolation lattice with m layers (Fig. 1).
Each site is occupied randomly with probability p or is empty
with probability (1-p). Occupied sites may stand for very
different physical properties. For instance, suppose the occupied
sites are conductors and the empty sites are insulators. Electric
current or heat flow can occur only between neighbor conductor
sites. The conductor sites are either isolated or form small
clusters of nearest neighbor sites. A cluster is a set of connected
conductors bounded by insulators. At a low concentration p, the
mixture is an insulator since there is no conducting path
connecting opposite edges of the lattice. All clusters are finite,
Al large p values, along with finite ones there is an infinite
cluster, that is, conducting paths between opposite edges. The
mixture is a conductor. At some concentration in between, there
exists a threshold concentration p, where for the first time the
current can percolate from one edge to the other. This
concentration, pg, is called the percolation threshold or the
critical concentration.

The correlation length, &, defined by the mean distance
between two sites on the same finite cluster, characterizes the
linear size of the finite clusters in a percolation system (Bunde

& Havlin, 1991; Neimark, 1990). It depends on the
concentration,

=alp-p|” (m
where v is a universal exponent, depending only on

dimensionality, and a is the size of basic cells of the conducting
phase (see Fig. 1). For 3D systems, 1=0.875. Beyond the
correlation length, the system is macroscopically homogeneous.
Below this length scale, the properties of the system depend on
the size of the system.

Percolation theory is very often used to analyze electrical
conductance (Lee et al., 1986; Neimark, 1990; Sahimi, 1994).
The variation of perpendicular electrical conductivity can be
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tound trom Neimark (19907,

O, =G, p.+(p=pILi@)"" [(L1a)y™*"" for £>L (2)
where L is the thickness of the percolation system. The
parameter o is obtainable from the bulk electrical conductivity
around p_ (Bunde & Havlin, 1991; Lee et al., 1986; Neimark,
1990)

(3

G =00 P = p.)* for p>p. and < L

where u 1s proposed to equal 2.0 for 3D systems (Sahimi.
1994). Percolation theory usually requires that p is in the
vicinity of p.. However, experiments have shown that the range
of p where eq.(3) is applicable is quite broad (Deprez et al.,
1989; Deptuk et al., 1985; Lee et al., 1986).

By analogy with the electrical conductivity, the perpendicular
thermal conductivity A, becomes

A, =Alp.+(p-pailiaY" Y(Lia)"' for &£>L (4

A

Purllc

=(p-p) for p>p, (5
There is a lack of experimental data for thermal conductivities
of packed spheres near the critical solid fraction under vacuum.
The analytical results of thermal conductivities for unit packing
cells of spheres, such as simple cubic (SC), body-centerad cubic
(BCC) and face-centered cubic (FCC) with lattice-vacancies
(Nayak, 1976; Nayak & Tien, 1977) are used to determine A,
in eq. (5) (see Table 1). For each packing structure, the value of
the dimensionless effective thermal conductivity with the lowest
solid fraction (closest to the critical solid fraction), °, is listed
in Table 1 and is assumed to be applicable to eq. {5). The
critical concentrations p, and solid fractions &,, of these unit
packing cells are from Scher & Zallen (1970), where 8=fp. The
concentration p is defined as the percentage of the sites
occupied by spheres in each packing, and the filling factor f 15
defined as the maximum solid fraction occupied by solid
spheres in each packing structure (corresponding to p=1.0).
These values are listed in Table | together with the values of
Ao". The exponent 4 is taken equal to 2.0. as proposed by
Sahimi (1994). This value agrees with experiments on the
electrical conductivity of silver-coated glass spheres and Teflon
composites {(Lee et al., 1986).

Fig. 2 illustrates the wvanation of the conductivity with
thickness according to egs.(4) and (5). The perpendicular
thermal conductivity increases as the thickness decreases. The
physical mechanism is simple for the increase of the
conductivity. When the thickness is reduced, some finite size
clusters begin to connect the opposite surfaces of the system and
increase the number of conducting paths. Usually the thickness
effect appears when there are fewer than four layers of packing
cells. Since the conductivities in Table 1 are for unit packing

Table 1
Parameters for different packing structures e
Packing p.° f? 8: 3" A" Ap €
sC 0310 0524 0.162 0458 1.21 379
BCC 0240 0.680 0.163 0392 0748 6.60
ICcC 0195 0740 0.144 0555 1.8] 5.87

* Scher and Zallen, 1970
®Specific cases with the lowest solid fractions in each packing structure

from Nayak (1976), where X" is dimensionless thermal conductivity
“ Dimensionless factors obtained from & and r by eq. (5)
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Figure 2: The variation of perpendicular conductivity

with thickness based on percolation theory.

cells, parameter a should be the characteristic size of the unit
packing cells, a~2d, where d is the diameter of the spheres. For
each packing structure, the thickness effect is more appreciable
for those with smaller solid fractions. This can be seen from
eq.(1). When the solid fraction approaches the threshold, the
correlation length increases, leading to a more significant
thickness effect on conductivity.

Statistical Configurations of Unit Packing Cells of
Spheres

By applying the conductivitics obtained for SC, FCC and
BCC unit packing cells of spheres with (Nayak, 1976; Nayak &
Tien, 1977) and without (Chan & Tien, 1973) lattice vacancies,
Tien and Vafai (1979) showed that the thermal conductivity of
packed spheres is not a unique function of the solid fraction.
They accommodated the random arrangement of solid spheres
by assuming that the packed bed was composed of different unit
packing cells, randomly dispersed throughout the bed. This
section will use this approach and set up two configurations
according to the statistical rules.

Series-parallel connection. For a cubic lattice
consisting of two components, component 1 has a concentration
P with conductivity X, and component 2 has a concentration (1-

Layer 4

Layer 3

Layer 2

Layer 1

Component 2

Component |

Figure 3a: Parallel-series connection.
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P) with conductivity X (A, > A,). The probability of a site’s
being occupied by component 1 is P. Otherwise the site is
occupied by component 2 with a probability (1-P). Suppose all
sites in one column (in the perpendicular direction) are in series
connection and all the columns are in parallel connection. Then
the probability of all the sites in one column being occupied by
component | is p™, where m is the number of layers. The
probability that component 1 occupies (m-1) sites is p™'(1-p)m.
In general, if component | occupies (m-n) sites and component
2 occupies £ sites in a single column, the probability of such an
occupation in the lattice is p”"(1-p)"C,”, where C,"= m![n!(m-
n)!]"', If the number of sites occupied by each component in
each column is the same, the conductance of each column is the
same regardless of the distribution of each component and

equals
( J_l

Ther the effective conductivity of the lattice is

m-=n

A

n

+

=
A,

m-=n

/?._._,_,,(m] = 'g‘()”'_"(] — p}"C:'n{ (6)

If m=1, A, is the result of parallel connection of the two
components, When m=w, eq.(6) represents the series
connection of the two components. Eq. (6) is a lower bound of
conductivity.

Parallel-series connection. In this configuration, P
fraction of the total area in the first layer is occupied by
component | and (1-P) by component 2, dividing the cubic
lattice into two columns (see Fig. 3a). The area in the Layer 2
which is directly above component 1 of the Layer 1 is occupied
by P fraction of component 1 and 1-P fraction of component 2.
The area in the Layer 2 which is directly above component 2 of
the Layer 1 is divided in exactly the same way. Every upper
layer is sub-divided into doubled P and (1-P) fractions, as
illustrated in Fig. 3a. For the mth layer, there are 2™ P fractions
occupied by component 1 and 2””T(I-P) fractions occupied by
component 2. Suppose each pair of sub-divided P and (1-P)
fractions in the same layer is in parallel connection and is
connected in series with the fraction from which it branched.
Fig. 2b shows the equivalent circuit of the connection. The
effective conductivity for this connection is

Figure 3b: Equivalent circuit of Fig,. 3a.



A, ,.m)=mo,

=m{lo] +(Po, )T +(o;' + - P02, ')

form >1 (7)
where
o, = P4,
g, =(1-P)4,
o =0,+0, form=]

Suppose the packed-sphere bed is composed of two kinds of
unit packing cells. The solid fraction of the packed bed is (Tien
and Vafai, 1979)

o, =P8, +(1-P)5,, (8)
where &, and &, are the solid fractions of the unit packing
cells of components 1 and 2, respectively. Here the packing
structures  with the highest solid fraction (FCC, &,=0.74,
%, =2.89) and the lowest solid fraction (BCC with lattice
vacancy, 5,;=0.392, 1,'=0.748, see Nayak, 1976) are
substituted into egs.(6) and (7) as components 1 and 2 to
observe the thickness effect on conductivity. The results are
shown in Fig. 4.

When there is only one layer, ), spand &, , have the same
value. Components are connected in parallel. As the thickness
increases, both A, , and Ay p.s decrease and eq, (6) gives a value
(A1sp) smaller than eq. (7) (A1 55) and converges more quickly.
In the series connection, the component with lower conductivity
dominates and eq.(6) approaches its limit in about 15 layers.
The limit for eq.(6) as m—eo is the series connection of the two
components. The limit for eq.(7) can be easily proved to be the
same. The parallel connection in eq.(7) retards the speed of
convergence, resulting in higher conductivities. In reality, the
thermal conductivity of the packed-sphere bed is in-between the
values of series and parallel connections of the components. If
the statistical bounds (eq. 4, Tien & Vafai, 1979) are used as the
limits of egs.(6) and (7) for m—sco, the effect of thickness oceurs

ld_'! 1-J.! m—y

TrTrrrrrrrrrrrr g rrr 11T ey

Figure 4: 'The variation of perpendicular conductivity
with number of layers based on statistical configurations,
p-si  parallel-series connection; s-p: series-parallel
connection.
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only when the number of layers is less than five, which is about
10 times the sphere diameter. This value agrees with the
prediction of percolation theory.

The above analyses are also consistent in trend with the
numerical results of Phelan & Niemann (1997). They calculated
the perpendicular effectivé thermal conductivity of a thin,
randomly oriented composite material in a 2D system and found
an increase of the thermal conductivity with decreasing
thickness. The effect of thickness is more profound in a 2D
system thar that in a 3D system. One can find such a
dimensional effect in Neimark (1990). The physical reason is
very simple. A 3D system has more conducting paths than a 2D
system and the variation of the number of the conducting paths
with thickness in 3D system is not so apparent as that in a 2D
system.

A dramatic thickness effect on the overall thermal
conductivities is anticipated for composite materials whose
components have very different conductivities.

C. THE THICKNESS EFFECT ON THE PARALLEL
CONDUCTIVITY

The conductivity in the direction parallel to the thin layers
will decrease when the thickness is reduced. A reduction of
thickness means that fewer layers are available to act as
conduction pathways. To compensate for the lost pathways
through other layers as thickness is reduced to a single layer
(2D case), additional conducting sites must be added in the
layer for conduction to occur. This is manifested in the increase
of critical concentration from 3D to 2D systems (Sahimi, 1994),
In addition, the average coordination number, or the number of
contacting neighbors to a given particle, will decrease with the
reduction of the thickness. The upper and lower surface layers
have lower coordination numbers because they have no
neighbors on one side. These surface layers affect the average
coordination number in thin layers appreciably, resulting in the
reduction of the average coordination number. Usually, a
smaller coordination number corresponds to  smaller
conductivity (Nayak & Tien, 1978).

The thickness effect can be well accounted for (Zhang &
Stroud, 1995) by interpolating the simple effective-medium
approximation (EMA). For a binary mixture with X, and A, as
the conductivities of components, the effective conductivity is
(Kirkpatrick, 1971)

A, (m)={(B+[B? +2z-DA 2,1 (z-2) (9

where
B = ({zP— 1A, +[%z(] -P)-1)4,

and z is the coordination number. For a cubic cell in a 3D
lattice, z=6, and z=4 for a square in a 2D lattice. For a cubic cell
which has a free facet at the surface, z=5. In the extreme case
where there is only one layer, z=4. The system becomes 2D.
Thus, the average coordination number is obtainable by
interpolating between 2D and 3D (Zhang & Stroud, 1995)
z=[4+6(m-1)/m (10)

Again, the cubic unit packing cells of spheres are applied in
eq.(9), taking A,'=2.89 and 1,'=0.748. The variation of
normalized conductivity with thickness is depicted in Fig. 5. For
the parameters given, the thickness effect is apparent at 3~4
layers and there is a decrease of conductivity of about 8%. If A,
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is two orders magnitude greater than X, however, a decrease up
to 60% in conductivity could exist in about 10 layers.

D. DISCUSSION AND CONCLUSION

There are no experimental data for the thickness effect on the
thermal conductivity of packed layers. Yet, due to the similarity
between the thermal conductivity and electrical conductivity,
comparisons between the present analysis and the experiments
on electrical conductivities are feasible.

Ottavi et al. (1978) measured the perpendicular electrical
conductivity of a mixture of conducting and non-conducting
spheres at different thicknesses. An increase of the electrical
conductivities with decreasing thickness beginning at up to 30
layers of packed spheres was observed. This phenomenon
agrees in trend with the analysis in section B. Although Ottavi
et al. (1978) believe that this increase is due to the
inhomogeneous distribution of the pressure in the containers,
the thickness effect due to random distribution of spheres also
plays an important role. Recently, Michels et al. (1998) applied
thermal spray techniques to produce resistance-heating elements
that provide very high heat fluxes to solid surfaces. They
electrically insulated the surface to be heated by depositing an
alumina layer on it, and on this layer, they deposited a thin
metallic layer which served as an electrical heating element.
The thickness of the insulating layer may in principle be
determined by calculating the electrical resistance required to
prevent significant current from conducting to the underlying
copper layer to be heated, using the resistivity of sprayed
alumina at an appropriate mean temperature. Their testing,
however, showed that heaters deposited onto insulators having
thickness in the predicted range (about 10 pm) had inadequate
electrical insulation for air plasma spray films and high velocity
oxygen fuel films. The reduction in the electrical insulation may
also be caused from the thickness effect due to the disordered
structure in the insulating layers.

The analysis of the thickness effect on the parallel thermal
conductivity in section C is supported by the experiments of
Maaroof & Evans (1994). They observed a decrease of the in-
plane film resistance with the increase of deposition thickness
for Pt and Ni films, indicating a decrease of the electrical
conductivity with the reduction of thickness.

In section B, two methods are employed in analyzing the
perpendicular conductivity, predicting the same trend but with
different thickness scales. The percolation approach is based on
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statistical theory, numerical simulation and experiments. It has
been well developed and proved to be very effective in
describing disordered systems (Sahimi, 1994). The two
statistical configurations predict a more profound thickness
effect on thermal conductivity than percolation, especially the
parallel-series connection. Both configurations have the same
limit, the series connection, as the thickness approaches infinity.
The series connection is the lower bound of the effective
thermal conductivity for composites. The upper bound is the
simple parallel connection of components, where there is no
thickness effect at all. The real case lies in between the series
and simple parallel connections, and the thickness effect exists
because the series connection exhibits the thickness effect. The
series-parallel and parallel-series configurations in section B
predict this thickness effect although they are not realistic and
better configurations may exit. If the thermal conductivity
predicted by Tien & Vafai (1979) is taken as the limit of egs.(6)
and (7) as thickness approaches infinity, the same magnitude of
the thickness effect as that from percolation theory can be
observed.

Through the ahove analysis, it is clear that the thin packed-
sphere bed is anisotropic, but the variations of conductivities
with thickness are different from those of thin solid films. With
the reduction of the thickness the perpendicular conductivity of
thin solid films decreases due to the limitation of the mean free
path of heat carriers by boundaries, but the perpendicular
conductivity of packed spheres increases due to the increase in
conducting paths in the perpendicular direction. On the other
hand, the parallel conductivity decreases with the reduction of
thickness due to the reduction in the average coordination-
number and the confinement of the conducting path into one
plane. For packed-sphere thin layers, the thickness effect will
be appreciable when the thickness is less than 10 times the
sphere diameter. A dramatic thickness effect is expected for
disordered composites with very different component
conductivities. In two-dimensional disordered systems, such as
parallel fibers, there are fewer conducting paths and lower
coordination-numbers. The thickness effect will be cven more
significant in these cases. The thickness effect may alsc exist in
thin porous films. Procedures similar to those in this paper are
applicable to the analysis of the thickness effect in packed
fibers, composite materials and multi-component materials.
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NOMENCLATURE

a size of the basic cubic cells

d sphere diameter

f filling factor

L packed-layer thickness

m number of layers

p probability of a site occupied by conductors
P concentration of component one
z coordination number

) solid fraction

A thermal conductivity

o electrical conductivity

£ correlation length

subscripts

bulk bulk properties



c threshold
5 solid

superscript

* dimensionless
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