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ABSTRACT 
 This study explores the feasibility of using the molecular 
dynamics computational technique to predict the thermal conductivity 
of solid thin films in the direction perpendicular to the film plane.  The 
results show that thermal conductivity, as expected from thin-film 
experimental data and theoretical predictions, decreases as film 
thickness is reduced.  In the large-size limit, this method yields 
thermal conductivities which asymptote to a value comparable to 
experimental data.  The calculations modestly overpredict thermal 
conductivity, probably due to the use of a too-steep intermolecular 
potential.  Most interestingly, an unusual wave effect is revealed for 
thin film thermal conductivity.  This effect may be a manifestation of 
phonon wave interference analogous to the interference of light which 
determines the radiative properties of thin films. 
 It is also found that there are some temperature and 
computational domain size limitations on the applicability of 
molecular dynamics to the study of solid systems.  A regime map is 
developed which delineates the conditions necessary for molecular 
dynamics to produce physically meaningful results.  This work shows 
that molecular dynamics, applied under the correct conditions, is a 
viable tool for calculating the thermal conductivity of solid thin films. 
More generally, this work demonstrates the potential of molecular 
dynamics for ascertaining microscale thermophysical properties in 
more complex structures. 
 
 
NOMENCLATURE 
a = lattice constant 
E = energy 
F = total force on atom due to all atomic interactions 
f = force between two atoms 

    = Planck's constant / 2π h

JQ = heat flux 
k = thermal conductivity 
kB = Boltzmann’s constant 
L = simulation cell dimension 
MFP = mean free path 
m = atomic mass 
N = number of atoms 
n = equilibrium number of phonons 
p = number of atomic planes 
R = rescaling factor 
r = position, displacement, or interatomic distance 
v = velocity 
T = temperature 
Δt  = time step 
V = volume of atomic layer 
 
Greek 
ε = Lennard-Jones well depth parameter  
φ = interaction potential 
σ = Lennard-Jones equilibrium separation parameter 
ω = frequency 
 
Subscripts 
1 = smaller size or temperature 
1/2 = half time step 
2 = larger size or temperature 
appl = applied 
calc = calculated 
i, j = atom 
ij = between atoms i and j  
L = layer 
LJ = Lennard-Jones 



 

n = new 
o = old 
sp = smallest periodic 
sub = subtracted from rescaled velocity 
trans = transition 
 
Superscripts 
D = self-diffusive 
F = intermolecular 
 
 
INTRODUCTION 
 Molecular dynamics (MD) is a computational method which 
simulates the real behavior of materials and calculates physical 
properties of these materials by simultaneously solving the equations 
of motion for a system of atoms interacting with a given potential.  
The computational work on anharmonic one-dimensional chains of 
atoms by Fermi, Pasta, and Ulam (Fermi et al., 1965) in the 1950s was 
the earliest contribution to the field of MD.  This pioneering research 
was followed by other critical MD studies, including those of Alder 
and Wainwright (1960), Gibson et al. (1960), and Rahman (1964).  A 
lack of sufficient computational power limited these and other early 
simulations to systems with a very small number of atoms. 
 In the past two decades, however, the number of MD studies has 
skyrocketed due to rapid developments in computer speed and 
memory.  It is now possible, using parallel computation, to model 
systems on the order of a million atoms (Hoover et al., 1990).  Still, 
the spatial domains treated by these “large” simulations remain very 
small.  Even when periodic boundary conditions are used, constraints 
on size can complicate the calculation of bulk properties.  The 
limitations of MD in simulating bulk materials can be turned to 
advantage for novel nanometer-scale materials such as buckyballs and 
buckytubes, highly nanoporous and ultrathin films, and quantum wires 
and dots.  In particular, solid thin films are key components in 
integrated-circuit transistors and quantum-well lasers, and porous thin 
films of materials with favorable optical properties may play a critical 
role in the optical computing devices of the future (Matsumoto et al., 
1995).  Device performance in the above applications is very sensitive 
to operating temperature.  For the best design of microdevices and 
thin-film materials, knowledge of thermophysical properties such as 
thermal conductivity is of paramount importance. 
 It is well known from measurements on thin films that such 
materials display markedly lower thermal conductivities than their 
bulk counterparts.  Several approaches exist to predict the thin-film 
thermal conductivity for materials where heat conduction by lattice 
vibrations, or phonons, is dominant.  These approaches include kinetic 
theory (Ziman, 1960), the Boltzmann transport theory-based equation 
of phonon radiative transfer (Majumdar, 1993), geometric analyses 
(Flik and Tien, 1990), and the Monte Carlo computational technique 
(Klitsner et al., 1988).  Such methods, however, do not easily handle 
the nonuniformly distributed impurities, voids, cracks, dislocations, or 
complex geometries present in real films.  Numerous papers on topics 
such as crack initiation and propagation (Hoagland et al., 1990), 
density of states of microcrystalline and glassy silicon nitride (Loong 
et al., 1995), and the effect of the intricate “cage” structure of clathrate 
hydrates on their thermal conductivity (Inoue et al., 1996), show that 
MD is well-suited for the study of nanoscale phenomena in solid-
phase materials.  This approach provides a needed supplement to 
experimental measurements, which can be extremely difficult at such 
length scales.  Additionally, MD can investigate behavior of materials 
at time scales which are often hard to access with experiments.  Only 

time scales on the order of nanoseconds and shorter can be treated in a 
reasonable time by MD simulations, because the finite difference 
schemes used in such simulations require small time steps for energy 
conservation.  Examples of short time scale MD studies in the 
literature include the transient heat conduction work of Volz et al. 
(1996) and the light-material interaction paper by Shibahara and 
Kotake (1998). 
 
 
MODEL OF ARGON-TYPE SOLID THIN FILMS 
 Frequent topics of MD studies in the literature are fluid flow 
(Khare et al., 1997), phase change (Chokappa and Clancy, 1988), 
mass diffusion (Biggs and Agarwal, 1994), and the chemistry of fluids 
composed of large, complex molecules (Ryckaert and Bellemans, 
1975).  Typical properties calculated in these studies include energy, 
viscosity, and mass diffusion coefficient.  Of all the materials 
simulated with MD in the above studies, argon-type fluid systems are 
overwhelmingly the most well-explored and characterized.  Argon is a 
good choice for such simulations because the widely-accepted  
Lennard-Jones 12-6 (LJ) potential matches liquid-phase experimental 
data for argon reasonably well, and has meaningful physical constants 
as parameters.  Additionally, its simple form, with only two-body 
terms, requires much less computation time than more complex 
potentials involving three-body and higher terms (Allen and Tildesley, 
1987).  A rigorous quantum-mechanical approach is currently not 
feasible for systems of more than a few atoms because such a method 
is too numerically intensive (Tersoff, 1988), although the efforts of 
many workers are currently directed toward this problem (Car and 
Parrinello, 1985; Car, 1996; Kotake, 1994). 
 Several MD studies have explored the thermal conductivity of 
bulk argon-type fluids.  Nonequilibrium MD work by various groups, 
including Hoover and Ashurst (1975), Ciccotti and Tenenbaum 
(1980), Evans (1982), Tenenbaum et al. (1982), Massobrio and 
Ciccotti (1984), Müller-Plathe (1997) and Ikeshoji and Hafskjold 
(1994), demonstrates that the use of LJ potentials in MD simulations 
gives good agreement with experimental thermal conductivity data for 
bulk fluid argon.  Fewer researchers have used MD to address the 
vibrational and thermophysical properties of solid materials.  It is 
generally accepted that temperatures above the Debye temperature of 
a material are considered “high,” or classical.  The applicability of the 
classical LJ potential to solid bulk argon, then, may appear to be 
questionable, because argon is only solid up to 84 K and its Debye 
temperature is 80 K.  Experimental data (White and Woods, 1958) and 
other analyses (Keyes, 1959; Julian, 1965), however, show that the 
thermal conductivity of argon displays the classical inverse 
proportionality with temperature down to about 20 K.  As temperature 
decreases below this value, thermal conductivity first becomes larger 
than the classically predicted value due to the quantum mechanical 
freeze-out of Umklapp processes (Peierls, 1929), but then decreases 
with temperature due to the dominant effect of scattering from 
boundaries and imperfections.  If these low-temperature regimes are 
avoided, MD using the classical LJ potential should yield results for 
bulk argon that are in line with experimental data. 
 Despite the technological importance of solid thin films in 
thermally sensitive applications, no MD calculation of the thermal 
conductivity of solid thin films as a function of size has been reported 
before, although related studies have been made.  Kotake and Wakuri 
(1994) have shown for a two-dimensional solid system subjected to a 
constant flux that the resultant temperature gradients sharply increase 
as the system width is decreased, and recent work by Volz and Chen 
(1998) indicates that solid nanowires exhibit a strong reduction in 
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thermal conductivity as compared to the bulk.  Using MD in a three-
dimensional computational domain, the current paper explores thermal 
conductivity in a solid argon-type model system as the thickness in 
one dimension is reduced. 
 Thin films will exhibit different properties than bulk materials 
due to the existence of surfaces.  The boundary conditions at these 
surfaces and the fraction of surface area relative to film volume will 
both influence the vibrational spectra for films, causing deviations 
from the bulk spectra.  One may wonder, then, whether it is 
appropriate to apply the LJ potential, which models bulk fluids well, 
to solid thin films.  Allen et al. (1969) and Dickey and Paskin (1970) 
used the LJ argon potential to perform MD simulations of nanoscale 
solid materials.  The vibrational and specific heat behavior calculated 
from these simulations corresponds well qualitatively with 
experimental data (Novotny and Meincke, 1973) and with the results 
of other calculations (Burton, 1969; Wolf et al., 1995).  For this 
reason, the present paper assumes that the LJ argon potential is 
applicable to thin film systems for qualitative studies of thermal 
conductivity. 
 Although argon is not a real thin-film material, it is the best 
choice for an initial thin-film thermal conductivity MD study.  This is 
not only due to the fact that the results can be benchmarked against the 
large body of existing work on argon-type systems, but also because 
the argon model, as noted by Kristensen et al. (1974) and Wolf and 
Merkle (1992), should reveal fundamental thermal conductivity 
phenomena for a wide variety of materials in a computationally 
economical manner.  Most importantly, the argon model is expected to 
span from the microscale regime to the bulk regime in a reasonable 
computational domain size due to its short phonon mean free paths.  
Unlike more technologically relevant materials which typically have 
long mean free paths, the argon model will give thermal conductivities 
which asymptote to the bulk value by simply adding a few more 
atomic layers in the “thin” direction.  After establishing a firm 
foundation for pure thin films, the argon model can then be extended 
to thin-film systems with impurities, pores, defects, and other types of 
complicated structures.  To get the most quantitatively accurate results 
for a given material, a potential specific to that material should be 
used, but for predicting qualitative trends, which is the aim of this 
paper, the argon model is a sensible choice. 

 

 

 
 
COMPUTATIONAL PROCEDURE 
 Several example MD programs and subprograms are available in 
the literature and on the Internet.  The majority of these only treat bulk 
systems at equilibrium, and no subroutines that calculate thin-film 
thermal conductivity by a direct nonequilibrium means could be 
found.  It is possible to calculate thermal conductivity from an 
analysis of fluctuations of a system at equilibrium, but this method 
generally requires much more computation time than direct 
nonequilibrium simulations (Evans and Streett, 1978; Evans, 1979).  
To perform direct nonequilibrium MD calculations of solid thin-film 
thermal conductivity, a new MD program was constructed.  This 
program is based on the equilibrium classical MD subroutines made 
available by Allen and Tildesley (1987), but substantial additions, 
revisions and modifications have been made to handle aperiodicity 
and to create a nonequilibrium condition. 
 The general approach of the program is to apply a constant flux 
to an argon-type solid system, to calculate the resulting temperature 
gradient, and to determine the thermal conductivity by a simple ratio 
of flux to temperature gradient.  The reverse method, in which the film 
boundaries are kept at constant temperatures and the resultant flux is 

calculated, was initially tried.  This was abandoned in favor of the 
current scheme due to the very slow convergence of the heat flux 
value.  The execution of the program proceeds as follows.  First, the 
simulation cell is constructed of face-centered cubic unit cells.  Each 
unit cell contains four atoms and corresponds to two atomic layers of 
atoms.  Each atom is assigned a type according to its spatial position: 
“hot,” “cold,” “regular,” or “fixed.”  The configuration of the 
simulation cell depends upon whether bulk (Fig. 1) or perpendicular 
(Fig. 2) conductivity is to be calculated.  In the figures, hot and cold 
regions are indicated by asterisks and plus signs, respectively, while 
the circles indicate regular atoms.  Bulk materials are simulated by 
using periodic boundary conditions, in which the actual simulation 
cell of a small number of atoms is essentially repeated infinitely in all 
three coordinate directions.  This method often yields values for 
physical properties surprisingly close to experimental results 
(Rahman, 1964; Verlet, 1967), but suppresses phonons in solids which 
have wavelengths larger than the simulation cell size (Allen and 
Tildesley, 1987).   

Fig. 1  Schematic of bulk thermal conductivity simulation 
cell with sixteen regular atomic layers.   
 
 

 For thin films, periodic boundary conditions are used in two 
coordinate directions.  Fixed atoms, which remain stationary at their 
lattice positions for the entire simulation, are used in the third, “thin” 
direction to enforce an adiabatic boundary condition and to prevent 
evaporation of the film.  These atoms are indicated by x marks in Fig. 
2.  Evaporation was found to be a problem in hotter regions of the film 
when a vacuum boundary condition was used.  Following the example 
of Kotake and Wakuri (1994), four layers of fixed atoms are deemed 
sufficient to simulate an infinite wall due to the short range of the 
interatomic forces.  All non-fixed atoms are given an initial 
temperature by choosing their velocities according to the Maxwell-
Boltzmann distribution at that temperature.  After this, the program 
advances the difference equations of motion for a short equilibration 
period to allow a realistic thermodynamic state to be established. 
 The difference equations come from the widely-used “velocity 
Verlet” algorithm (Swope et al., 1982), 
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In this algorithm, new atomic positions are calculated based on old 
positions, velocities, and forces (Eq. (1)).  Velocities are calculated 
using a two-step scheme, in which old forces are used to advance old 
velocities to “half-step” velocities (Eq. (2)), new forces are calculated 
from the LJ potential using the new positions (Eqs. (3), (4)), and new 
velocities are found using the half-step velocities and new forces (Eq. 
(5)).  The LJ potential is 
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where ε is the LJ well depth parameter and σ is the equilibrium 
separation parameter.  To keep computation time reasonable, the 
common convention of a cutoff radius is employed in calculating 
forces.  This means that only the neighbors of an atom within a certain 
radius are included in the force calculations, since faraway atoms have 

a negligible contribution to the total force on a given particle.  Such a 
convention should only be applied to systems in which atoms are 
subject to short-range forces (Allen and Tildesley, 1987).  
 After equilibration, a heat flux is imposed on the system by 
adding a fixed amount of energy to hot atoms and removing the same 
amount of energy from cold atoms at every time step.  This induces 
heat flow in the x-direction from the hot region to the cold region 
across the regular atoms, and is accomplished using the algorithm of 
Ikeshoji and Hafskjold (1994).  In this algorithm, all energy is 
added/subtracted in the form of kinetic energy.  Kinetic energies in the 
hot region are altered by scaling each hot atom’s velocity by the same 
factor R and by subtracting a small velocity vsub from this scaled 
velocity.  The values of R and vsub are chosen to conserve momentum 
and to add the desired amount of energy at each time step.  A similar 
procedure is followed for the cold atoms, except kinetic energy is 
subtracted rather than added. 
 Once a steady state is reached, instantaneous temperatures in 
each regular atomic x-layer are time averaged for the duration of the 
simulation.  Following the equipartition principle, the instantaneous 
temperature is calculated using the formula (Allen and Tildesley, 
1987) 
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where the squares of the magnitudes of the atomic velocities in a 
particular layer are summed.  The gradient of the time-averaged 
temperatures in each layer is then taken, and the thermal conductivity 
is calculated by dividing the imposed heat flux by the negative of this 
gradient.   
 Use of Eq. (7) assumes that a local thermodynamic equilibrium 
(LTE) is established in each atomic layer and that there is a classical 
high-temperature heat capacity.  Hafskjold and Ratkje (1995) explored 
the concept of LTE in nonequilibrium fluids by running several MD 
simulations on fluids subjected to mass and temperature gradients.  
They applied four different criteria for LTE to the results of these 
simulations, and concluded that the control volume size criterion of 
Tenenbaum et al. (1982) best satisfied the competing requirements of 
property uniformity (small control volume) and good statistics (large 
control volume) for nonequilibrium systems.  This criterion is that 
control volume thickness for measurement of fluid properties should 
be roughly equal to the interatomic distance.  Since this criterion was 
found to be valid for fluids, it should be even more likely to hold for 
atomic planes in solids because the increased density causes increased 
intermolecular interaction which aids energy transport between 
neighboring planes of the system.  For these reasons, the criterion of 
Tenenbaum et al. was assumed to be valid so that Eq. (7) could be 
applied to each atomic plane.  The development of linear temperature 
profiles in the calculations discussed below indicates that the 
assumption of LTE in each atomic layer is justified. 
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Fig. 2  Schematic  of perpendicular thermal 
conductivity simulation cell with seven regular atomic 
layers.   
 
 

 
 
RESULTS AND DISCUSSION 
 
General comments about the simulations 
 The simulations were run on DEC 3000 workstations and an 
AlphaServer 2000.  Computation time was on the order of several 
hours, varying with the sizes of the systems considered.  Two types of 
thermal conductivity simulation cases were run: bulk and 
perpendicular.  Table 1 shows the fixed parameters used in most 



 

simulations; any changes to these parameters for special case runs are 
noted.  The nondimensionalizations used in the calculations are listed 
in Table 2.  The configuration of the program is such that the initial 
temperature is specified, not the final average temperature of the 
lattice.  In all runs, the temperature decreased over time from the 
initial value such that the final average lattice temperature was 
roughly half the initial temperature.  This shows that half of the initial 
kinetic energy has been converted into potential energy, as dictated by 
equipartition.  In the discussion that follows, the term "nominal 
temperature" is used for convenience to indicate one-half of the initial 
temperature.  The true average lattice temperature was in all cases 
within a few degrees K of the nominal value. 
 For all simulations, several criteria were used to assess the 
validity of the generated data.  These criteria include energy 
conservation, attainment of steady-state temperature profiles and heat 
flux distributions, and preservation of the lattice structure.  Data from 
simulations which displayed large long-time energy drifts, nonlinear 
temperature profiles, significant differences in heat flux between 
regular atomic x-layers, or melting/evaporation characteristics were 
not used because in such cases the Fourier law, which is the basis of 
the program’s thermal conductivity calculation, is not valid.  To study 
the heat flux distributions, the  
actual heat flux was calculated.  The equations for heat flux are (Irving 
and Kirkwood, 1950)  
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The total flux (Eq. (8)) is the sum of the heat fluxes due to self-
diffusion (Eq. (9)) and intermolecular interaction (Eq. (10)).  Heat flux 
was calculated in each x-layer and was compared to the theoretical 
heat flux imposed by adding/subtracting energy in the source/sink 
regions.  Since the program uses the theoretical value to calculate 

thermal conductivity, it is important that the calculated and the applied 
fluxes be as close as possible. 
 It was observed in several cases that simulations not run long 
enough to attain a steady state yielded calculated fluxes that were 
lower than the theoretical applied fluxes and thermal conductivities 
that were higher than longer-time values.  The too-low calculated flux 
value at early times can be explained by the fact that the temperature 
gradient is still increasing then.  The too-high thermal conductivity is 
an artifact resulting from the use of the theoretical value instead of the 
applied value in the program’s thermal conductivity calculation.  Both 
these discrepancies were observed to disappear as the number of time 
steps in the simulation increased.  Calculated values of heat flux, mean 
temperature of the regular atoms, and thermal conductivity for the 
bulk and perpendicular thin-film runs are listed in Table 3.  Calculated 
heat flux values were all within 4% of the theoretical applied flux.  
Correcting the thermal conductivity values in Table 3 by multiplying 
by the ratio JQcalc/JQappl gave negligible changes in the values for all 
cases and did not change the shape or trend of any of the plots. 
 Momentum conservation, as found by Ikeshoji and Hafskjold 
(1994) in their bulk thermal conductivity simulations, was also found 
to hold for the present bulk simulations.  In the thin-film simulations, 
however, total system momentum was not strictly conserved but 
fluctuated rapidly about zero.  Physically, this could be viewed as a 
periodic accordion-like rippling of the solid between fixed walls.  
Since preliminary runs using a boundary condition in which wall 
atoms are not fixed but are tethered to their sites were found to 
conserve momentum, and since momentum non-conservation is absent 
in bulk simulations, the fixed wall boundary condition must be the 
cause of this effect.  The fixed walls impart impulses to the atoms in 
the system in a manner analogous to billiard balls hitting a wall of 
infinite mass.  The influence of non-zero momenta on thermal 
conductivity was explored by subtracting out the local x-plane 
velocities from the individual atomic velocities in the temperature 
calculations and using these modified temperatures to calculate the 
thermal conductivity.  The differences in thermal conductivity 
between the modified and unmodified temperature simulations was 
very small, with differences only in the third significant digit or 
below.  Based on this, it was concluded that the thin-film data from 

 
 
Table 1.  Fixed simulation parameters 

Parameter Value 
 

LJ well depth parameter [ ε ] 
 

1.67 x 10-21 J 
LJ equilibrium separation parameter [ σ ]  3.4 Å 

Argon atomic mass [ m ]  66.3 x 10-27 kg 
1.38 x 10-23 J/K Boltzmann’s constant [ kB ] 

Lattice constant  [ a ] 5.31 Å 
Time step [ Δt ] 1 fs 

Applied dimensionless heat flux1 1.0 
Regular layers normal to the y- and z-directions2 8 

Layers in each hot or cold region3 4 
Layers in each fixed region4 4 

 

 175 K runs use a dimensionless flux of 1.5 
 2For bulk simulations the number of regular y- and z-layers is equal to 
  the number of regular x-layers 
 3Hot, cold, and fixed layers are always normal to the x-direction 
 4Fixed layers are only used in the perpendicular case 
 
 

 
 
Table 2.  Nondimensionalization equations 
 

Quantity Equation 
 

Length L* =
L
σ  

 
Temperature T * =

k B T
ε  

 
Energy E *=

E
ε  

 
Force 

σ
F* =

F
ε  

 
Time t * =

t
σ

ε
m  

 
Velocity v * = v

m
ε  

 
Heat flux 

m
ε3

σ 3JQJQ
* =

 
 

Thermal conductivity 
m
ε

σ 2

kk*=
k B  

 



 

unmodified temperature simulations was valid although momentum 
was not strictly conserved. 
 
 
Bulk thermal conductivity simulation 
 Bulk thermal conductivity was calculated for simulation cells of 
various sizes at the nominal mean lattice temperatures of 35 K and 65 
K to check the agreement of the simulation with experimental 
measurements on argon.  The results are illustrated in Fig. 3.  For the 
35 K case, the calculated thermal conductivity is close to the 
experimental value.  There are, however, two observations to be made.  
One is that the conductivity increases in a linear fashion as the number 
of atoms is increased, and the other is that values larger than the 
experimental values are found when the number of layers is larger 
than 640.  An explanation of the second phenomenon may be that the 
simulation was run using the 0 K lattice constant, 5.31 Å.  Typically 
MD simulations yield numbers that are smaller than the bulk values 
due to the exclusion of long-wavelength phonons, but using the 0 K 

density rather than the density that would exist at 35 K would cause 
increased intermolecular interaction and thus a higher thermal 
conductivity than expected. 
 The effect of using a more realistic density was explored for the 
35 K, 704 atom case at the same temperature by using a lattice 
constant of 5.337 Å, which corresponds to the 35 K experimentally 
measured density, instead of the lattice constant at 0 K.  As expected, 
the thermal conductivity for this case is lower than for the 0 K density 
case, with a dimensionless value of 35.4 as compared to 37.0.  This is 
still, however, larger than the experimental value of 34.3.  The fact 
that the simulated films are pure, while real films have impurities and 
other imperfections which reduce the thermal conductivity, may 
contribute to this difference.  Another reason may be that although the 
lattice parameter was increased, the well depth and equilibrium 
separation parameters in the LJ potential were not adjusted to reflect 
this change.  This causes the resting positions of the atoms to be 
different from the potential well minima, resulting in residual forces 
acting on the displaced atoms.  Such forces would be reflected in the 

Table 3.  Input parameters and calculated values 

Input Parameters Calculated Values 
 

Nominal lattice 
temperature1 

 

Configuration 
 

Number of 
atoms or 
layers2 

 

Number 
of time steps 

 

Thermal 
conductivity3 

 

Mean lattice 
temperature1 

 

Heat 
 flux3 

   A4 B5 C6    
 
 

35 

 
 

bulk 

512 
576 
640 
704 
768 

3400 
5400 
7800 

10600 
13800 

8500 
13500 
19500 
26500 
34500 

25500 
40500 
58500 
79500 

103500 

28.3 
31.4 
34.3 
37.0 
40.6 

36.2 
37.1 
35.8 
36.0 
35.7 

0.962 
0.979 
0.992 
0.984 
0.993 

 
 
 

65 

 
 
 

bulk 

96 
252 
512 
900 
1440 
2156 
3072 

3580 
5540 
7920 
10740 
14000 
17680 
21800 

18400 
28200 
40100 
54200 
70500 
88900 

109500 

35800 
55400 
79200 
107400 
140000 
176800 
218000 

21.2 
23.5 
25.2 
26.8 
27.4 
28.8 
30.7 

66.7 
71.3 
69.3 
69.2 
66.8 
66.7 
66.8 

1.031 
0.969 
0.996 
0.984 
0.983 
0.963 
0.984 

 
35 

 
perpendicular 

3 
5 

5400 
7800 

7 10600 

16200 
19500 
26500 

45000 
58000 
79500 

34.9 
37.7 
43.0 

35.7 
36.8 
35.7 

0.962 
0.970 
1.000 

 
50 

 
perpendicular 

3 
5 
7 
9 

5400 
7800 
10600 
13800 

16200 
19500 
26500 
34500 

45000 
58500 
79500 
98080 

29.7 
30.7 
32.1 
38.1 

51.2 
53.1 
52.2 
51.5 

0.971 
0.986 
0.997 
1.001 

 
 

65 

 
 

perpendicular 

3 
5 
7 
9 
11 
13 

6680 
9280 
12320 
15780 
19680 
24020 

33900 
46900 
62100 
79400 
98900 

120600 

66800 
92800 
123200 
207800 
246800 
290200 

24.5 
32.9 
35.4 
31.7 
35.3 
37.1 

69.7 
70.7 
68.8 
67.6 
66.5 
66.3 

0.977 
0.975 
0.998 
0.986 
0.983 
0.980 

 
 

75 

 
 

perpendicular 

3 
5 
7 
9 
11 
13 

6680 
9280 
12320 
15780 
19680 
24020 

33900 
46900 
62100 
79400 
98900 

120600 

66800 
92800 
123200 
157800 
246800 
290200 

23.8 
28.8 
31.8 
32.8 
35.8 
38.3 

80.3 
80.0 
76.4 
75.3 
73.0 
71.7 

1.471 
1.471 
1.472 
1.455 
1.466 
1.471 

 
1Dimensions of K 
2Number of atoms for bulk simulations; number of layers for perpendicular simulations 
3Dimensionless 
4Time step at which flux is applied 
5Time step at which time averaging begins 
6Total time steps 
 
 



 

intermolecular contribution to the heat flux and may affect the thermal 
conductivity value. 
 Still another reason for the high values calculated in the 
simulation is that the Lennard-Jones potential may not be completely 
accurate for solid-phase materials.  Berne et al. (1966) note that in the 
condensed phase, many-body effects tend to decrease the mean 
curvature of the potential well.  This suggests that argon atoms are 
more loosely bound in actuality than what the LJ potential would 
predict.  A too-steep potential means the “spring” binding atoms to 
one another is too tight, causing an artificially high intermolecular 
interaction and thus overpredicting the thermal conductivity.  The idea 
that the intermolecular potential is the culprit is further bolstered by 
comparing the results of Ikeshoji and Hafskjold (1994), who applied a 
slightly modified LJ potential to an argon fluid, to the present results 
for LJ potential argon solids.  The present computation uses the same 
configuration and calculation procedure on roughly the same number 
of argon atoms, yet gives a too-high thermal conductivity while 
Ikeshoji and Hafskjold’s result agrees with experimental data within 1 
- 2%.  Although the calculated bulk thermal conductivities are in some 
cases larger than the experimental data, they seem reasonable based on 
the discussion above. 
 The other phenomenon observed above for the 35 K curve, an 
increase of bulk thermal conductivity as the number of atoms is 
increased, has also been found in an equilibrium MD simulation 
performed by Volz and Chen (1998).  This behavior indicates that the 
bulk-configuration simulation cell of Fig. 1, which is the next to 
largest size explored, is not large enough to well-represent the true 
bulk properties of solid argon at 35 K.  According to Allen and 
Tildesley (1987), use of periodic boundary conditions with a 
simulation cell of this size should be large enough to produce bulk-
like behavior in fluids, but the results clearly show that the same 
assumption is not true for solids.  True bulk-like behavior would be 
indicated by little or no size dependence in the calculated thermal 
conductivity value.  As mentioned above, long-wavelength phonons 
are artificially excluded in MD “bulk” simulations because spatial 
fluctuations with wavelengths larger than the simulation cell size 

cannot be captured (Hansen and McDonald, 1986).  To replicate bulk 
behavior, the results suggest that the MD simulation should be run 
using a larger number of atoms.  This would cause an undesirable 
increase in simulation time. 
 A better alternative would be to run the simulation at a higher 
temperature.  This reasoning is illustrated in Fig. 4, which shows the 
Bose-Einstein distribution for phonons at two different temperatures.  
This distribution, 
 

   

n =
1

− 1)( hω
kBT

exp

 (11) 
 
gives the equilibrium number of phonons present as a function of 
temperature and frequency.  The vertical lines on the figure indicate 
minimum phonon frequencies allowed by the size of the simulation 
cell for two different cases.  At a given size, no phonons with 
frequencies to the left of this line can exist.  For example, region A 
indicates the number of phonons present at temperature T1 and 
simulation cell size L1.  As size increases from L1 to L2 while 
remaining at T1, the maximum phonon wavelength allowed increases.  
The minimum frequency thus decreases and the phonons in C are now 
allowed, so that the total number of phonons is represented by A + C.  
In the limit of zero frequency or infinite size, all phonons are allowed 
by the simulation cell.  Raising the temperature from T1 to T2 while 
remaining at size L1 shifts the distribution higher, effectively moving 
the minimum frequency closer to the steeper part of the curve so that a 
greater fraction of the total area under the curve is occupied.  This 
means that the higher-temperature case is “closer” to bulk behavior.  
The additional phonons added in this case are in B, so that the total 
number of phonons is A + B.  Increasing both size and temperature 
yields A + B + C + D.  Ideally, larger sizes and higher temperatures 
should be used to best model bulk behavior, but using higher 
temperatures is the most computationally economical choice.  
 The phonon distribution of Eq. (11) displays an exponential 
dependence on frequency in the high-frequency limit, 
 

 
Fig. 4  Bose-Einstein distribution for phonons.   
 
 

 
 
Fig. 3  Bulk thermal conductivity at 35 K and 65 K versus 
number of atoms.  The experimental values are taken from 
Touloukian et al. (1970). 
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and has an inverse proportionality at low frequencies, 
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The transition to the desired bulk-like low frequency regime should 
occur near a dimensionless parameter value of 1.  This is exactly the 
same as the so-called Wien’s law for phonons and is analogous to the 
result for photons.  Substituting for frequency and using the 10 MPa, 
90 K speed of sound in fluid argon because it was the highest 
tabulated value for any form of argon found in the CRC Handbook 
(1996), it can be shown that the Wien's law for phonons requires 
 

  (14) 
( p

sp T )
trans

~ 153

 
for transition, where psp is the number of atomic planes along the 
periodic direction of the simulation cell which has the shortest length 
and 153 is in degrees Kelvin.  A pspT product as much larger than 153 
as possible should be used for an MD simulation, because this will 
ensure that the simulation is run in the desired bulk-like regime. 
 To investigate the effect of higher temperature on bulk thermal 
conductivity, another set of simulations was run at 65 K (Fig. 3).  In 
this case, the size of the simulation cell was changed not only by 
increasing the number of regular x-layers as in the 35 K case, but also 
by adding y- and z-layers so that the number of y- and z-layers 
equaled the number of regular x-layers.  Similarly to the 35 K case, 
the 65 K case shows an increase in thermal conductivity with 
simulation cell size.  The important difference between the two curves 
is that the 65 K data appear to asymptote toward a dimensionless value 
of around 32, while the 35 K data display a linear increase which 
shows no signs of tapering off.  This result is strong proof that the 65 
K simulation is much closer to the bulk regime because changing the 
computational cell size has only a weak effect on the results.  A 
simulation cell size of 512 atoms, which corresponds to 4 unit cells or 
8 atomic planes in each coordinate direction, yields thermal 
conductivity values not much smaller than simulations with a 
significantly larger number of atoms.  For computational efficiency, 8 
planes in a particular periodic coordinate direction is assumed enough 
to capture the essential physics for a system with a temperature equal 
to or greater than 65 K.  In the perpendicular thermal conductivity 
simulations of the following section, then, 8 planes were used in the 
periodic y- and z-directions to represent “infinite” length in those 
dimensions.  
 
 
Perpendicular thermal conductivity simulation 
 Perpendicular thermal conductivity versus film thickness is 
illustrated in Fig. 5 for simulations run at nominal mean lattice 
temperatures of 65 K and 75 K.  Results from lower-temperature 
simulations are also shown as individual data points, and will be 
discussed later.  In the simulations, film thickness was varied by 
adding/subtracting atomic x-layers to/from the computational cell.  
Experimental bulk thermal conductivity data and curves produced 
from Majumdar’s equation of phonon radiative transfer, or “EPRT” 
(Majumdar, 1993) are shown for comparison to the 65 K and 75 K 
calculated values.  The EPRT approach is based on solving the 

Boltzmann transport equation for phonons in dielectric thin films.  
Solid argon properties found in Dobbs and Jones (1957), the speed of 
sound mentioned above, and the mean free path equation of Dugdale 
and MacDonald (1954) were used for the EPRT calculations.  Figure 6 
shows a representative temperature profile generated from the 65 K, 5 
layer simulation.  In this figure, the fixed atoms on either side are at 0 
K and the source (hot) and sink (cold) regions display the expected 
parabolic temperature profile.  The temperatures of the regular atoms 
are well fitted by a straight line whose slope was used to determine the 
thermal conductivity. 
 The 75 K calculated thermal conductivity in Fig. 5 increases 
fairly smoothly as the number of layers is increased.  The same trend 
was found by Kotake and Wakuri (1994) for the thermal conductivity 
of a two-dimensional argon-type system whose width was varied, and 
can be seen also in both EPRT curves, which approach the 
experimental bulk values nicely as size is increased.  The calculated 
curves are higher than the EPRT curves and their large-size limiting 
values are larger than the experimental values by a factor of two.  This 
is not a surprising result since the bulk calculations of the previous 
section were also found to be higher than experimental data.  As 
discussed before, the reason for this is probably that the LJ potential is 
too stiff to use for solids. 
 Also, as the number of layers increases beyond 9, the thermal 
conductivity curve takes a slight upward bend and attains values 
higher than for the 65 K curve.  The 75 K results are expected to be 
lower than the 65 K results due to the greater anharmonicity of 
vibration at the higher temperatures.  As mentioned above, overly high 
thermal conductivities are commonly obtained when simulations are 
not run long enough.  The 65 K and 75 K simulations were in almost 
all cases run for the same number of time steps, so a too-short 
simulation time does not seem to be the reason.  A more likely reason 
is that as the number of layers increases, the mean lattice temperature 
decreases (Table 3).  Thermal conductivity in general increases with 
decreasing temperature, so this could very well be the cause of the 

 
Fig. 5  Perpendicular thermal conductivity at 65 K and 75 K 
versus number of x-layers.  The experimental values are 
taken from Touloukian et al. (1970).  EPRT values were 
calculated using the equation of phonon radiative transfer 
(Majumdar, 1993).  Diamonds and circles indicate lower-
temperature simulations which have questionable validity. 
 
 

 



high values.  The “75 K” simulation is actually comprised of an 
almost 9 degree range of temperatures, while the “65 K” simulation 
displays much less temperature variation.  This may be due to a larger 
noise component in the instantaneous temperature values at 75 K. It 
might also be caused the larger dimensionless heat flux of 1.5, which 
was used to try to combat the noise so that a discernible gradient could 
be established.  Future work on higher-temperature systems should use 
some means to assure a suitably “constant” average lattice temperature 
so that effects of temperature variation do not obscure the effects of 
size. 
 A more surprising finding is that the calculated thin-film values 
are larger than the calculated bulk values!  It is unclear at present why 
this is the case, but a potential well overstiffness argument may again 
be applicable here.  The boundary conditions for the thin film case are 
fixed walls whose component atoms are not permitted to move.  
Considering interactions between atoms in a three-dimensional mass-
spring context, one can visualize that a mobile atom moving toward 
another mobile atom should experience more “give” than a mobile 
atom approaching a fixed atom.  This would happen because the 
mobile atom being approached is free to move sideways or in some 
other direction to minimize the mutual repulsion while the fixed atom 
is not.  The effect of this would be that the mobile/fixed spring appears 
stiffer than the mobile/mobile spring.  The overly stiff spring would 
result in overprediction of thermal conductivity, as discussed above.  
To get a more definitive answer to this question, the effect of wall 
atom stiffness should be explored by allowing wall atoms to move 
while tethering them to defined lattice sites with different spring 
strengths. 
 The most interesting result of the thin-film thermal conductivity 
calculation was found for the 65 K simulation.  An unusual wave 
effect for this case can be seen in Fig. 5.  As the number of layers is 
increased from 3 to 7, the thermal conductivity increases 
monotonically.  At the 9 layer point, the curve takes a sudden 
downturn, and by the 11 layer point, the curve has increased back up 
to the 7 layer value.  For larger sizes the curve tapers off.  Within the 
limitations of the simulation, these results are believed not to be a 
fluke because they were reproducible for three separate sets of lattice 

initializations.  Unlike the 75 K case, this behavior cannot be 
attributed to temperature effects because the 9 and 11 layer simulation 
temperatures are lower than those of the smaller simulations.  Thermal 
conductivity would be expected to continue increasing for this reason, 
not to display a down dip and subsequent upturn.  It could be that the 
fixed wall atom boundary condition, which is believed to at least 
partially be the cause of the other phenomena discussed above, could 
create spurious effects in the data.  This does not explain , however, 
why the 75 K curve shows a fairly smooth increase while the 65 K 
curve does not. 
 An intriguing possibility is that the MD simulation has revealed 
phonon wave effects on thermal conductivity.  Using the transfer 
matrix method for acoustic waves, Chen (1998) found such effects for 
sufficiently thin films.  The results of the MD simulation may provide 
an independent confirmation of Chen’s results.  The 65 K curve in Fig. 
5 resembles the thermal conductivity versus film thickness curve in 
Chen’s paper in that there is a steeper increase for smaller thicknesses 
followed by the above-mentioned tapering off for larger thicknesses.  
The definite peak and valley of the 65 K curve at 7 and 9 layers, 
however, is not visible in Chen’s curve.  One reason for this may be 
that at 65 K, the coherence length of the blackbody “phonon 
radiation” is long enough to be on the order of or greater than the 
simulation cell sizes considered in the MD simulation.  Long 
coherence lengths relative to the spatial scale of observation are 
required for pronounced wave interference effects to occur.  From 
Mehta’s work (1963) on the effective coherence time and bandwidth 
of blackbody photon radiation, it can be seen that coherence time, and 
thus coherence length, is inversely proportional to temperature.  At 75 
K there are no clear peaks or valleys, probably because raising the 
temperature causes an decrease in the effective coherence length 
which weakens interference effects.  To verify that MD simulations 
can detect phonon wave effects, several sets of simulations run at 
temperatures lower than 65 K should be made.  These simulations 
should show even stronger oscillations than for the 65 K case.  
 The effect of lower temperatures on perpendicular thermal 
conductivity was explored using a simulation cell with the same 
lateral dimensions (8 layers) as the 65 K and 75 K cases.  Figure 5 
shows, as individual data points, the results of runs at 50 K and 35 K 
in addition to the 65 K and 75 K results discussed above.  It can be 
seen that the 50 K and 35 K curves, in contrast to those at higher 
temperatures, display a strange upward concavity.  It is postulated 
here that the reason for the unusual behavior at lower temperatures 
which disappears in the 65 K temperature run is a transition to the 
steeper, bulk-like regime where an adequate number of long-
wavelength phonons is allowed by the simulation cell lateral size.  
Recall from the discussion in the previous section and from Fig. 3 that 
35 K “bulk” simulations using 8 layers in the shortest periodic 
directions show distinctly non-bulk, incorrect behavior because the 
thermal conductivity increases sharply and steadily with simulation 
cell size.  Similarly, results from perpendicular conductivity 
simulations at 35 K which use only 8 layers in the “infinite” y- and z-
directions will also be incorrect.  It is concluded, then, that curves 
which look like the 35 K curve contain unphysical artifacts and data 
from these curves should not be trusted.  Curves displaying the 
expected behavior, such as those at the two higher temperatures, are 
assumed to have enough length in the lateral dimensions to produce 
meaningful results.  The 50 K simulation, then, also suffers from 
lateral dimensions that are too small.  To avoid obscuring any wave 
effect behavior, the data indicates that larger simulation cells must be 
used for colder temperature simulations. 

 
 
Fig. 6  Temperature in each atomic layer of the thin film for 
the 5 layer, 65 K case.  The error bars are one standard 
deviation of the instantaneous temperature values. 
 
 

 



 Based on the fact that there were 8 atomic planes in both y and z 
directions for the 65K and 75 K perpendicular runs, and using the 65 
K run as a conservative base case for comparison, an improvement to 
the transition criterion of Eq. (14) is suggested: 
 

 
( p

sp T )
trans

~ 520
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Here psp is the number of atomic layers in the periodic direction with 
the smallest length and 520 is in degrees Kelvin.  In terms of 
simulation cell size, Eq. (15) becomes 
 

  (16) 
( LspT )

trans
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where Lsp is the smallest periodic simulation cell dimension and 138 is 
in units of nm-K.  Note that Eqs. (15) and (16) are only valid for 
argon, since argon parameters were used in their derivation. 
 The importance of Eqs. (15) and (16) are that they are guidelines 
to use in MD simulations.  When the pspT product is greater than 520 
or the LspT product is greater than 138, artifacts from the periodic 
boundary condition should no longer be important because enough 
long-wavelength phonons will be allowed in the periodic dimensions 
of the simulation cell to give results with physical meaning.  Of course 
more data is needed to best pinpoint the correct transition value, but 
the results clearly indicate that high-temperature simulations produce 
physical results for reasonably-sized simulation cells while low-
temperature simulations do not.  MD simulations are quite time-
consuming, so the use of Eqs. (15) and (16) will help to minimize trial 
and error for those performing such simulations.  Figure 7 is a regime 
map which illustrates which temperatures and sizes should be avoided 
and which should be used in MD simulations.  In this figure, a 
dimensionless form of the Lsp at transition is shown as a function of 
temperature.  At a given temperature, simulation cells with a smallest 
periodic dimension below this transition value give unphysical results 
due to the cutoff of long-wavelength phonons.  This is indicated by the 
shaded regime in Fig. 7.  Also shown in Fig. 7 is a plot of the 
dimensionless mean free path, which comes from values calculated 
from solid argon parameters given by Dobbs and Jones (1957).  The 
purpose of the mean free path plot is to illustrate that at high enough 
temperatures, LJ argon-model MD simulations should be able to span 
from the microscale to bulk thermal conductivity regimes using 
reasonably small computational domains.  The 65 K and 75 K curves 
in Fig. 5 suggest that this is indeed the case, indicating that MD using 
the argon model is a viable method for determining the perpendicular 
thermal conductivity of solid thin films. 
 
 
CONCLUDING REMARKS 
 This paper explored the thermal conductivity of solid systems in 
both bulk and thin-film configurations using the molecular dynamics 
computational technique (MD).  It was found, as expected from 
previous work in the literature, that MD using an argon model yields 
results close to experimental data for bulk materials and predicts 
increased thermal conductivity for thin film materials as number of 
atomic layers is increased.  Modest overprediction of thermal 
conductivity by the simulations was attributed to overstiffness of the 
LJ potential in application to solids.  Additionally, the simulations 
revealed an unusual thermal conductivity wave effect which may be a 
manifestation of phonon wave interference.  A strange result found for 
MD simulations run at low temperatures was attributed to the cutoff of 
long-wavelength phonons for these conditions.  Using the calculated 

data, equations were developed and a map was constructed which 
delineate regimes where MD simulations produce physically 
reasonable results and where they provide results of questionable 
validity.  This work has shown that MD, when applied at the right 
combinations of temperature and simulation cell size, is a powerful 
tool for predicting the thermal behavior of solid thin films.  Future 
work should be done to apply this versatile, conceptually simple 
technique to microscale problems where other experimental and 
analytical approaches are difficult.  MD is especially suited to study 
the thermophysical properties of more complex microstructures such 
as doped and nanoporous thin films and materials with voids, cracks, 
dislocations, or other complex geometries. 
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