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ABSTRACT 

Equilibrium molecular dynamics simulation is used to 
calculate lattice thermal conductivities of crystal silicon in the 
temperature range from 400K to 1600K. Simulation results 
confirmed that thermal expansion, which resulted in the 
increase of the lattice parameter, caused the decrease of the 
lattice thermal conductivity. The simulated results proved that 
thermal expansion imposed another type resistance on phonon 
transport in crystal materials. Isotopic and vacancy effects on 
lattice thermal conductivity are also investigated and compared 
with the prediction from the modified Debye Callaway model. 
It is demonstrated in the MD simulation results that the isotopic 
effect on lattice thermal conductivity is little in the temperature 
range from 400K to 1600K for isotopic concentration below 
1%, which implies the isotopic scattering on phonon due to 
mass difference can be neglected over the room temperature. 
The remove of atoms from the crystal matrix caused mass 
difference and elastic strain between the void and the neighbor 
atoms, which resulted in vacancy scattering on phonons. 
Simulation results demonstrated this mechanism is stronger 
than that caused by isotopic scattering on phonons due to mass 
difference. A good agreement is obtained between the MD 
simulation results of silicon crystal with vacancy defects and 
the data predicted from the modified Debye Callaway model. 
This conclusion is helpful to demonstrate the validity of 
Klemens’ Rayleigh model for impurity scattering on phonons. 

INTRODUCTION 
Silicon is a fundamental material for semiconductor 

industry. The thermal conductivity of silicon is a key parameter 
for the design of the electronic device. With the rapid growth of 
the microprocessor running speed, the removal of the Joule 
heat becomes critical for the next generation of electronic 

devices. With the ready availability of isotopically purified 
source materials, the isotope effect has undergone 
reexamination over the last decade. Isotopically purified 
diamond [1–3] displays a room-temperature isotope effect on 
the order of 40% at room temperature. In a very thorough 
investigation of the isotope effect in germanium, Asen-Palmer 
et al.[4] showed that an isotopically purified sample had 
thermal conductivity 30% larger compared to natural 
abundance Ge. Ruf et al in their series papers [5,6] reported the 
maximum thermal conductivity of highly enriched (99.8588%) 

Si silicon is six times larger than that in nature silicon around 
20K. At room temperature, a thermal conductivity of 
enhancement of 60% compared with nature silicon is measured. 
However, Kremer et al [7] remeasured isotopically enriched 

Si (enrichment better than 99.9%) in temperature range 5-
300K. Their measured k of isotoptically enriched Si exceeds 
that of nature Si by 

28

28

28

%210 ± at room temperature, which is in 
disagreement with the early Ruf’s measurement. In fact the 
enhancement of 60% in thermal conductivity for isotopically 
enriched Si cannot be reconciled with theoretical predictions 
[8-13], which gave at most, a 20% increase. Isotopic effects on 
lattice thermal conductivity can be explained by the mass 
difference from Klemens formula [10]. The Rayleigh scattering 
rate depends on the mass difference and the strain fields among 
the impurity atoms and the host matrixes. However, this simple 
formula only accounts for at most a few percent effects on 
thermal resistance resulted from single isotope-phonon 
scattering process for diamond material [3,14,15] at below 
room temperatures. Murakawa et al [16] used EMD method to 
discuss the isotope composition effects on lattice thermal 
conductivity of Si and Ge. The results of calculation showed 
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that thermal conductivity of mixed isotope-silicon is smaller 
than that of pure isotope silicon. The results also showed that a 
pure isotope with a light mass has a large thermal conductivity.  

At higher temperatures, Umklapp scattering processes will 
dominate in phonon scattering processes. Above the Debye 
temperature, the lifetime of three-phonon scattering process is 
inversely proportional to temperature while the specific heat 
and phonon group velocity are temperature independent. The 
relation between the thermal conductivity and temperature can 
be approximated as  in according with the kinetic 
theory. In practice, the behavior of is actually 
observed at some fraction of the Debye temperature, for 
example at 1/4 of Debye temperature for argon [17] and at 1/10 
of Debye temperature for silicon. However, experimental work 
on unconstrained argon samples [18] revealed a quadratic 
temperature term in addition to the theoretically predicted 
inverse temperature dependence. The authors attributed this 
extra term to higher order four phonon interactions. G.A. Slack 
[19] carried out experimental work on crystal silicon. He also 
demonstrated that the phonon or lattice thermal conductivity 
decreases faster than  at high temperature. As the 
temperature exceeds Debye temperature 

1−∝Tk
1−∝Tk

T/1
θ , the four phonon 

processes should be taken into accounted in the simple 
Callaway model. When the temperature is over θ6.1 , the 
electronic thermal conductivity is found and it should not be 
neglected. However, it should be caution that thermal 
expansion also contributes to thermal resistance. With the 
increase of the temperature, lattice constant for silicon 
increases in Table 1. As pointed out by Dugdale and 
MacDonald [20] that the differential lattice expansion in the 
presence of a temperature gradient, for example, the relative 
expansion of hotter regions and compression of cooler regions 
for materials with a positive thermal expansion coefficient, 
creates another source of momentum transfer that further 
reduces thermal conductivity beyond that determined by three-
phonon processes alone. Using the kinetic theory of phonon 
gases, they linked thermal conductivity to thermal expansion by 
defining the phonon mean free path as the inverse product of 
thermal expansion coefficient and temperature. Christen and 
Pollack [18] whose experimental work agrees well with the 
first principle calculations on the contribution of the 
anharmonic crystal force to thermal resistance, also attributed 
the deviation from behavior to the effects of thermal 
expansion on the lattice vibrational frequencies.  

T/1

So far, a large number works have been carried out on 
molecular simulation of lattice thermal conductivities for 
crystal silicon, Si3N4 and crystal argon [21-25]. However, most 
previous work concentrated on discussing the validity of the 
MD simulation results at particular temperature. They seldom 
investigated lattice thermal conductivity over a large 
temperature range. In fact, it is more important to explore the 
temperature dependence of the lattice thermal conductivity over 
a large temperature range in order to find the N and U 

scattering mechanism. In this paper, equilibrium molecular 
dynamics (EMD) is employed to simulate lattice thermal 
conductivity of crystal silicon with different isotopic and 
vacancy compositions. The Klemens’ Rayleigh model is used to 
account for impurity-phonon scattering rates. The direct 
calculated thermal conductivity from the modified Debye 
Callaway model integrated with the Klemens’ Rayleigh model 
agreed well with the MD simulation data. Furthermore, the MD 
simulation result confirmed that for the same defect 
concentration, the phonon-vacancy scattering rate is stronger 
than that caused by the isotopic atoms due to only mass 
difference. Thermal expansion provides another channel for 
thermal resistance.  

1. Green-Kubo method 
In molecular dynamics simulation methods, there are two 

widely used ways to calculate the lattice thermal conductivity. 
One method, nonequilibrium molecular dynamics (NEMD), 
relies on imposing temperature gradients across the simulation 
cell and calculates the thermal conductivity directly from 
Fourier’s law. By contrast, the Green-Kubo approach is an 
EMD method that uses current fluctuations to compute the 
thermal conductivity via the fluctuation-dissipation theorem. A 
large number previous works [22,23,24] have compared their 
advantages and disadvantages. In general, NEMD converges 
faster and saves computation time. The problem is that larger 
temperature gradient has to be imposed in the simulation cell, 
which caused the doubt on the feasibility of Fourier’s law. 
Finite size effect is another drawback for this method due to the 
boundary scattering at the two ends with fixed temperature 
conditions in NEMD. In order to remove the finite size effects 
on the simulation results, linear fitting procedure is proposed in 
Schelling’s work [25]. This requires many set calculations, 
which results in the similar computation burden compared with 
the Green-Kubo method. In this paper, the Green-Kubo EMD 
method is used to calculate thermal conductivities of crystal 
silicon. Stillinger-Weber(SW) potential [26] is employed to 
describe diamond structure of crystal silicon. The interaction 
forces among atoms and the thermal current can be calculated 
from the SW potentials. Once the thermal current obtained, the 
lattice thermal conductivity can be expressed through the 
equilibrium current-current autocorrelation function according 
to the Green-Kubo theory. Quantum corrections are also 
introduced in this paper to take into account for the different 
quantum occupation of phonon states from the classical 
Boltzmann distribution, particularly for simulated temperature 
below Debye temperature. In order to compare simulation 
results with the experimental data directly, it is assumed that 
the mean kinetic energy of the simulated system equals that of 
the corresponding quantum system at temperature T including 
the zero point energy. More details about the simulation process 
can be referred to Volz and Schelling’s work [21, 25]. 
1.1. Finite size effects  

It is an intrinsic characteristic that finite size affects 
simulated results for MD. For NEMD, the finite size effect is 
caused by the phonon scattering on the heat source and heat 
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sink due to the simulation domain size less than the phonon 
mean free path in an infinite system. In this case, it is predicted 
that the finite size effect limits the simulated data, i.e. with the 
increase of the simulation cell size, the simulated result will 
increase. In EMD, the size artifacts may be caused by the cutoff 
frequency and the periodic boundary conditions. In the case 
with periodic boundary conditions, a phonon may pass the 
same point in space several times without scattering. Since the 
system may retain some dynamical information during the 
passage of the phonon, artificial correlations may exist in the 
autocorrelation function. In this case, the correlation function 
may not be reliable for time longer than the time required for 
passage of the phonon across the simulation cell. With the 
change of simulation cell size, the final simulation results are 
different. Table 2 listed the final simulation data for cases with 
difference size scales. It can be found the simulation results 
tend to stable as the atom number exceeds 512. Furthermore, in 
order to decrease the finite size effects, the averaged thermal 
conductivity calculated from several runs with different random 
generators is set as the final data in this paper. 

 
Fig.1. Current-current correlation function 

1.2. Heat current autocorrelation decay  
In the simulation process, time step and total time step 

number affected the computation time and the reliability of the 
final results directly. If the time step is set too smaller, it takes 
long computation time for the system to reach equilibrium 
state. In this paper, the time step is set as . 
Total simulation time is about 3ns. In this case, total time step 
number is about 5 million for the autocorrelation function of 
heat flux convergence to zero. Even so, it is still a difficult task 
for the autocorrelation function of heat flux convergence to 
zero completely at low temperatures. Specially, for temperature 
below 900K, the autocorrelation function of heat flux will 
oscillate up and down along the horizontal axis shown as Fig.1. 
Fig.1 presents the relationship between the autocorrelation 
function of heat flux versus the time. In this case, the final 
simulation results depend on the integration time step. To 
cancel such dependence and save computation time, the results 
for the current-current autocorrelation function are fit to an 
exponential function of τ, which is then integrated [21,22,23]. 

In this paper, this method is used to dispose the final data as 
temperature is below 900K. As temperature is over 900K, the 
autocorrelation functions of heat flux in formula can be 
calculated by direct integration method [25]. 

0.5745dt fs=

2
1 1

1 ( ) (
3

M N m
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m nB

tk J
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= =

Δ
= +
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Where N is the total time step in the simulation process 
and M is the integration time step. In order to get the data as 
precise as possible, the total time step should be long enough to 
guarantee that the heat current-current autocorrelation function 
converges to zero. For materials with large thermal 
conductivity such as crystal silicon, the total time step should 
be as larger as 3 millions.  
2. Modified Debye Callaway model 

In 1958, Callaway [11] proposed a phenomenological 
model to describe the lattice thermal conductivity of crystal 
structures at low temperature. The model assumes a Debye-like 
phonon spectrum with no anisotropies or particular structures 
in the phonon density of states, i.e., no distinction of 
polarization between longitudinal and transverse phonons and 
one averaged sound velocity. The relaxation time scales of the 
phonons are all frequency and temperature dependant. A 
correction term is introduced in this model to counteract the 
effect of treating the phonon N scattering processes as entirely 
resistive processes. However, the correction term is usually 
neglected due to its small value for materials with point defects 
or impurities. Holland [12] extended the Callaway theory to 
include explicitly the thermal conductivity by both transverse 
and longitudinal phonons. The variation of the phonon 
relaxation times with frequency and temperature strongly 
depend on the actual phonon branches and its dispersions are 
considered separately. The drawback of Holland’s model is that 
it neglects the correction term in the Callaway’s theory. For 
pure or highly enriched isotopic crystal diamond [3], it has 
been proved that neglecting the correction term causes 
misunderstanding of the theoretic predicted results compared 
with the experimental data. In this case, it is the Normal 
scattering processes rather than the U scattering or impurity 
scattering processes dominate in phonon transport at the 
temperature around the maximum thermal conductivity. The N 
scattering processes determine the phonon mean free path. In 
this paper, the modified Debye Callaway model is used to 
predict the lattice thermal conductivity of crystal silicon. 
Following Callaway theory, the thermal conductivity can be 
written as [9] 

1k k k= +      (2) 

2k  in formula (2) is the correction term that accounts for 
the unresistive nature of N scattering processes. In Holland’s 
model,  was separated into LA and TA contributions 

. 
1k

,T Lk k

1 1 1
Tk k k L= +      (3) 
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Those terms in formula (3) are defined as  
1 /3

1 0

2 ( ) ( )
3

TT T
T Ck H T x J x

θ
τ= ∫ dx   (4) 

2 /3
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where 
1 1 1 1 1 1 1( ) ( ) ( )T

C TN TR B i TN TUxτ τ τ τ τ τ τ− − − − − − −= + = + + + (6) 

1 2,θ θ  are the specified temperatures in silicon dispersion 
relations, which are listed in Table 3. 
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In the modified Debye Callaway model, the  term is given 
in the same formula as that in Callaway theory. 

2k

2 2
T Lk k k= +      (10) 

/ 2

0
3

2 /

0

( )[ ( )
( )2
( )3 ( )

( ) ( )

TT
C

T TN
T TT

C

TN TR

x J x dx
xk H T
x J x dx

x x

θ

θ

τ
τ
τ

τ τ

=
∫

∫

]
 (11) 

2

2

/ 2

0
3

2 /

0

( )[ ( )
( )2
( )3 ( )

( ) ( )

LT
C

L TL
L LT

C

TL LR

x J x dx
xk H T
x J x dx

x x

θ

θ

τ
τ
τ

τ τ

=
∫

∫

]
 (12) 

As shown in Table 3, it needs 4 parameters to determine 
thermal conductivities from formula (2). Those parameters are 

, , ,TN LN TU LUB B B B , which are used to describe the phonon 

N and U scattering process. The coefficient  is used to 
calculate the phonon isotopic scattering time scale. According 
to the Klemens model, it can be evaluated as  

iA

1 1 1 4( )i M R M R i
4A A Aδ δ δ δτ τ τ ω ω− − −= + = + =  (13) 

Where 1
Mδτ
−  is the relaxation rate of phonon scattering on 

point defects due to mass difference. 1
Rδτ
−  is the relaxation 

time due to the relative displacements of neighboring atoms.  
2

3 ( )
4M

s

nV MA
v Mδ

δ
π

=     (14) 

The volumetric concentration of the point imperfections 
and the mass and crystal volume of the host atom are n, M and 
V, respectively. The mass difference introduced by the 
imperfection compared to the host atom is Mδ . The average 

velocity of sound sv  is approximated by longitudinal and 
transverse phonon velocities at low frequency , i.e . 

1 11 ( 2
3s Lv v v− −= + 1)T

−     (15) 

The insertion of impurity atoms or point defects induces 
elastic strain in the lattice. This leads to the changes of the 
phonon velocities and/or wavevectors. The scattering rate 1

Rδτ
−  

is given by 
1 4 2 2

03

2 ( )R R R
s

nV RA A Q
v Rδ δ δ

2δτ ω γ
π

− = =  (16) 

Where γ  is the Gruneisen constant.  Typical values 

 [27] reported for K0Q + impurities in NaCl and vacancies in 
KCl are listed in Table 3. 

Table 1, Lattice parameters at different temperature 
T (K) Lattice 

constant 
(nm) 

T (K) Lattice 
constant (nm) 

300 0.5431092 900 0.5443130 
400 0.5432677 1000 0.5445423 
500 0.5434537 1100 0.5447754 
600 0.5436557 1200 0.5450121 
700 0.5438685 1300 0.5452514 
800 0.5440882   

3. Simulation results and Discussions 
Thermal expansion is considered in this paper to account 

for its effect on lattice thermal conductivities. In most previous 
MD works [21,25], the lattice constant is disposed as a fixed 
constant at different temperatures. However, in fact, thermal 
expansion results in the increase of lattice constant with the 
increase of temperature. The lattice parameter at  is 
given by 

( )a T

0 295.7
( ) ( ( ) 1)

T
a T a T dTα= +∫    (17) 

where 0a  is the lattice parameter at 295.7 K. ( )Tα  is the 
linear thermal expansion coefficients. The lattice parameters 
can be evaluated from formula (17) for different temperatures. 
Its values are listed in Table 1.  

Two lattice parameter cases are introduced in this paper. 
The first does not consider thermal expansion effects on lattice 
constant and a fixed lattice constant at temperature 295.7 K is 
used in the whole simulation temperature range 400~1600K. 
The second uses the experimentally determined temperature 
dependent lattice parameters listed in Table 1. Fig.2 gives the 
lattice thermal conductivities from the two cases. As expected, 
the value calculated from the temperature dependent lattice 
parameter case is smaller than that from the fixed parameter 
case. This proved that thermal expansion created another type 
of thermal resistance for phonon transport. In Fig.2, the fitted 
curve is calculated from the modified Debye Callaway model. 
The parameters are listed in Table 3. For pure crystal silicon, 
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the impurity scattering time 1
iτ
− in formula (6) is set as zero. It 

can be found in Fig.2 that the fitted curve agrees well with the 
simulated data from the temperature dependent lattice 
parameter case as temperature is over 800K. When the 
temperature is below 800K, the simulated data is higher than 
the fitted value from the modified Debye Callaway model. This 
is caused by the molecular dynamics itself. As temperature is 
below 800K, it takes long time for the current-current 
correlation function decay to zero, which results in the increase 
of the statistical error. Experimental data from Slack’s result 
[19] are also depicted in Fig.2 shown as solid circles. In the 
whole temperature range from 400K to 1600K, the simulated 
data is higher than the experimental data. Previous work 
[21,28] assumed that the lattice of MD is perfect. The lattice 
thermal conductivity of perfect crystal may be higher than the 
experimental data, in which samples are certainly contained 
some defects. However, a caution point should be pointed out 
that this could be also caused by the parameter of S-W 
potential. Another reason is due to the statistical error in the 
simulation process. The error bar was not depicted in Fig.2 in 
order to give clear view. Anyway, the error is about 10~15% as 
depicted in Fig.3 for the simulated data at temperature below 
800K.  
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Fig.2. Lattice thermal conductivities of pure silicon simulated 
by MD, evaluated from the modified Debye Callaway model, 
and measured experimentally [19] 

Isotopic effects on lattice thermal conductivity can be 
estimated from the modified Debye Callaway model from 
formula (2). In formula (13), the isotopic scattering rate 
coefficients due to mass difference can be calculated, which is 
about for n=0.05787% 484.259*10MAδ

−= 29Si. The 
isotopic atom radius is estimated equal to the radius of the host 
atoms. So the scattering due to the elastic strain is neglected. 

RAδ  is set as zero. When the temperature is over 400K, the 
predicted curves from the modified Debye Callaway model for 
pure Si and for isotopic contained Si are almost the same, 

which could not be discerned from Fig.3. For Pure Si, 0iA = , 
and for isotopic contained n=0.05787% 29Si, 

484.259*10iA −= . However, the two curves are collinear. So 
only one solid curve can be observed. The MD simulated 
thermal conductivities of Si with isotopic concentration of 
0.05787%, i.e. there is one atom 29Si in 6*6*6 unit cell, are also 
plotted in Fig.3. The triangle symbol in Fig.3 stands for thermal 
conductivity of pure silicon evaluated from MD. Compared 
with the thermal conductivities of isotopic contained labeled as 
circle symbol, it is difficult to discern the difference of the 
thermal conductivity value from the MD. The difference cannot 
be observed yet even increasing the isotopic concentration to 
0.2315%, in which there are four 29Si atoms in 6*6*6 unit cell. 
This agreed with the modified Debye Callaway model 
predictions shown as in Fig.3, in which the two predicted 
curves are collinear. This conclusion confirmed that at high 
temperature, isotopic or impurity scattering processes due to 
mass difference contribute little to thermal resistance.  
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Fig.3. Isotopic effects on lattice thermal conductivity for 
different temperatures 

Vacancies or voids may be produced during crystal growth 
process. In addition to the phonon being scattered due to the 
mass difference in isotope-phonon scattering process, the 
phonon may also be scattered by vacancy caused by the elastic 
strain in the neighbor of the voids. Formula (16) predicted that 
the coefficient of the vacancy-phonon scattering time due to 
elastic strain is about  for n=0.05758% 

vacant concentration. Compared with 

448.579*10RAδ
−=

484.259*10MAδ
−= , 

this value  is about four orders higher 
than the time coefficient of the isotope phonon scattering due to 
mass difference for the same 

448.579*10RAδ
−=

29Si concentrations shown in 
formula (13). So, the lattice thermal conductivity of crystal 
with void concentration will be decreased with the increase of 
vacancy concentration. Fig.4 explains the vacancy effects on 
lattice thermal conductivity very well. Compared with pure 
silicon case marked as solid square symbol, the case with one 
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vacancy in 6*6*6 unit cell gives smaller thermal conductivity. 
The error bar is also labeled in Fig.4. The maximum uncertain 
value of thermal conductivity is that for temperature at 800K. 
In order to further confirm the validity of the modified Debye 
Callaway model, a higher vacancy concentration simulation 
case is introduced. In this simulation case, two Si atoms are 
removed from 6*6*6 unit cell. The vacancy concentration is 
about 0.1157%. The simulated thermal conductivities for the 
two simulation cases are plotted in Fig.5 labeled as triangles 
and circles. The solid curves are evaluated from the modified 
Debye Callaway model. In the modified Debye Callaway 
model, all of the N and U scattering parameter are selected in 
the same value of pure silicon, which are listed in Table 3. The 
only varied parameter is the coefficient of impurity scattering 
time, which is calculated from formula (14) and (16). The 
simulated data agreed well with the results predicted from the 
modified Debye Callaway model. 

200 400 600 800 1000 1200 1400 1600 1800

20

40

60

80

100

Th
er

m
al

 c
on

du
ct

iv
ity

 (W
/K

.m
)

Temperature (K)

 1 vacancy in 6*6*6 cell
 D-C model fit
 Pure Si with 6*6*6 cell

 
Fig.4. Lattice thermal conductivity of crystal silicon with 
vacancy defect 

In conclusion, having computed the thermal conductivity 
of Si using EMD, this paper demonstrated that the trends of 
simulated results agreed well with the experimental data and 
that predicted from the modified Debye Callaway model over 
the temperature range from 400K to 1600K. For pure silicon, 
thermal expansion resulted in further decrease of the thermal 
conductivity with the increase of temperature. This proved that 
thermal expansion imposed an extra channel of thermal 
resistance on phonon transport besides the N and U scattering 
processes. Isotopic and vacancy scattering on phonons are also 
investigated in this MD. The MD predicted that the isotopic 
effects on lattice thermal conductivity can be neglected in the 
temperature range 400K to 1600K for defect concentration 
below 1%. This numerical conclusion is the same as that 
predicted from the modified Debye Callaway model. For 
vacancy defects, the mechanism of vacancy scattering on 
phonons includes two aspects, which refer to the scattering 
processes caused by mass difference and elastic strain. 
Compared with the same concentration of isotopic defects, the 
vacancy scattering on phonon is much stronger, which caused 

greater decrease of lattice thermal conductivity. 
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Fig.5. Lattice thermal conductivity of crystal silicon with 
different vacancy concentrations 
Table 2 Simulation results from different simulated cell size for 
Si at T=800K from the fixed lattice parameter case 

Atom number Simulation time（ns） 
Thermal conductivity（

W/mK） 
216 3.0 45 
512 3.0 68 

1000 3.0 62 
1728 3.0 58 

Table 3. Parameters used in this paper 
Resistive process Parameter value 

Impurity 
scattering 

1 4( )i M RA Aδ δτ ω− = +
 

36.4 10sv = ∗
 m/s 

2
3 ( )

4M
s

nV MA
v Mδ

δ
π

=  
231.9 10V −= ∗ cm3 

0.56γ =  

2 2 2
03

2 ( )R
s

nV RA Q
v Rδ

δγ
π

=  0 4,3.2Q = , 

N scattering   
1 4

TN TNB Tτ ω− = 13 1 57.1*10TN B s K− − −=  
1 2

LN LN
3B Tτ ω− =  24 1 52.4*10LNB s K− − −=  

U scattering   
/1 2 T T

TU TUB Te θτ ω −− = 19 1 31.0*10 , 240TU T B s K Kθ− − −= =  
/1 2 L T

LU LUB Te θτ ω −− =  20 1 35.50*10 , 586LU LB s K Kθ− − −= =  
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