High Rate Growth of SiO₂ by Thermal ALD Using Tris(dimethylamino)silane and Ozone

<u>Guo Liu,</u> Ritwik Bhatia, Eric W. Deguns, Mark J. Dalberth, Mark J. Sowa, Adam Bertuch, Laurent Lecordier, Ganesh Sundaram, Jill S. Becker

Cambridge NanoTech Inc.

ALD 2011

Cambridge, MA, USA June 26-29, 2011

CambridgeNanoTech

Introduction: Thermal ALD of SiO₂

Many Existing SiO₂ ALD Processes are Unsatisfactory A few examples

(1) TEOS Process, tetraethoxysilane, Si(OCH₂CH₃)₄

- Reacts with H₂O when catalyzed by NH₃ or amines, even at room temperature
- 0.07-0.08 nm/cycle at 300 K

J. D. Ferguson, a E. R. Smith, a A. W. Weimer, b and S. M. George, *J. Electrochem. S.*, **151** (8), G528-G535 (2004)

• Too slow, required large exposures (~ 10^{10} L) for surface reactions to reach completion (1 L = 10^{-6} Torr-s)

Introduction: Thermal ALD of SiO₂

(2) 3-aminopropyltriethoxysilane process, O_3 and H_2O : $H_2N(CH_2)_3Si(OCH_2CH_3)_3$

- Self-catalyzed hydrolysis due to existence of amino group
- 120-250°C, GPC=0.05~0.06nm/cycle

J. Bachmann, R. Zierold, Y. T. Chong, R. Hauert, C. Sturm, R. Schmidt-Grund, B. Rheinlnder, M. Grundmann, U. Gosele, and K. Nielsch, *Angew. Chem. Int. Ed.* **47**, 6177-6179 (2008).

- High quality SiO₂
- Slow process (requires two oxidants H₂O and O₃)
- Unreacted precursor caused frequent damages to vacuum pumps

Introduction: Thermal ALD of SiO₂

(3) TDMAS (or 3DMAS)-H₂O₂ Process:

tris(dimethylamino)silane, [(CH₃)₂N]₃SiH

First reported to be a reactive precursor with H₂O₂ oxidant
 B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, *J. Phys. Chem. C* 113, 8249-8257 (2009)

- Precursor can be used in a wide temperature range: 150-550°C
- Inability of H_2O_2 to remove all Si-H bonds at lower temperatures usable temperature $\geq 450^{\circ}C$
- Low thermal stability of H₂O₂

The TDMAS – O₃ Process

TDMAS, $[(CH_3)_2N]_3SiH$

- High vapor pressure at ambient temperature
 BP=145-148°C, 16mmHg at 4°C no heating needed
- Insoluble in H₂O
- No reaction with H_2O or O_2 up to 350°C

Three Different Reaction Modes

Cambridge NanoTech's ALD Reactors

(1) Continuous Mode

Normal pulse/purge steps for all precursors

(2) Partial Exposure Mode

- One precursor with an extra hold step (pulse/hold/purge), staying in reactor longer to increase residence time
- Different from an extended pulse time
 (3) Full Exposure Mode
- All precursors with pulse/hold/purge steps

The TDMAS – O₃ Process

 SiO_2 from [(CH₃)₂N]₃SiH and O₃ in Various ALD Modes

Continuous:

very low growth rate ~ 0.02 nm/cycle

Partial Expo:

TDMAS exposure (28 sec.) key to high growth rate

Full Expo:

 O_3 exposure (7 sec.) further increased growth rate

Growth rate much lower with H_2O_2

TDMAS Saturation and Linear Growth

- Deviation from a flat saturation curve with TDMAS dose could be due to less than full saturation from limited exposure time
- Growth is linear without nucleation delay
- Process completely repeatable

Electrical Properties by mercury probe

Leakage Current and Breakdown Strength

- Data scattered due to changing properties with time
- 80-120°C process produced SiO₂ films with lowest leakage current and highest breakdown strength; 200°C the worst

SiO₂ films absorb H₂O in air

Change in Dielectric Constant, Leakage Current and Breakdown Field with Time

- Dielectric constant of fresh 100°C SiO₂ close to ideal value of 3.9
- It increased with air exposure time until reached a saturated state

SIMS Analysis

- Very Low C impurity (highest at 0.2 at% with 100°C SiO₂)
- Low N at high temperatures (highest at 3.6 at% with 100°C SiO₂)
- High concentrations of H (highest with 200°C SiO₂)

H₂O-saturated SiO₂ films: annealing in vacuum or NH₃

- Annealing at ≥300°C led to 3-5% decrease in thickness and a slight drop in refractive index
- Refractive index partially reversible upon re-exposure to air

H₂O-saturated SiO₂ films: annealing in vacuum or NH₃

- 300°C anneal in NH₃ was more effective than vacuum anneal Dielectric constant dropped to 3.9 for NH₃-annealed 80-120°C SiO₂
- NH₃ facilitates removal of OH groups?
- Reversible dielectric constant with re-exposure to air

Summary

- TDMAS-O₃ a good ALD process for SiO₂
- Full exposure mode helps growth saturation
- 80-120°C SiO₂ films have better electrical properties
- Uncapped ALD SiO₂ absorbs H₂O in air
- Annealing of H₂O-absorbed SiO₂ films in NH₃ at 300-350°C restores electrical properties