Dicing Products
Hub Blades and Services for Advanced Material Applications
In the last two years, the implementation of new and significant quality improvement processes, combined with the addition of talented and experienced personnel in key positions within our organization, has bolstered our commitment to, both, meeting and exceeding your hub blade requirements.

Our new Dicing Products Catalog of Hub Blades and Services is just one more step in providing a complete and comprehensive solution to your dicing needs. In addition to outlining our diverse product range and extended technical capabilities, the catalog provides detailed information about a variety of blade attributes, general dicing technology, and additional resources that will assist you in selecting the right hub blade for your specific applications...much faster and much easier than ever before.

Supported by our vast network of global resources and industry-leading expertise in all phases of back end semiconductor packaging and assembly, our Hub Blade organization is structured to help you, in every way, improve yields, increase your productivity and attain higher profitability.
A Tradition In Technology

Since it's founding in 1951 by Fred Kulicke and Albert Soffa, Kulicke & Soffa has played a key role in the ever-changing technological arena. During its first few years, the company engineered large-scale machinery, but by the mid-1950s it had entered the semiconductor industry, specializing in total solutions engineering.

Today, K&S is a global leader in semiconductor packaging technology with a leading market share in IC Ball bonders and ever increasing shares in a wide range of packaging materials. Additionally, K&S has been expanding in its hub blade technology and now is an industry-leading, worldwide supplier of hub dicing wheels.

The company continues to expand its capital equipment offerings to provide further growth and to offer its customers a broader range of products with improved customer support.

The company has made a strategic decision in developing state-of-the art manufacturing facilities, providing faster delivery and focusing on continuous improvement; a philosophy that has consistently yielded better quality and greater customer satisfaction.

These factors, combined with dynamic, forward-thinking leadership, multi-talented management, and a diligent skilled workforce, has made Kulicke & Soffa a true, complete connection in the global semiconductor industry.

[Images and diagrams related to the text]
In 1996, Kulicke & Soffa acquired Semitec, a California-based supplier of a wide range of hub blades for automatic dicing saws, as part of Scott Kulicke’s plan for creating a new strategic direction for the company. By increasing the company’s ability to supply all types of semiconductor consumable products, K&S could offer more integrated, total solutions that would improve our customers’ productivity.

This acquisition, combined with the existing line of dicing systems equipment and K&S’ position as a global leader in semiconductor packaging technology, immediately established K&S as a major force in the dicing industry. Over the next five years, the dicing group continued to grow, along with the wire bonding business units.

After 2000, K&S made some early strategic plans to move its blade manufacturing facility to China, a move that would reduce manufacturing costs and increase value for existing customers throughout North America, Europe, and Asia, while bringing our dicing products closer to new and rapidly emerging markets.

Today, K&S blades have replaced the Semitec brands, but the rich blade history remains strong. Customers around the globe have seen firsthand the growth in our dicing blade manufacturing and engineering capability.
To maintain an emerging leadership position in the hub blades market segment, Kulicke & Soffa (K&S) has made significant investments into major Research and Development engineering programs. In addition to generating higher product productivity for the complete range of our blade products, these capital and personnel investments have helped our global customers to produce excellent process results using our superior cutting and longer life blades.

K&S has developed and implemented a three-part strategy in blade research. First, our R&D programs continue to improve the state-of-the-art in dicing quality and efficiency by analyzing and solving common inconsistencies our customers encounter in the dicing process and their root causes. Second is our goal to continually improve our existing product by examining new materials and manufacturing processes that will help us maintain our competitive edge. Third, we’re focused on new product development, with an expansion into key market applications. These three critical R&D areas are supported by a talented group of scientists and engineers who are completely dedicated to blade research. Our core team of experts includes renowned specialists in mechanical, materials, and chemical engineering.

In addition to our team, K&S has invested in tools, equipment, and technology and has established a major R&D center in Suzhou, PRC. Using the best metrology and analysis equipment in the industry, K&S can produce higher yields and superior products. We have capability for analysis using SEM, EDX, HPLC and micro hardness systems for superior analysis and faster development.
Global Applications / Tech Support

Backed by the resources and expertise of the world leader in semiconductor interconnection and packaging technology, the K&S hub blade group is plugged in to a vast wealth of process knowhow and a product support network with key technical centers located strategically around the world. The combined strengths of the organization allow K&S to offer a true total solutions approach to all your hub blade dicing needs.

K&S’ state-of-the-art dicing lab in Suzhou is fully outfitted to perform thorough testing and to provide blade and process parameter recommendations for the most challenging applications. SEM and EDX analysis provides insight into blade loading effects, diamond distribution and materials compatibility. We offer quarterly training and seminars on demand, and can also provide on-site application support using the latest DOE methods.
Hub Blade Selection

The five primary parameters to consider when selecting a hub blade are:

- **Blade Exposure**
- **Blade Thickness**
- **Diamond Grit Size**
- **Nickel Bond Hardness**
- **Diamond Concentration**

On the next few pages, we've provided some general guidelines for determining these parameters, based on your particular application, and then selecting the hub blades that match those specifications.

Blade Exposure

Selecting the proper blade exposure (see figure above right) is a function of the total cut depth. In most applications, the total cut depth refers to the sum of the wafer thickness and the depth of the cut into the tape, although in some cases a user may not wish to cut completely through the wafer material. Proper exposure extends blade life and aids cut quality and kerf width. Excessive exposure contributes to blade wobble, resulting in wider kerf, increased blade wear and reduced cut quality. The chart at right provides some general blade exposure recommendations based on the thickness of the material to be cut.

Blade Thickness

Blade thickness should be based on the street width and the required Defect Free Zone (see figure below). The Defect Free Zone (DFZ) is the distance from the edge of the street toward the kerf, within which chipping, cracking or other defects are not acceptable. The proper blade thickness is essential in providing the desired kerf width and to ensure that the desired DFZ is maintained. The chart at right provides some general blade thickness recommendations based on the thickness of the wafer to be cut.

Blade Exposure Recommendations

<table>
<thead>
<tr>
<th>WAFER THICKNESS</th>
<th>BLADE EXPOSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>microns</td>
<td>mils</td>
</tr>
<tr>
<td>254 - 330</td>
<td>10 - 13</td>
</tr>
<tr>
<td>330 - 432</td>
<td>13 - 17</td>
</tr>
<tr>
<td>432 - 533</td>
<td>17 - 21</td>
</tr>
<tr>
<td>533 - 635</td>
<td>21 - 25</td>
</tr>
<tr>
<td>635 - 762</td>
<td>25 - 30</td>
</tr>
</tbody>
</table>

Based on 10 mils (254 microns) of wear

Blade Thickness Recommendations

<table>
<thead>
<tr>
<th>STREET WIDTH</th>
<th>BLADE THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>microns</td>
<td>mils</td>
</tr>
<tr>
<td>50</td>
<td>2.0</td>
</tr>
<tr>
<td>50 - 64</td>
<td>2.0 - 2.5</td>
</tr>
<tr>
<td>64-76</td>
<td>2.5 - 3.0</td>
</tr>
<tr>
<td>76-89</td>
<td>3.0 - 3.5</td>
</tr>
<tr>
<td>89-102</td>
<td>3.5 - 4.0</td>
</tr>
<tr>
<td>102-127</td>
<td>4.0 - 5.0</td>
</tr>
<tr>
<td>127-152</td>
<td>5.0 - 6.0</td>
</tr>
</tbody>
</table>
Hub Blade Selection

Diamond Grit Size

Selection of the proper diamond grit size is also critical to cut quality, feed rate, RPM and wheel life. In general, blades with small diamond grit provide smoother cuts. Smaller diamonds are also released from the bond more readily, exposing new sharp diamonds and helping to maintain exceptional cut quality. The blade's capacity for releasing diamond grit, however, is also a function of the bond hardness and therefore cannot be evaluated alone. When a smaller grit size is used, the diamond particles are normally less spread apart, making the blade more susceptible to loading. This characteristic is also a function of the diamond concentration. In addition, small diamond particles remove less material, and may necessitate a higher spindle RPM and slower feed rates. Larger diamonds, by comparison, are released less readily and provide longer blade life, but overall tend to provide rougher cuts with a greater propensity for chipping. When used in the proper application however, they remove more material, handle higher feed rates, and resist wheel loading. Blades with larger diamond grit also tend to be more rigid than blades with smaller diamonds and are more resistant to wobble and vibration.

Bond Hardness

Bond hardness is directly related to a blade’s ability to release diamond grit, exposing new diamonds for the maintenance of cut quality. The softer the bond, the more readily this occurs, albeit at the expense of wheel life. Wheel life can be extended, however, by reducing feed rate and overall friction. Wheels with softer bonds also display superior resistance to loading. Wheels with harder bonds are more resistant to wear as particles are retained longer, however, these wheels are less resistant to loading and are more likely to cause back-side chipping as sharp diamond grit is less frequently exposed.

Diamond Concentration

Diamond concentration affects cut quality, feed rate and wheel life, similar to grit size and bond hardness. As mentioned above, none of these factors can be determined without giving consideration to the others, however, diamond concentration is most critical when wheel loading is of major concern and quality concerns prevent the use of a larger diamond grit size. Low diamond concentrations resist wheel loading since the diamond particles are spaced farther apart, resulting in improved cut quality in the most critical applications. The disadvantage of a low diamond concentration is that each diamond must remove more material, reducing wheel life and demanding slower feed rates.

For additional information concerning your dicing application and hub blade selection, please contact your local K&S dicing representative or visit: www.knsbladeapro.com
Hub Blade Applications Guide

<table>
<thead>
<tr>
<th>Materials</th>
<th>Applications</th>
<th>Blade Series</th>
<th>Grit Size (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Si</td>
<td>Cu</td>
</tr>
<tr>
<td>Alumina</td>
<td>CBGA, Ceramic Pkg</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>BGA</td>
<td>Mold Compound</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Bi₁₂SiO₂₀</td>
<td>Thin Films</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Bi₂TeO₅</td>
<td>Thin Films</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper Metallized Wafers</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>CVD</td>
<td>Low-k, Multi-Layer</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Epoxy</td>
<td>Molding Compounds</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Ferrite</td>
<td>Tape Heads</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>FR4</td>
<td>PCB, CSP, PBGA</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Glass</td>
<td>Ink Jet Print Heads</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Kovar</td>
<td>Hermetically-Sealed IC, Discrete</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>LiNbO₃</td>
<td>SAW Devices</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>LiTa</td>
<td>SAW Devices</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>PZT</td>
<td>Sensors</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Quartz</td>
<td>SAW Devices</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Si</td>
<td>Discrete, IC, Memory</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Si (Passivated)</td>
<td>Sensors, Photocells</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>SiC</td>
<td>LED, Discrete, Opto</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>SiGe</td>
<td>LED, Discrete, Opto</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>SOG</td>
<td>Spin On Glass</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Spin On</td>
<td>Low-k, Multi-Layer</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>TiC</td>
<td>Magnetic Heads</td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

Note:
The chart above is intended as a general reference guide to the hub blade series and grit size recommended for specific materials and applications. For additional assistance in selecting the proper hub blade for your application, please refer to the selection instructions on the previous page or consult your local sales representative. Blade recommendations and samples can also be requested by visiting: www.knsbladeopro.com
A full range of grit sizes, diamond concentrations, bond hardesses, and hub configurations are optimized to deliver maximum cut quality, throughput and blade life.

For Today’s Most Advanced Silicon Dicing Applications

Increased circuit densities, reduced street widths, thinner wafers and the demand for higher throughput, are just a few of the factors that have led IC manufacturers on a quest for improved performance and cut quality when dicing silicon wafers. K&S’ proprietary blade manufacturing processes, which allow precise control of diamond grit size, diamond concentration, and nickel bond hardness, are used to optimize these variables and produce hub blades that offer unparalleled cut quality, blade life and throughput.

A Wide Range of Grit Sizes

Small diamond grit is more readily released from the nickel binder, exposing new diamonds to maintain blade sharpness and minimize chipping. Larger diamonds, on the other hand, provide longer life, are more resistant to loading, and allow higher feed rates. Optimum performance is therefore obtained by selecting a grit that best meets your specific criteria for quality versus throughput. K&S’ hub blades for silicon wafer dicing are available in a variety of grit sizes, ranging from 2 µm-4 µm to 4 µm-8 µm. Our improved diamond dispersion technology also ensures more uniform distribution of grit grains through the binder material.

Variable Bond Hardness

Soft nickel binder releases diamond grit easily, exposing new sharp diamonds to help maintain cut quality. Softer bonds are also less prone to loading, while harder nickel bonds provide greater resistance to wear. In order to obtain the optimum balance between cut quality and blade life, K&S offers three different grades of bond hardness for silicon wafer dicing applications.

Choose From 3 Different Diamond Concentrations

Diamond concentration is critical when loading is a concern and larger grits are not suitable. Lower concentrations provide greater resistance to wheel loading, while higher concentrations increase blade life and allow higher feed rates. K&S hub blades for silicon wafer dicing are available in three different diamond concentrations to maintain the desired equilibrium between loading, blade life and throughput.

AccuKerf™ Blades

Our AccuKerf™ series of hub blades provide superior kerf control and durability when dicing thick wafers with very narrow streets. Directly replaceable with comparable hub blades from the K&S catalog, AccuKerf blades allow maximization of feed rates and increased productivity.
Blade Dimensions

<table>
<thead>
<tr>
<th>THICKNESS</th>
<th>EXPOSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>mils</td>
</tr>
<tr>
<td>microns</td>
<td></td>
</tr>
<tr>
<td>15-20</td>
<td>0615</td>
</tr>
<tr>
<td>20-25</td>
<td>0620</td>
</tr>
<tr>
<td>25-30</td>
<td></td>
</tr>
<tr>
<td>30-35</td>
<td></td>
</tr>
<tr>
<td>35-40</td>
<td></td>
</tr>
<tr>
<td>40-45</td>
<td></td>
</tr>
<tr>
<td>45-50</td>
<td></td>
</tr>
<tr>
<td>50-55</td>
<td></td>
</tr>
<tr>
<td>60-65</td>
<td></td>
</tr>
<tr>
<td>0.6-0.8</td>
<td>0815</td>
</tr>
<tr>
<td>0.8-1.0</td>
<td>1015</td>
</tr>
<tr>
<td>1.0-1.2</td>
<td>1215</td>
</tr>
<tr>
<td>1.2-1.4</td>
<td>1415</td>
</tr>
<tr>
<td>1.4-1.6</td>
<td>1615</td>
</tr>
<tr>
<td>1.6-2.0</td>
<td>2015</td>
</tr>
<tr>
<td>2.0-2.5</td>
<td>2515</td>
</tr>
<tr>
<td>2.5-3.0</td>
<td>3015</td>
</tr>
<tr>
<td>3.0-3.5</td>
<td>3515</td>
</tr>
<tr>
<td>3.5-4.0</td>
<td>4015</td>
</tr>
<tr>
<td>4.0-4.5</td>
<td>4515</td>
</tr>
<tr>
<td>4.5-5.0</td>
<td>5015</td>
</tr>
<tr>
<td>5.0-5.5</td>
<td>5515</td>
</tr>
</tbody>
</table>

Part Number Configuration

Example: J1030-Q500-000

This is the part number for a 1.0 mil thick x 30 mil exposure blade with 2-6 µm (J) grit, standard bond hardness (Q), standard diamond concentration (5), an AccuCut hub (00), and no customization (000).

Grit Size

K&S hub blades for silicon dicing applications are available with diamond grit sizes in the following ranges:

- G*, F: 2-4 µm
- J*, K: 2-6 µm
- Q*, S: 4-6 µm
- U: 4-8 µm

* G, J, and Q ranges designate the use of our improved diamond dispersion technology in the manufacturing process.

Bond Hardness

Hub blades for silicon dicing applications are available in the following bond hardness:

- E: Soft
- Q: Standard
- V: Hard

Blades for silicon dicing are offered in thicknesses and exposures to suit a wide range of street widths and required cut depths. The first two digits of each four-digit dimension code represent the maximum blade thickness in tenths of mils. The last two digits represent the minimum blade exposure in mils. Therefore, in the example above, the blade dimension code “1030” designates a blade with a maximum thickness of 1.0 mil (0.8 mil minimum) and a minimum exposure of 30 mils (35 mil maximum).

Hub Configuration

Blades for silicon dicing are available with standard or AccuCut hubs (both with or without the AccuKerf feature) and are designated as follows:

- 00: AccuCut
- H0: AccuCut w/ AccuKerf
- SH: Standard Hub
- HH: Standard Hub w/ AccuKerf

Grit Concentration

K&S offers hub blades for silicon dicing in the following diamond concentrations:

- 2: Super Low
- 3: Low
- 5: Standard
Hub Blades for Copper Wafer Dicing

Specially-formulated to resist loading when cutting copper-metallized wafers, the new CU Series hub blades reduce top and back side chipping.

A Proven, Tested Solution for Copper Wafer Dicing

Advantages such as superior electromigration properties and the potential for significantly lower fabrication costs have led many IC manufacturers to utilize copper metallization in semiconductor micro-circuitry, despite the numerous challenges posed by this new technology. One such challenge posed to back-end assemblers is that, when dicing copper-metallized wafers, the increased chemical affinity between copper metallization and the nickel-based blade binder material can cause excessive blade loading. Traditional blade formulas and process parameters must therefore be modified to prevent blade loading which, in turn, will reduce the potential for top and back side wafer chipping. K&S has responded to this challenge with the new CU Series of hub blades, specially-formulated and optimized for superior accuracy, throughput and blade life when dicing copper-metallized wafers.

CU Series Blade Formula Prevents Excessive Loading

When loading occurs, the blade's ability to release grit and to expose new diamond particles is dramatically reduced. Blade loading also causes an undo amount of friction in the kerf area, between the blade and the workpiece, which is usually a leading cause of both top and back side chipping. The new CU Series blades utilize a special binder formula, diamond grit concentration, and range of grit sizes that have been specially optimized to prevent this phenomenon.

K&S Blades and Technology Provide a Total Solution

With an understanding that total solutions involve the proper combination of tools, equipment and technology, K&S has done extensive research to help quantify process parameters that, combined with the proper blade formulation, result in successful dicing of copper-metallized wafers. When used at the recommended spindle speed and feed rate, with the proper dicing equipment, CU Series blades provide results that can meet all criteria for cut quality, throughput and blade life.

- Available in 0.6 mil to 5.0 mil Thicknesses
- Exposures of 15 mil to 60 mil
- 2-6 µm to 4-8 µm Diamond Grit
- Specially-Formulated ‘CU’ Series Bond Hardness and Grit Concentration
- Available in AccuCut or Standard Hub, Both with AccuKerf Feature
Blade Dimensions

Example: Q1230-CU00-000

This is the part number for a 1.2 mil thick x 30 mil exposure blade with 4-6 µm (Q) grit, the special bond hardness and grit concentration for copper wafers (CU), an AccuCut hub (00), and no customization (000).

Grit Size

K&S hub blades for copper wafer dicing applications are available with diamond grit sizes in the following ranges:

- J*: 2-6 µm
- Q*, S: 4-6 µm
- U: 4-8 µm

* J and Q ranges designate the use of our improved diamond dispersion technology in the manufacturing process.

Bond Hardness & Grit Concentration

Hub blades for copper wafer dicing applications are available only with a specially-formulated bond hardness and diamond grit concentration that is designated as ‘CU’. This unique formula prevents blade loading problems associated with dicing through copper metallization and reduces top and back side wafer chipping.

Hub Configuration

Blades for copper wafer dicing are available with standard or AccuCut hubs (both with or without the AccuKerf feature) and are designated as follows:

- 00: AccuCut
- H0: AccuCut w/ AccuKerf
- SH: Standard Hub
- HH: Standard Hub w/ AccuKerf

Part Number Configuration

These final three digits are used to designate a code that identifies a customized blade configuration or formulation for a special requirement.

Blade Dimensions

Hub blades for copper wafer dicing are offered in thicknesses and exposures to suit a wide range of street widths and required cut depths. The first two digits of each four-digit dimension code represent the maximum blade thickness in tenths of mils. The last two digits represent the minimum blade exposure in mils. Therefore, in the example above, the blade dimension code “1230” designates a blade with a maximum thickness of 1.2 mil (1.0 mil minimum) and a minimum exposure of 30 mils (35 mil maximum).
Hub Blades for

Dicing Low-k Type Wafers

Nova Hub Blades are an immediate solution to the challenges posed by the dicing of low-k type materials by reducing chipping and delamination.

Developed Specifically for Low-k Wafer Dicing

As product features continue to shrink in size, the need to maintain IC performance is driving a transition to low dielectric constant (k) materials in wafer fabrication. While offering fast electrical signal speed and low power consumption, low-k dielectric materials have a tendency to peel and chip during the dicing process, resulting in product loss. K&S’ Nova Series hub blades enables the dicing of various low-k wafers with high yield and good productivity, using current dicing equipment and practices. Without requirements for new technologies, the Nova Series hub blades offer a quick, low-cost turnaround for IC manufacturers when transitioning to low-k wafer dicing, without the expense of purchasing laser dicers.

K&S Nova Hub Blades Increase Yield and Throughput in Low-k Wafer Dicing

By incorporating specific formulations of diamond concentration and nickel bond, the Nova Series hub blades address specific needs of low-k wafers to minimize chipping and delamination during the dicing process. High yields are achieved even when advancing wafers at industry standard feed rates. By using the Nova Series hub blades during low-k wafer dicing, yield is maintained without compensating productivity.

Different Formulations Address Various Low-k Wafer Requirements

As some low-k wafers are more sensitive and difficult to dice than others, K&S offers different formulations of Nova Series hub blades, using standard thicknesses and exposures to meet specific requirements. K&S will assist you in selecting the proper dicing process parameters and Nova hub blade to optimize the results of your application.

- Improve Low-k Wafer Dicing Yields
- Immediate Solution Using Current Dicing Practices
- Wide Process Window (Feed Rate & RPM)
- Choice of 3 Standard Bond/Grit Matrices
- Diamond Grit from 2.0-6.0 µm
- Available in 0.8 mil to 2.0 mil Thicknesses

Low-k layer delamination resulting from the use of a standard blade.

Minimal delamination of low-k layers through the use of the NOVA blade.
Blade Dimensions

<table>
<thead>
<tr>
<th>THICKNESS</th>
<th>EXPOSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>mils</td>
</tr>
<tr>
<td>15-20</td>
<td>0615-0620</td>
</tr>
<tr>
<td>21-25</td>
<td>0815-0820</td>
</tr>
<tr>
<td>26-30</td>
<td>1015-1020</td>
</tr>
<tr>
<td>31-36</td>
<td>1215-1220</td>
</tr>
<tr>
<td>37-41</td>
<td>1415-1420</td>
</tr>
<tr>
<td>42-51</td>
<td>1615-1620</td>
</tr>
</tbody>
</table>

Part Number Configuration

Example: S1435-K200-000

This is the part number for a 1.4 mil thick x 35 mil exposure blade with 4-6 µm (S) grit, the softer bond hardness and grit concentration for low-k wafers (K2), an AccuCut hub (00), and no customization (000).

Grit Size

K&S hub blades for low-k wafer dicing applications are available with diamond grit sizes in the following ranges:

- J* 2-6 µm
- Q*, S 4-6 µm

* J and Q ranges designate the use of our improved diamond dispersion technology in the manufacturing process.

Bond Hardness & Grit Concentration

Selection of a specific combination (matrix) of a particular bond hardness and grit concentration for low-k wafer dicing is a function of the low-k value, wafer structure (number of low-k layers), and the type of low-k material. K&S offers three standard combinations. These are:

- K3 Soft Matrix
- K2 Softer Matrix
- K1 Softest Matrix

K&S will assist you in selecting the correct matrix for your specific application.

Blade Dimensions

Hub blades for low-k wafer dicing are offered in thicknesses and exposures to suit a range of narrow street widths and required cut depths. The first two digits of each four-digit dimension code represent the maximum blade thickness in tenths of mils. The last two digits represent the minimum blade exposure in mils. Therefore, in the example above, the blade dimension code “1435” designates a blade with a maximum thickness of 1.4 mil (1.2 mil minimum) and a minimum exposure of 35 mils (40 mil maximum).

Hub Configuration

Blades for low-k wafer dicing are available only in the AccuCut hub configuration, designated by the “00” code.

These final three digits are used to designate a code that identifies a customized blade configuration or formulation for a special requirement.
New Hub Blades for Package Singulation

UniPlus™ Hub Blades enable step function improvement on package singulation quality, precision and productivity by providing significantly longer blade life and improved stability, customized to fit and achieve your process and project requirements.

Formulated for Plastic, Ceramic and Composite Package Materials

The rapidly growing market of assembly packages that includes plastic, ceramic BGA, CSP and QFN has induced a major quality challenge to the traditional singulation process. A superior cut quality is needed to accommodate perfect package finishing in tight tolerance applications. In order to meet this challenge and ensure a prolonged dicing blade life, K&S has introduced a new series of unique 2- inch hub-type blades. This new blade is specifically designed to provide superior dicing performance, maximizing productivity and blade life that altogether delivers significant overall cost of ownership savings.

K&S UniPlus™ Blades Tailor Made for BGA, CSP, Ceramic and QFN Packages

The new UniPlus™ blades utilize the unique hub type design, a special nickel bond and a customized blade dimension to allow optimal performance of singulation. UniPlus™ blades are capable of reaching longer blade life, up to 6X traditional resin bonded blade and up to 2X of metal sintered bonded blade, all this with minimal kerf change and better control of Tip Deformation Height. Moreover, UniPlus™ blades reduce machine downtime by reducing blade changeover time, enable working at a higher feeding speed which eventually contributes to higher productivity and overall cost reduction.

Unique Hub Type Design Allow Flexibility and Handling Ease

Just like the Enduro™ series, UniPlus™ blades provide a “plug and play” solution. UniPlus™ blades enable easy machine conversion between package singulation and silicon wafer dicing process for better machine productivity and utilization.

Shorten New Product Development or Evaluation Cycle

The tailor made concept of the UniPlus™ series is also embedded into our evaluation and service processes, as K&S will provide free DOE support using our application lab as well as an onsite technical support. These lean technical processes will reduce the sample pick and evaluation cycle time leading to a significant savings of customers materials and resources.

Highlight Features:
- Up to 6X longer blade life
- Hub configuration for easy handling and short setup time
- Tailor made for specific application needs
- 50μm, 30μm, 17μm diamond grit available for BGA, Ceramic and QFN Packages
- Available with slits for better heat dissipation
Blade Dimensions

Thickness

<table>
<thead>
<tr>
<th>mm</th>
<th>1.016</th>
<th>1.143</th>
<th>1.270</th>
<th>1.397</th>
<th>1.652</th>
<th>1.661</th>
<th>1.778</th>
<th>1.805</th>
<th>2.032</th>
<th>2.159</th>
<th>2.286</th>
<th>2.413</th>
<th>2.540</th>
<th>2.667</th>
<th>2.794</th>
<th>2.921</th>
<th>3.048</th>
<th>3.175</th>
<th>3.302</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>0.039</td>
<td>0.041</td>
<td>0.055</td>
</tr>
<tr>
<td>max</td>
<td>0.124</td>
<td>0.126</td>
<td>0.139</td>
</tr>
</tbody>
</table>

Expose

| Style | Thickness (mil) | 40-45 | 45-50 | 50-55 | 55-60 | 60-65 | 65-70 | 70-75 | 75-80 | 80-85 | 85-90 | 90-95 | 95-100 | 100-105 | 105-110 | 110-115 | 115-120 | 120-125 | 125-130 | 130-135 |
|-------|----------------|
| A | 0.000-0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| A & B | 0.010-0.015 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 |
| A, B & C | 0.020-0.025 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 |

Part Number Configuration

Example: C0760-PS00-000

This is the part number for a 7.0mil thick x 60mil exposure blade with 50µm (C) grid, special diamond and bond control (PS), no other customization (00), and 32 slits.

Grit size

K&S hub blades for package singulation are available with diamond grit optimized for either PBGA or ceramic package singulation. These are:

- **C** 50 µm
- **B** 30 µm
- **A** 17 µm

* 2.0-3.0 mil thickness blades are available with size A grit only.

** 3.0-4.0 mil thickness blades are available with size A&B grit.

Bond Hardness & Grit Concentration

Note: UniPlus blades will special design/tailor made a bond hardness and grit concentration according to customer's application.

Hub Configuration

Note: All UniPlus blades are supplied with an AccuCut hub.

UniPlus Series

For sales, service and manufacturing locations, please visit www.kns.com

© 2008 Kulicke & Soffa Industrial Inc. Specifications might change without notice. The Kulicke & Soffa logo and Kulicke & Soffa are trademarks of Kulicke & Soffa Investments, Inc.

Literature ID #: HB-004-2008
In a variety of tailor-made tip angles and tolerances, K&S Bevel Blades offer important benefits for both optoelectronic and advanced microprocessor dicing applications.

Bevel Blades for Optoelectronic Dicing Applications

Many of today’s brightest LEDs are produced from wafers, using chips with edges that are diced at angles of 30° to 45° from the vertical. This shape, which aids in the light-emitting brilliance of the diode, is critical and must be held to a tight tolerance, usually within a few degrees. For this type of application, K&S can supply any of our standard silicon blades, Nova series, and CU blades with the angles needed for your application.

Step Cut Operations Using Bevel Blades Provide Excellent Cut Quality for Microprocessor Dicing

Many manufacturers of wafers for high-end microprocessors and other devices with high-density, heavily patterned streets use a beveled blade for the first cut through layers of heavy metallization or polyimide passivation. A second cut with a conventional blade through the V-groove that was formed, can often help to eliminate chipping and metal smearing.
AccuCut & AccuKerf Options

Superior Kerf Control and Blade Durability

As semiconductor manufacturers continue to produce larger, thicker wafers with narrower streets, applications for dicing blades with a higher length to thickness ratio (L/T Ratio) have become more and more prevalent. The AccuKerf™ feature provides increased blade stability and superior kerf width control for thick wafer/narrow street dicing and is compatible with blades of all grit sizes, bond hardnesses, and diamond concentrations. The AccuKerf feature is especially important for providing increased strength in those blades that are approaching the critical L/T Ratio of 30.

With AccuKerf, longer thinner blades deliver better cut consistency and reduced Wmax, and are less susceptible to wobble and process variations.

All K&S Hub Blades are available with the AccuCut Hub. When selecting blades with AccuCut Hubs, the following designations should be used in the Hub Configuration portion of the part number:

- 00 AccuCut Hub
- H0 AccuCut Hub w/AccuKerf

AccuKerf for Thick Wafer/Narrow Street Dicing Applications

<table>
<thead>
<tr>
<th>THICKNESS</th>
<th>EXPOSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>T/T (microns)</td>
<td>mm/mils</td>
</tr>
<tr>
<td>15-20</td>
<td>0.015-0.020</td>
</tr>
<tr>
<td>20-25</td>
<td>0.025-0.030</td>
</tr>
<tr>
<td>25-30</td>
<td>0.030-0.035</td>
</tr>
<tr>
<td>30-35</td>
<td>0.035-0.040</td>
</tr>
<tr>
<td>35-40</td>
<td>0.040-0.045</td>
</tr>
<tr>
<td>40-45</td>
<td>0.045-0.050</td>
</tr>
<tr>
<td>45-50</td>
<td>0.050-0.055</td>
</tr>
<tr>
<td>50-55</td>
<td>0.055-0.060</td>
</tr>
</tbody>
</table>

Improved L/T Ratios

Increased Cut Consistency

Reduce Wmax

Higher Feed Rates

Reduce Blade Breakage

All K&S Hub Blades for thick wafer/narrow street dicing applications are available with the AccuKerf feature. When selecting AccuKerf blades, the following codes should be used in the Hub Configuration portion of the P/N:

- HH Standard Hub w/AccuKerf
- H0 AccuCut Hub w/AccuKerf
Handling Guidelines

IMPORTANT!
Proper blade handling is extremely critical through all phases of shipping, unpacking, and installation. Failure to follow the correct procedures can cause irreparable damage that, while invisible to the naked eye, may affect cut quality.

General Rules for Manual Handling

- We strongly recommend the use of the Blade Handling Tool to prevent damage during handling. If you do not have the tool, please follow the general guidelines below when handling the blades manually.

- When picking up or removing a blade from its clam shell, grasp the blade by the dovetail portion of the hub using the fingertips only. Never, in any case, touch the exposed portion (outlined in red) of the blade.

CORRECT

INCORRECT

Dovetail

Exposed Blade Edge

- Keep fingernails short and wear latex finger covers when handling blades.

- Avoid accidental contact with any objects.

- Dropping the clam shell can damage the blade, even if the clam shell is closed. Do not use the blade if the clam shell has been dropped or subjected to any striking force.

- Please keep blades in their plastic cases or "clam shells" until ready to use. Also, when performing initial quality inspection, please keep the blade in the clam shell after the cover is opened.

Manual Blade Mounting

1. Carefully unwrap the box and remove a clam shell.

2. Hold the bottom of the clam shell horizontally in your palm, with the logo facing up, and open the clam shell lid.

3. Keeping the clam shell horizontal, grasp the dovetail portion of the hub and carefully lift the blade vertically from the clam shell.

4. Holding the blade tightly, but with the wrist relaxed, carefully mount the blade on the spindle without contacting any portion of the dicing machine.

5. Lock the blade with the wheel nut and torque to proper settings provided by your dicer manufacturer.

Manual Blade Removal

IMPORTANT! Proper removal of the blade is also very critical if the blade is intended to be reused. Please follow the instructions carefully. Do not force the blade when attempting removal.

- If necessary, use hot water to loosen the blade.

- If you intend to re-use the blade, follow the same general guidelines for handling the blade during mounting and carefully place the blade back into the clam shell with the face of the blade parallel to the bottom of the case. Do not allow the edge of the blade to contact the case at an angle.
Tool Mounting

1. Holding the open clamshell horizontally in your palm, pull back on the spring mounted sleeve to open the jaw grippers.

2. Insert the open grippers around the dovetail section of the blade and release the spring sleeve to firmly grab the blade.

3. Carefully mount the blade over the spindle wheel mount and check if blade is firmly seated against the wheel mount shoulder.

4. To release the blade from the mounting tool, pull the spring-loaded sleeve towards you to open the jaw grippers.

5. Check the blade again by pressing your fingers around the blade hub to make sure the blade is firmly seated against the back shoulder of the wheel mount.

6. Proceed to lock the blade with the wheel nut and torque to the proper settings provided by your dicer equipment manufacturer.

Hub Blade Handling Tool

Part Number: A11380-0000-000

Dressing Board

Part Number: DRESSB-0000-000
Web-Based Hub Blade Selector

Your window to the hub blade world

For additional assistance in selecting the proper hub blade for your application, please be sure to visit:

www.knsbladeapro.com

Search by Specifications
BladePro allows you to find a suitable blade based on the specifications that you enter.

Search by Dicing Problem
BladePro allows you to identify a blade that will solve a variety of common dicing problems. It also allows you to identify new blades by their old Semitec part numbers.

Search by Wafer & Process Parameters
BladePro allows you to search for blades based on the specifications of your wafer and the process parameters that you presently use when dicing.

Still Not Sure?
Request Samples
BladePro is the fastest and most direct way to submit requests for sample blades that you can use for testing in your facility, under your processing conditions.
K&S Hub Blade Standard Dimensions & Tolerances