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1 Introduction

Our paper builds upon results from Feldman et. al.’s paper, Consensus via non-Bayesian Asyn-
chronous Learning in Social Networks, which determines certain classes of social network graphs
which convergence to a consensus under an asynchronous updating model. This paper contributes
to the question of social network convergence in two ways. In part 1, we establish that the decoupled
analysis approach performed in [1] is insufficient to derive a result that holds for all λ-expanders.
In part 2, we prove that all d-regular λ-expanders converge to consensus with high probability, even
if d is on the scale of n.

2 Model and Definitions

We start with a graph G(V,E), with |V | = n, and some ”ground truth” for the entire graph, say red.
Initialize the graph as follows: give each vertex a private signal X(v) ∈ {red, blue} randomly, with
bias toward the ground truth. That is, with probability 1

2 + δ, X(v) = red, and with probability
1
2 − δ, X(v) = blue. Note that the value of X(v) is known only to v.

Let Ct(v) be the public color of vertex v (all vertices can observe Ct(v)), where Ct(v) ∈
{red, blue, uncolored}. At the start, C0(v) = uncolored ∀v. Let N t

B(v) be the number of blue
neighbors vertex v has at time t, and let N t

R(v) be the number of red neighbors vertex v has at
time t. At each time t, pick a vertex v uniformly at random, and update Ct(v) in the following way:
if N t

R(v) > N t
B(v), then Ct(v) = red. If N t

R(v) < N t
B(v), then Ct(v) = blue. If N t

R(v) = N t
B(v),

then Ct(v) = X(v). Stop when Ct(v) = Ck(v), ∀v, ∀k ≥ t + 1 (i.e. no vertex will ever change
their color).

Definition 1: Weighted Adjacency Matrix. Let d(v) be the degree of vertex v. For a graph
G, the weighted adjacency matrix M(G) is an n× n matrix defined by

M(i, j) =


1√

d(i)d(j)
if i and j are adjacent in G

0 otherwise

Definition 2: λ-expander. A graph G is a λ-expander if all but the first eigenvalues of M(G)
lie in [−λ, λ].
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3 Related Work

Feldman et. al’s main result shows that with probability at least 1 − O( 1
(δ ln lnn)2

), applying the

above process to max-degree d λ-expanders with λ ≤ δ
6 will result in a red (correct) consensus.

Feldman’s is composed of two steps: they first show that max-degree d λ-expanders will reach a
red supermajority (in terms of volume) with high probability. In the second step, they show that if
a max-degree d λ-expander contains a red supermajority, it will converge to a red consensus with
high probability. In the second step, the authors are able to derive a result without making any
assumptions about the possible types of graphs that could be formed from step 1 1.
They conjecture that assumptions on the sparsity of the graph are not necessary to show that
expansive graphs with a supermajority of either color will converge to a consensus of that color
with high probability.

4 Our Results

In Section 5 we show that is not possible to derive a similar result for general λ-expanders with no
assumption on the maximum degree, using the same analysis structure as [1]. Our counterexample
consists of a λ-expander graph that has a blue supermajority but converges to a red consensus
with at least constant probability. The specific graph arrangement of our counterexample occurs
with low probability in the construction of the graph, so this proof does not necessarily imply that
λ-expanders initialized via Feldman et. al’s algorithm converge against their supermajority with
constant probability. However, it does demonstrate that such a proof would only be possible if it
also reasoned about the types of graphs that could be reasonably constructed. We hope that this
guide future researchers towards a correct proof. Section 6 introduces a new class of graphs that
converge to a consensus of their supermajority color with high probability: d-regular λ-expanders,
with no assumptions on d.

5 Counter-Convergence

We construct an example that is a λ-expander for λ ≤ δ
6 with a blue supermajority, and show

that with at least constant probability, this example converges to a red consensus. One of the
open questions in Feldman et. al is whether all λ-expander graphs for appropriate λ converge
with high probability given a supermajority of that color. Our counterexample proves that this
is not true for all λ-expanders. It certainly may still be true that λ-expander graphs initialized
according to the asynchronous algorithm stated in section 2 do converge to a correct consensus with
high probability, as our counterexample would be constructed in this process with low probability.
However, this counterexample demonstrates that any proof about general λ-expansive graphs must
include reasoning about how the algorithm could have colored the graph.

1Feldman et. al posits that the second step of their proof relies only on the expansiveness of the graph, not the
sparseness. However, in speaking to one of the paper’s authors and analyzing the probability bounds provided, we
are confident that the second step of their proof does in fact need the max degree to be d.
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Figure 1

5.1 Counterexample Construction

Let G′ be a (d − 1)-regular random λ-expander for λ ≤ δ
6 . Construct G by adding a node v to

G′ that is connected to all other nodes. Assume that all nodes in G have declared a color, that
V ol(B) = V ol(R) + δ

2V ol(G), and that v has declared blue. G therefore has a blue super-majority.
Our main result is as follows:

Counter-Convergence Theorem: With at least constant probability, G will converge to a red consen-
sus.
At a high level, the proof consists in first showing that if a majority of nodes are red when v is
selected, then the graph will converge to a red consensus with high probability, then showing that
with at least constant probability, a majority of nodes will be red when v is selected.

5.2 λ-expansiveness of counterexample graph

Conjecture: If G′ is a λ-expander, then G is a λ-expander (demonstrated empirically)
The d-regular graph is a λ-expander for a small λ. Thus in order to prove that G is also a λ-
expander for small λ, it would be sufficient to demonstrate that G is always more expansive than
G′. We show this empirically in Figure 1.

From these graphs we can observe a relationship between the expansiveness of G′, λG′ , and the
expansiveness of G, λG. As n increases and d is held constant, at least for d = o(n), the relationship
between λG′ and λG seems to remain fairly consistent, with G < λG′ . As d increases and n is held
constant, λG approaches λG′ and seems to always be less than or equal to it.
In order to draw a conclusion from these figures, we must assume that the patterns of the relation-
ship between the graphs are consistent. If this is true, then our G is at least as expansive as G′ for
any d, n. To prove this, let’s assume that we have some d, n for which we want to reason about
the expansiveness of G. Now we can choose some d′, n′ that we have empirically demonstrates has
λG
λG′
≤ 1. If d′ < d, then we can hold n constant and decrease d′ to d. We conjecture based upon

our empirical data that this will only make λG smaller relative to λG′ . If d′ > d, we can hold n′

constant and increase d′ to d. We conjecture that λG
λG′

value will approach, but not surpass, 1. Now

holding d constant we can increase or decrease n′ to n. We conjecture that this change to n will
not impact λG

λG′
in any significant manner. Thus λG

λG′
≤ 1 at our new n and d as well, so it is true
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at any n and d that G is a λ-expander for λ ≤ δ
6 .

5.3 Conditions for Convergence

Convergence Lemma: If, when v is first selected, |R| > n
2 , then with probability at least 1 − 4n ·

e−δn/48d
2
, G will reach a red consensus.

Since v is connected to all other nodes and a majority of all other nodes are red, v will declare red.
Removing v′ to form G′ results in a λ-expander for λ ≤ δ

6 with max degree d. By [1], G′ converges

to a red consensus with probability at least 1−4n ·e−δn/48d2 . Since v′ declared red and is connected
to all other nodes, the probability that G converges to a red consensus is also lower bounded by
1− 4n · e−δn/48d2 . We continue by proving that with at least constant probability, v’s first selection
occurs when |R| > n

2 .

5.4 Arrival Times

Arrival Theorem: With at least constant probability, when v is first selected, a majority of nodes
are red.
The proof is broken down into two parts. First, we lower bound the probability that v is selected
within n updates. We then lower bound the probability that a majority of nodes are red after n
updates, conditioned on not selecting v, which proves the theorem.

We start by calculating the number of blue versus red nodes.

Lemma: For G as constructed above, |R| ≥ |B|+ cn, for constant c that satisfies d ≤ 4−δ
δ+4c .

In G, V ol(B) = V ol(R) + δvol(G)
2 .

∑
∀b∈B

deg(b) =
∑
∀r∈R

deg(r) +
δ
∑
∀x∈N deg(x)

2

We know that all nodes except for v have degree d, and that v (which is blue) has degree n − 1.
Therefore,

d(|B| − 1) + n− 1 = d|R|+ δ(d+ 1)(n− 1)

2

d|R| = d(|B| − 1) + n− 1− δ(d+ 1)(n− 1)

2

d|R| = d(|B| − 1) + (n− 1)(1− δ(d+ 1)

2
)

Dividing by d, we get

|R| = |B| − 1 + (n− 1)
(1− δ(d+1)

2 )

d

4



We would like to lower bound the expression (n− 1)
(1− δ(d+1)

2
)

d by cn for some constant c.

(n− 1)
(1− δ(d+1)

2 )

d
− 1 ≥ cn

1− (d+ 1)δ

2
≥ d(cn+ 1)

n− 1
(d+ 1)δ

2
≤ 1− d(cn+ 1)

n− 1

(d+ 1)δ ≤ 2− 2
d(cn+ 1)

n− 1

≤ 4− 4dc

d ≤ 4− δ
δ + 4c

If c << 1− δ
2 , then this bound on d is not too restrictive. δ is very small, and therefore we can find

some constant 0 < c < 1 such that this is true.
Thus,

|R| ≥ |B|+ cn

5.5 Arrival Time of Selection of v

Let S be the time that v is first selected.
Arrival Lemma: P[S ≤ n] ≥ 1 − 1

e . S is the first arrival of a Bernoulli process with parameter
p = 1

n . We can conclude this directly from the CDF of the distribution.

Pr[S ≤ n] ≥ 1− (1− p)n−1

= 1−
(

1− 1

n

)n−1
= 1− 1

e
(For large n)

5.6 Hitting Time of Half Blue, Half Red

Hitting Time Theorem: After n steps, with probability at least 1 − e−O(logn), there will still be a
majority of red nodes.
The outline of the proof is as follows: we model the number of nodes that are red versus blue as a
biased, lazy random walk on the interval 0 to n, where position i signifies there are i red nodes, with
starting position n

2 + cn. We bound the probabilities of moving left, right, or staying stationary,
then compute the probability that the hitting time for the boundary of n

2 is at least n.

5.6.1 Setup

At time t, let Pl,t be the probability that we take a step to the left, Pr,t be the probability that
we take a step to the right, and Ps,t be the probability that we stay stationary. If we took a step
to the left, then this occurred because a red node was selected that declared blue. If we took a
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step to the right, then this occurred because a blue node was selected that declared red. Let t′ be
the hitting time for the boundary of n

2 , i.e. the time it takes for at least half of the nodes to have
declared blue.

Lemma: ∀t < t′, the probability that a red node was selected but declared blue is at most
(
1
2 + 1

2d

) (
1+c
2

)
The proof of this lemma can be broken into two parts: first, we compute the probability that a
randomly selected node is red. Then, we compute the probability that a randomly selected node
declares blue. We note that these two events are roughly independent for large enough n, which
allows us to conclude that the probability that both occur is their product.

Since |R| ≥ |B| + cn and |R| + |B| = n, the number of red nodes is n
(
1+c
2

)
. The probability

that a red node u 6= v was selected is then at most 1+c
2 .

Next, we consider when a randomly selected node u will declare blue, and we do so by first
calculating the probability that u will declare red. Node u will declare red if a majority of its
neighbors are red. Since the graph was random regular graph, the color of its neighbors (excluding
the butterfly) are independent (for large enough n). The probability that a given neighbor j 6= v
is red is lower-bounded by 1

2 , ∀t < t′, and in order for a majority of u’s neighbors to be red, there

must be at least d
2 + 1 red neighbors, since v is blue. Then, the probability that u will declare red

is at least

d−1∑
i= d

2
+1

(
d

i

)(
1

2

)d
=

1

2
− 1

2d

Since a node must either declare red or blue, the probability that u declares blue is at most
1
2 + 1

2d
Multiplying this probability with the probability that a red node was selected gives us(

1
2 + 1

2d

) (
1+c
2

)
.

Corollary: The probability that a blue node u 6= v was selected and declared red is at least
(
1
2 + 1

2d

) (
1+c
2

)
This follows using similar logic from the above lemma.

5.6.2 Analysis of the Random Walk

We have shown that in the random walk, ∀t < t′, Pl,t ≤
(
1
2 + 1

2d

) (
1+c
2

)
and Pr,t ≥

(
1
2 −

1
2d

) (
1−c
2

)
.

We can simplify our analysis by considering a random walk where the probabilities of moving left
or right are static, with Pl,t =

(
1
2 + 1

2d

) (
1+c
2

)
and Pr,t =

(
1
2 −

1
2d

) (
1−c
2

)
. Note that if we can lower

bound the probability that the equivalent hitting time is at least n in the static random walk, then
this is also a lower bound on P[t′ > n] (the hitting time for the non-static random walk), since the
bias toward the left is always at least as large in the static random walk. Henceforth we will use
all of the notation related to the random walk in reference to the static random walk.

In the static random walk, Pl,t =
(
1
2 + 1

2d

) (
1+c
2

)
, Pr,t =

(
1
2 −

1
2d

) (
1−c
2

)
, and Ps,t = 1 − Pl,t −

Pr,t = 1
2 −

c
2d

. We analyze this random walk by using a 3-level decision tree for deciding how to

move, i.e. 3 different biased coin flips. The first coin has probability 1
2−

c
2d

of coming up heads. The

second coin has probability c of coming up heads. The third coin has probability 1
2 of coming up
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heads (the third coin is unbiased). The random variables representing our position in the original,
static random walk, and in our random walk using this decision tree are equivalent, so it is sufficient
to analyze the decision tree.

The decision tree is as follows: If the outcome of the first coin flip is heads, we do nothing. If
the outcome is tails, we flip the second coin. If the second coin comes up heads, then we move to
the left. If the second coin comes up tails, then we flip the third coin. If the third coin comes up
heads, we move to the right. If the third coin comes up tails, we move to the left.

C1

S C2

L C3

L R

1
2 −

c
2d

1
2 + c

2d

c 1− c

1
2

1
2

First, we lower bound the number of times that the first coin comes up heads, i.e. a lower
bound on the number of times that we stay stationary. Let Si be the number of times that the first
coin comes up heads in i flips. Then, by the Chernoff bound,

P [Sn < (1− α)E[Sn]] ≤ e
−α2 E[Sn]

2

P
[
Sn < (1− α)n

(
1

2
− c

2d

)]
≤ e

−α2n
(

1
2−

c
2d

)
2

For α =
√
n logn

n
(

1
2
− c

2d

) , we have

P
[
Sn < n

(
1

2
− c

2d

)
−
√
n log n

]
≤ e

− logn(2d−1−c)
2d+2

(
1
2−

c
2d

)

= e−O(logn) (For appropriate d, c)

P
[
Sn > n

(
1

2
− c

2d

)
−
√
n log n

]
≥ 1− e−O(logn)

Next, we upper bound the number of times that the second coin comes up heads, i.e. an
upper bound on the number of times that we move left due to the drift, conditioned on Sn >
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n
(
1
2 −

c
2d

)
−
√
n log n. Let q = n− Sn be the total number of times we flip the second coin.

q ≤ n−
(
n

(
1

2
− c

2d

)
−
√
n log n

)
= n

(
1

2
+

c

2d

)
+
√
n log n

Let Di be the number of times that the second coin comes up heads in i flips. By the Chernoff
bound,

P [Dq > (1 + ε)E[Dq]] ≤ e
−ε2 E[Dq ]

3

P [Dq > (1 + ε)cq] ≤ e
−ε2cq

3

For ε =
√
n logn
cq , we have

P
[
Dq > cq −

√
n log n

]
≤ e

−n logn
3cq

P
[
Dq > cn

(
1

2
+

c

2d

)
− (1− c)

√
n log n

]
≤ e

−n logn
3cq

= e−O(logn)

P
[
Dq ≤ cn

(
1

2
+

c

2d

)
− (1− c)

√
n log n

]
≥ 1− e−O(logn)

Finally, we lower bound the probability that an unbiased random walk stays within k steps of its
starting position, i.e. a lower bound on the probability that we do not ever get too many more
heads than tails in the third coin flip, conditioned on the previous two events occurring. Let Zi be
our position in the unbiased random walk after i steps. Let w = n− Sn −Dq be the total number
of steps we flip the third coin. Let h′ be the hitting time for the boundary l. By the reflection
principle,

P[Zw ≥ l|h′ ≤ w] =
1

2
P[Zw ≥ l, h′ ≤ w]

P[h′ ≤ w]
=

1

2
(By Bayes’ theorem)

Note that the event Zw ≥ l ∩ h′ ≤ w is equivalent to the event Zw ≥ l.

P[Zw ≥ l]
P[h′ ≤ w]

=
1

2

P[h′ > w] = 1− 2P[Zw ≥ l]

By the Chernoff bound,

P[Zw ≥ l] ≤ e
−l2
2w

P[h′ > w] ≥ 1− e
−l2
2w
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For l =
√
w log n =

√
((1− c)n

(
1
2 + c

2d

)
+ (2− c)

√
n log n)(

√
n log n), we have

P[h′ > w] ≥ 1− e
− logn

2

= 1− e−O(logn)

We can now lower bound the probability that in the static random walk, we have walked less than
cn to the left after n steps. The distance walked to the left is at most Dq + l. With probability at
least 1− e−O(logn), this distance is at most

Dq + l ≤ cn
(

1

2
+

c

2d

)
− (1− c)

√
n log n+

√
(1− c)n

(
1

2
+

c

2d

)
+ (2− c)

√
n log n

=
cn

2
+ o(n)

This concludes the proof of the Hitting Time Theorem. Combining the Hitting Time Theorem
with the Arrival Lemma, with probability at least (1 − 1

e )(1 − e−O(logn)), when v is first selected,
a majority of nodes are red. This concludes the proof of the Arrival Theorem. Combining the
Arrival Theorem with the Convergence Lemma, with at least constant probability, this proves the
Counter-Convergence Lemma.

6 Convergence for d-regular graphs for unbounded d

Here, we extend Feldman et. al’s result of the high probability convergence of super-majorities to
d-regular graphs. Previously this had been demonstrated for small d, but here we provide a proof
that holds for all d. .
Lemma: The probability that a λ-expansive, d-regular graph with a supermajority will converge to
the color of that supermajority is ≥ 1− 16ne−δn(

1
128

).

We will assume without loss of generality that the supermajority is red. Thus vol(R) ≥
vol(B) + δ

2vol(G). Since G is d-regular, vol(R) = d|R| and vol(B) = d|B|. Thus

d|R| ≥ d|B|+ δ

2
nd

|R| ≥ |B|+ δ

2
n

As |R|+ |B| = n, we can solve for |B|:

n− |B| ≥ |B|+ δ

2
n

n(1− δ
2)

2
≥ |B|

For any given graph, switching a blue node to a red node will never increase the probability of

converging to red. Therefore we can upper-bound |B| to
n(1− δ

2
)

2 .
We can view changes to G as a random walk on the number of red nodes from 0 to n, where hitting
n is a red consensus. Let us define Zt as our position at time t. Thus Z0 = n

2 + δ
2n.

9



0
n

2

n

2
+
δ

2
n n

At each step, we are selecting a node at random and changing its color to the majority of its
neighbors. The total number of red nodes changes by at most 1 at each step, and therefore the
number of red nodes at time t is represented by a 1-bounded lazy random walk.
Let us consider the interval between n

2 + δ
4n and n

2 + 3δ
4 n. E[Zt+1 − Zt] for any Zt on this interval

is lower bounded by E[Zt+1−Zt] for Zt = n
2 + δ

4n. At this position, |B| = n
2 −

δ
8n (come clean this

up and make sure the fractions are correct). Corollary 2 in Feldman et. al implies that |B′| ≤ |B|2 ,
where B′ is the set of nodes that would declare blue if they were selected, and B is the set of nodes
that are currently blue. Thus

|B′| ≤ n

4
− δ

8
n

At each step a node is selected at random. The probability that this node is blue after being
selected is at most n

4 −
δ
8n. Thus the probability that we select a node and it declares red is at

least 1− n
4 −

δ
8n. By definition this is also the probability that we select a node and the majority of

nodes connected to is are red. Let us define RB as the set of nodes that are red but would declare
blue if selected, and RR, BB and BR correspondingly. From our bound on the number of nodes
that would switch to red, we get

|B′| = |BB|+ |RB| = n

4
− δ

8
n

|BB| = n

4
− δ

8
n− |RB|

From our bound on the number of initial blue nodes, we get

|B| = |BB|+ |BR| = n

2
− δ

4
n

|BB| = n

2
− δ

4
n− |BR|

Combining these, we can get a bound on the relationship between |BR| and |RB|.

n

2
− δ

4
n− |BR| = |BB| = n

4
− δ

8
n− |RB|

n

4
− δ

8
n− |BR| = −|RB|

n

4
− δ

8
n = |BR| − |RB|
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Now we can reason about E[Zt+1|Zt+1 6= Zt], or the expected movement on any step that has any
movement at all.

E[Zt+1|Zt+1 6= Zt] = Zt + 1 ∗ P (select node in BR)− 1 ∗ P (select node in RB)

=
|BR|
n
− |RB|

n

=
|BR| − |RB|

n

=
1

4
− δ

8

We would like to reason about the probability that this random walk hits one threshold before
another threshold, and therefore it is equivalent to reason about a random walk ignoring the steps
without any movement. In this case, E[Zt+1] ≥ 1

4 −
δ
8 + Zt for all n

2 + δ
4n ≤ Zt−1 ≤ n

2 + 3δ
4 n. We

have constructed a 1-bounded, 1
4 −

δ
8 -biased random walk.

Now we have fulfilled all the conditions to utilize lemma 3 provided in Feldman et. al, which gives
us that the probability that the walk hits n

2 + 1δ
4 n before hitting n

2 + 3δ
4 n is at most

2 δn4
1
4 −

δ
8

e−
( 14−

δ
8 )( δn4 )

4 =
2δn

1− δ
2

e−δn(
1
64
− δ

128
)

The graph will hit a red consensus after n
δn
4

= 4
δ successful steps. We can take the union bound

of this to determine an upper bound on the probability that we will ever hit a left boundary before
a right boundary between our staring point and n. As we move towards more reds in our graph we
can continue to lower bound p by 1

4 −
δ
8 .

P (failure) ≤ 4

δ

2δn

1− δ
2

e−δn(
1
64
− δ

128
)

=
8n

1− δ
2

e−δn(
1
64
− δ

128
) ≤ 16ne−δn(

1
128

)

This probability of failure approaches 0 for large n, so this concludes the proof. Therefore
d-regular graphs for unbounded d with a supermajority of one color converge to that color with
high probability.

7 Conclusion and Future Work

We have expanded the class of graphs that, given a red supermajority, converges to a red consensus
with high probability. However, we constructed an example that shows that this decoupled analysis
can not be used to answer the generalized question, which asks whether λ-expanders with no
additional assumptions on the sparsity can start from a supermajority of a given color and converge
to a consensus on that color with high probability. We hope that this proof can help guide future
researchers in approaching a proof for λ-expanders.
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