
The Complexity of Mechanism Design Approximation

Completing the Circle of Reductions Between Mechanism and Algorithm Design

Natalie Collina

May 2019

Advised by Matt Weinberg

Submitted in partial fulfillment of the requirements for the degree of Bachelor of

Arts in Computer Science at Princeton University

This thesis represents my own work in accordance with University regulations.

/s/ Natalie Rose Collina

Abstract

In the field of theoretical computer science we often reason about algorithm design, the

process of constructing solutions for problems based upon fixed input. In real-world situations,

however, the structure of an algorithm often impacts the way that agents interact with it. Mecha-

nism design describes the problem of constructing algorithms that consider strategic input. Many

important problems in fields from auction theory to policy development necessitate mechanisms

that guarantee good behavior. Thus, understanding how to solve these problems, and how hard

it is to solve them, is a crucial area of research.

In this paper, we strengthen and extend results found in Matthew Weinberg’s Algorithms

for Strategic Agents [1]. Weinberg provides a framework for transforming mechanism design

problems into algorithmic form. His work centers upon a reduction from a mechanism design

approximation problem (BMeD) to an algorithmic problem (GOOP). Furthermore, he provides

a hardness of approximation result for some valuation classes. However, this reduction was

not shown to be tight. Here we complete the circle of reductions between mechanism design

and algorithm design that Weinberg worked towards, guaranteeing that the original reduction

does not increase the complexity of the original problem. We do so through an approximation-

preserving reduction between two related problems, ODP and SADP. In addition, we provide

more principled and specific hardness of approximation results for multiple valuation classes.

1

Acknowledgements

I have reflected countless times over the past two semesters on how lucky I am to have Matt Wein-

berg as my advisor. He is an encouraging, responsive mentor and a brilliant intellectual resource. I

looked forward to our meetings each week, where he would always listen attentively to my ideas and

bring fresh ideas of his own. Matt taught me about mechanism design and approximation-preserving

reductions, but throughout the year he did something even more important–he thoughtfully and de-

liberately taught me how to do research. Matt also served as an informational resource and sounding

board for my plans for the future. I hope to attend graduate school within the near future, and

that sustained interest has much to do with him. Matt Weinberg has been a truly positive force

throughout my final year at Princeton, and I could not imagine a better advisor.

The friends I have made throughout my time here have contributed immeasurably to this the-

sis. Sometimes this contribution has been through explicit conversations about research directions,

but often it has been through seemingly unrelated conversations that have challenged my assump-

tions and expanded my horizons. Through these conversations, I have become a better researcher

and thinker. Thank you to Hemani, Kara, Madeleine, Emily, Mrudhula and many others. I want

to thank them for their support, their passion, their boldness, and most of all for being genuinely

wonderful human beings.

I would be remiss not to thank Scully Co-op. The majority of work for this thesis was completed

in the common room outside of the Scully kitchen, and the presence of people such as Lilly, Austin,

Will and Debo made the process infinitely more enjoyable. I never expected to find a community at

Princeton that brought me so much joy on a day-to-day basis. Thank you to everyone in the Co-op

for making Scully 319 my home away from home.

Finally, I would like to thank my family for encouraging my curiosity, for teaching me and for

loving me. Thank you to Mom, Dad, Lu, Jared, Catherine, Mark and everyone else. I would not be

where I am today without you.

I am immensely grateful for my time here at Princeton. For the past four years, my primary

responsibilities have been to learn, explore and create. I can’t think of a better gift.

2

Contents

1 Introduction 5

1.1 Mechanism Design . 5

1.2 Goal . 6

1.3 Outline . 7

2 Background 8

2.1 Bidders and Auctions . 8

2.2 Valuation Function Classes . 9

2.3 Valuation Class Intersections . 12

2.4 Valuation Class Closures . 12

2.5 Computational Complexity and Reductions . 12

2.6 ODP and SADP . 13

3 Related Work 15

3.1 Hardness of Revenue Maximization . 15

3.2 Algorithms for Strategic Agents . 16

3.3 Valuation Class Closures . 17

4 Approach 18

5 Reduction Requirements 19

5.1 Works for Large n . 19

5.2 D-balanced . 20

5.3 Explicitly Approximation-preserving (No addition of constants) 21

5.4 “Normal-looking” . 21

5.5 Preserves Valuation Classes . 22

5.6 C-compatible . 24

5.7 Key Takeaway from Restriction Exploration . 25

6 Reduction Results 25

6.1 Multi-packet Model . 26

6.2 Max Model . 28

6.3 Min with a Constant Model . 30

3

6.4 Item Cap Model . 33

6.5 Reintroduction of C-compatibility . 36

6.6 Results Summary . 42

7 Hardness Results 42

8 Future Work 44

9 Appendix 47

9.1 Budget Additive is not closed under Max, Min or IC 47

9.2 Submodular and GS are not closed under max . 47

9.3 GS is not closed under min with a constant . 48

9.4 Submodular is not closed under IC . 49

4

1 Introduction

1.1 Mechanism Design

A typical algorithmic game theory problem involves deciding on a rational strategy to maximize

reward when faced with a set of rules. Mechanism design is sometimes referred to as “reverse game

theory,” as the goal is to construct a set of rules so that rational agents acting upon these rules

will behave in particular ways. Many problems that seem at first glance to be algorithmic actually

necessitate a mechanism design solution. Consider the simple case of a vendor selling chocolate bars.

The cost to produce each chocolate bar is c, and vendor would like to maximize her profit. Each

time a buyer approaches, she asks what his value v is for the item–in other words, how much he

would be willing to pay for it. If v ≥ c, she sells the item at price v. Otherwise she does not sell the

item.

While this algorithm seems intuitive, it is predicated on the assumption that the buyer will act

honestly. In practice, buyers are interested in maximizing their own payoff. If a buyer has knowl-

edge of the scheme ahead of time and has value v > c, his best strategy is to lie and report v = c.

Assuming all buyers act rationally, the vendor will never make a profit. In order to run a successful

business, the vendor must think not only about how to respond to honest input but also how to

design a mechanism that incentivizes honest input. This problem of developing a better pricing

scheme is an example of mechanism design.

Mechanism design has many real-world applications, including in the field of policy. Thoughtful

regulatory policy-making can be thought of as a mechanism design problem. When lawmakers craft

regulations, their goal is to encourage a certain group of people to behave in a particular way. For

example, when the United Nations explored carbon dioxide regulations in the 1990s, their goal was

to create a policy that would minimize emissions by companies. Simply placing a tax on emis-

sions might not have been sufficient–perhaps the companies would still benefit from continuing their

current behavior, or perhaps their optimal action would be to lie about their adherence to the reg-

ulations. The committee wanted to design a regulatory framework that provably incentivized good

behavior. Researchers drew upon mechanism design theory to develop a cap-and-trade mechanism

that was a central component of the Kyoto Protocol [2]. Considering the objectives and potential

actions of those being regulated is crucial in constructing robust policies, and mechanism design

theory provides a framework for exactly this type of reasoning.

5

In this paper, we consider mechanism design problems through the lens of auction theory. In

an auction, bidders have certain preferences over items and are willing to pay different prices for

different item combinations. The objective of each of these bidders is to maximize her profit. The

auctioneer, who sets the rules for the auction (the mechanism), also has an objective. The most

commonly examined mechanism objectives in this context are maximizing welfare (the total value

given to bidders) and maximizing profit. The mechanism design problem here is developing a set of

auction rules that achieve the auctioneer objective.

Unlike algorithmic problems, mechanism design problems have a multi-step nature: first a mecha-

nism designer is given input describing agent incentives, then they output their mechanism, then the

agents provide inputs in response to this mechanism and finally the designer runs the declared mecha-

nism on these inputs. These problems are thus less immediately intuitive than algorithmic problems.

In his 2014 PhD dissertation Algorithms for Strategic Agents (ASA), Professor S. Matthew Weinberg

presented a new algorithmic framework for reasoning about mechanism design problems [1]. Wein-

berg defines the Bayesian Mechanism Design problem (BMeD), which describes mechanism design

approximation in a randomized setting. In his paper, he shows an approximation-preserving reduc-

tion to an algorithmic problem he calls the Generalized Objective Optimization Problem (GOOP).

While BMeD is structured as a mechanism design problem, GOOP is by nature an optimization

problem–upon some input, it asks for a maximizing result. His paper provides the first method for

viewing approximation mechanism problems as algorithmic problems in a Bayesian setting.

1.2 Goal

The goal of this paper is to extend and strengthen the results of Weinberg’s ASA. In his paper,

Weinberg provides an approximation-preserving reduction from mechanism design problems to a

more straightforward optimization problem. However, the tightness of the reduction presented in

the paper was left unresolved, leaving open the possibility that the reduction makes the underlying

problem more computationally complex. Consider the case of a friend who asks for our help in

solving a mechanism design problem. “Of course,” we say, and we happily present the friend with

Weinberg’s reduction. Thanks to this reduction, our friend’s problem is now in an algorithmic form.

However, our friend is skeptical. “This might look more like the kind of problem I’m used to solving,”

they say, “and sure, it will give me the same answer as if I solved the mechanism design problem

6

directly. But how do I know that this reduction did not make my problem harder? What if there

was a polynomial-time algorithm to solve the original problem, and there is no polynomial-time

algorithm for the new problem?”

Our friend makes an astute point. Based only upon the results from ASA, we cannot guarantee that

the new problem is just as easy as the original. Perhaps we reduced our problem to a harder prob-

lem. This can easily be done: for example, one can reduce 2-colorability to 3-colorability by adding

a new node with edges to every node in the original graph. This is silly, of course–2-colorability

has a linear-time algorithm, while 3-colorability is is NP-complete. This reduction obviously makes

the problem much harder. But if 2-colorability was not a well-understood problem, we might have

incorrectly thought that this reduction was useful.

In order to guarantee tightness, it is necessary to complete the circle of approximation-preserving

reductions between BMeD and GOOP. In pursuit of this goal, ASA provides a reduction from GOOP

to a new problem called ODP (Optimize Difference Problem), as well as a reduction from a new prob-

lem called SADP (Solve Any Differences Problem) to BMeD. Thus, finding a reduction from ODP to

SADP would close the circle. The main result of this paper is a tightness guarantee for Weinberg’s

reduction through an approximation-preserving, valuation class-preserving reduction from ODP to

SADP. This guarantee holds for most valuation classes relevant in the context of mechanism design.

Thanks to this result, we can confidently tell our friend that their transformed algorithmic problem

is not only easier to reason about than the original problem, but also no harder than the original

problem. We conclude that Weinberg’s reduction is in fact the “best” approximation-preserving

reduction from mechanism design to algorithm design. Beyond comparing the complexities of these

two problems, one might ask what the actual complexities of these problems are. In Weinberg’s

paper, a proof of hardness for BMeD was shown for submodular functions. In this paper we provide

proofs of hardness for several additional valuation classes.

1.3 Outline

In section 2, we will provide necessary background information and terms for a reader to understand

our question, methodology and results. This includes explanations of relevant concepts in auction

theory and complexity theory, as well as definitions of different valuation classes. In section 3 we

delve more deeply into Weinberg’s paper and detail various additional sources that have been useful

for reaching conclusions about valuation function closures. In section 4 we delineate three potential

7

Figure 1: Circle of reductions as completed by this paper

approaches to the problem at hand and describe the ultimate approach taken in this paper. In

section 5 we provide a thorough investigation of problem restrictions, including an intuition for the

importance of each restriction and an example of a potential solution which violates it. In section 6

we introduce three solutions which each preserve some valuation classes, ignoring for the time being

C-compatibility. At the end of the section we re-introduce compatibility through slight alterations

of previous solutions and show that these alterations do not cause the model to violate restrictions.

In section 7 we introduce a hardness result for matroid valuation functions and all classes which

contain matroid valuation functions, including GS, submodular and subadditive. Finally, in section

8 we summarize our work and present ideas for future research on this topic. In the appendix we

include negative closure results for various reduction models and valuation classes.

2 Background

2.1 Bidders and Auctions

Throughout this paper we will often refer to bidders, items and valuation functions. In an auction

framework, we think of items as discrete and distinct things that can be bought and sold. A bidder

is an agent who has preferences over these items. Their preferences can be described through some

valuation function f . f is a function that takes as input an unordered subset of the total number of

available items and outputs some value. If bidder b has valuation function f over a set of items X

8

and x ⊆ X, then if f(x) = c, bidder b would be willing to pay up to c for set x.

As we care most about valuation functions that model real-life scenarios, we can imagine rules

which typically would govern these valuations: if a bidder would pay 5 dollars for item a, it would

be strange for her to be unwilling to pay 5 dollars for the set {a, b}. Valuation functions that do

not value sets at lower values when augmented are called monotone valuations. Furthermore, it is

strange to reason about bidders with negative valuation classes in the context of auctions. Finally,

it is reasonable to assume that bidders value the empty set at exactly 0. Throughout this paper

we consider only valuation functions with these properties. Individual valuation classes have more

specific structures, and will be explored in the following section.

2.2 Valuation Function Classes

We aim to provide not simply a closed circle between BMeD and ODP but a closed circle for each

function valuation class. The positive result in this paper is a piecewise solution, with separate

reduction models for different sets of valuation classes. As we will often make use of the definitions

and characteristics for relevant valuation classes, the information will be delineated here:

Additive. The class of additive functions models bidders who value individual items independently

of the other items in their set. Formally, a function f is additive iff

∀S, T, S ∩ T = ∅ : f(S ∪ T) = f(S) + f(T)

Matroid Rank. A function f is matroid rank iff it fulfills the following properties:

1) It is integer-valued on every input

2) It is submodular (see submodular definition below)

3) For any set S and item x,

f(S) ≤ f(S ∪ x) ≤ f(S) + 1

9

Budget Additive. Budget additive functions model bidders with additive functions under a

budget constraint. Formally, a function f is budget additive iff there ∃ a constant c s.t.

f(S ∪ T) = min(f(S) + f(T), c)

Unit Demand. Unit demand functions model bidders with capacity for a single item. If they are

provided with multiple items, their value will be that of their favorite singleton item. Formally, a

function f is unit demand iff

f(X) = maxx∈Xf(x)

XOS. A function f is XOS iff there ∃ additive functions a1, ..., am such that

f(x) = maxi∈1...m(ai(x))

Matroid Valuation. Matroid valuation functions can be thought of as extensions of matroid

rank functions, where a particular item that can be added to the matroid can have some value other

than 1. Instead of having value equal to the largest valid subset of the items, a bidder considering

items according to a matroid valuation function will have value equal to the most valuable valid

subset of the items.

OXS. While XOS functions can be described as taking a unit-demand over additive functions,

OXS functions can be described as the addition of unit-demand functions. Consider a bipartite

graph G where the nodes on the left-hand side of the graph represent items in an auction. A func-

tion f is OXS iff there ∃ G s.t. f(x) is equal to the max-weight matching in G using only the

left-hand nodes in x.

Gross Substitutes. There are multiple equivalent definitions of gross substitutes, two of which

we will detail here. Both will be useful in this paper for proving various positive and negative results.

Definition 1: For some price vector p and set of items x, consider a bidder who chooses an optimal

10

set x∗ over these items and their prices. Consider some item xi ∈ x∗. A bidder’s valuation f is GS

iff, when the price of some subset of items s is increased and xi /∈ s, the new optimal set contains

xi.

Definition 2: Again consider a scenario with a price vector p. Consider the greedy strategy of

choosing an optimal set: at each step with current set S, a bidder selects the item x which maxi-

mizes f(S ∪x)−
∑
s∈S p(s)− p(x). If all such values are negative, the algorithm terminates and the

current set is selected. A bidder’s valuation is GS iff for any p, the greedy algorithm will terminate

on the optimal item set.

This second definition indicates the importance of gross substitute functions. The class exactly

describes the set of functions for which max-value sets can be found using a greedy algorithm. GS

functions can be thought of as extensions of matroid valuation functions that continue to fulfill this

key property. However, the nature of this extension is not well understood. Unlike the other classes

listed here, there is currently no known set of operations that can be performed upon a well-formed

class of functions to construct the entire set of GS functions [3]. Given the algorithmic significance

and lack of understanding of the class, it is both crucial and perhaps uniquely difficult to reason

about.

Submodular. Submodular functions model bidders whose marginal values for adding a par-

ticular item to a set will not increase if that set is augmented. Formally, a function f is submodular

iff for any set X and any items y, z 6= X:

f(X ∪ y ∪ z)− f(X ∪ y) ≤ f(X ∪ z)− f(X)

Subadditive. Subadditive functions model bidders whose marginal value for adding any item

i to their set is no greater than i’s singleton value. Formally, a function f is subadditive iff, for all

disjoint sets S and T ,

f(S ∪ T) ≤ f(S) + f(T)

Subadditive functions are the broadest class of functions which we consider in this setting.

11

2.3 Valuation Class Intersections

All of the classes mentioned above are contained within the class of subadditive functions. In non-

subadditive functions, bidders can value two items at 0, but highly value them in combination. It

is hard to imagine how we would attempt to optimize functions of this sort. Non-subadditive func-

tions are not widely studied in auction theory because they are both difficult to reason about and

unhelpful for modeling realistic scenarios.

Most of the function classes shown above can be described in a strict hierarchy.

Additive (OXS (Matroid Valuation (GS (XOS (Submodular (Subadditive

2.4 Valuation Class Closures

As our circle of reductions must hold for specific valuation classes, we must ensure that the interesting

valuation classes are closed under our transformation. A function class V is closed under some

operation P iff

∀f ∈ V : P (f) ∈ V

In other words, P maps functions in V exclusively to functions in V . Note that for V1 ⊆ V2,

P (V1) ∈ V1 ; P (V2) ∈ V2, and P (V2) ∈ V2 ; P (V1) ∈ V1.

Operation P might involve the combination of multiple functions. Consider the addition opera-

tion. We can ask whether the addition of two functions f, g ∈ V is itself ∈ V . For most V , this will

be true. For example, if h = f + g and f and g are additive, then h is certainly additive, and the

singleton value each xi is f(xi) + g(xi).

2.5 Computational Complexity and Reductions

Reductions. As a refresher, a reduction from problem A to problem B is an efficient protocol that

transforms inputs to A into inputs to B in such a way that the solution output by B is the correct

solution to A. A successful reduction from A to B signifies that A is no more computationally

complex than B. If we would like to prove that A and B have the same computational complexity,

we can perform a reduction in both directions. Alternatively, we can reduce A to B, B to some

problem C, and C to A. As referenced in the introduction, the goal of this thesis is to close the

circle of reductions between BMeD and GOOP. We use the approach of showing a reduction from

12

BMeD to GOOP to ODP to SADP to BMeD.

Hardness. One key concept in complexity theory that appears in this paper is that of com-

putational hardness. All problems that are at least as computationally complex as NP-complete

problems are NP-hard. Practically speaking, large instances of NP-hard problems are infeasible for

even the fastest computers to solve in reasonable time. A hardness result for a problem precludes

the development of an efficient algorithmic solution (assuming that P 6= NP). This concept will be

important in section 7, when we prove hardness results for several key valuation classes. In our case,

the hardness result is exponential. Thus there exists no poly-time algorithm, regardless of open

questions in complexity theory.

2.6 ODP and SADP

The crux of this paper involves a reduction from a problem we call ODP to a problem we call SADP.

Below, we provide problem definitions.

ODP (Optimize Difference Problem) ODPV,α takes two valuation functions f and g in valu-

ation class V as input. It returns a set x∗ such that

f(x∗)− g(x∗) ≥ (1− α)maxx∈X(f(x)− g(x))

Let us provide an example of an ODP problem, using the subadditive valuation functions f and g

delineated below:

Table 1: Valuation function f

Sets of size 1 Value Sets of size 2 Value

{a} 5 {a,b} 6

{b} 2

Table 2: Valuation function g

Sets of size 1 Value Sets of size 2 Value

{a} 2 {a,b} 5

{b} 3

13

The optimal solution to ODP will be the item set x∗ that maximizes the difference between f(x)

and g(x).

Note the distinction between this problem and the problem of allocating items to bidders to maximize

the difference: in the second case, we could simply allocate all items to the bidder with valuation f

and none to the bidder with valuation g. By contrast, in this case our solution must be a single set

that both valuation functions are evaluated over. In this small example we can compute all possible

solutions:

f(∅)− g(∅) = 0− 0 = 0

f(a)− g(a) = 5− 2 = 3

f(b)− g(b) = 2− 3 = −1

f(a, b)− g(a, b) = 6− 5 = 1

The set {a} provides the largest value, and therefore it is an optimal solution to ODP. In addi-

tion, the set {a, b} provides an 1
3 -approximation for the optimal solution. Therefore both {a} and

{a, b} are valid solutions to ODPα when α ≥ 2
3 , while only {a} is a valid solution when α < 2

3 . The

remaining sets garner non-positive values, and thus will not be valid solutions for any α. In this

paper, we assume that f and g are monotone, non-negative, and evaluate to 0 at the empty set.

SADP (Solve Any Differences Problem) SADP is another optimization problem with key

similarities to ODP. SADP takes n valuation functions k1, ..., kn over a set of items as input and

returns a set x′ such that, for some i,

ki(x
′)− ki+1(x′) ≥ (1− α)maxx∈X(ki(x)− ki+1(x))

Essentially, SADP is given the freedom to solve one of many instances of ODP.

While a typical SADP instance might have multiple valid solutions representing optimizing sets

for different ki − ki−1, a solution to ODP is restricted to some set optimizing f − g. Intuitively,

14

a valid reduction from ODP to SADP must ensure that the difference between ki and ki+1 looks

similar to the difference between f and g for all i.

3 Related Work

3.1 Hardness of Revenue Maximization

Exact mechanism design solutions for Bayesian revenue maximization are known to be hard in many

contexts. Hardness results exist even for seemingly simple scenarios, such as when there are a small

number of possible bidder types or a small number of items. A 2018 paper by Chen, Diakonikolas,

Paparas, Sun and Yannakakis examined the complexity of optimal Bayesian mechanism design for

single-bidder scenarios. The problem is similar to that presented in ASA: a seller is given a proba-

bility distribution over the types of buyers who will come to their store, and they must decide how

to price their items. The paper finds a polynomial-time algorithm for the case where there are only

two potential buyer types (cases where support = 2). However, it proves that the case for three or

more potential buyer types is NP-hard. In particular, the decision version of the problem with three

or more buyer types is NP-complete [4]. Another paper by Chen at. al, On the Complexity of Opti-

mal Lottery Pricing and Randomized Mechanisms, considers the complexity of the lottery problem,

a related model in which the single buyer is given a menu with prices, items and probabilities of

receiving those items depending on their purchase. They show that this problem is also NP-hard

unless the polynomial time hierarchy collapses [5]. Dobzinski, Fu and Kleinberg showed that ex-

act mechanisms for OXS valuations in particular is hard [6]. Daskalakis, Deckelbaum and Tzamos

developed a framework using optimal transport theory and duality theory to provide solutions for

particular optimization instances, optimal mechanisms in auctions with two items and other specific

scenarios [7]. However, it has generally been proven difficult to find optimal mechanisms even when

distributions have particular structures.

These hardness results demonstrate the difficulty of optimally solving mechanism design, but do

not preclude the potential for an efficient approximation solution for revenue. In the case of many

hard problems, there exist approximation algorithms which are significantly more efficient than op-

timal algorithms. In practice, getting close to the best solution is often just as useful. Dobzinski,

Fu and Kleinberg investigated revenue-approximating mechanisms in a single-item scenario, where

bidders are drawn from a correlated distribution. The paper showed that in this context there is an

approximation mechanism that is poly-time in the size of the support of the bidder type distribution

15

[6].

3.2 Algorithms for Strategic Agents

Weinberg’s 2014 PhD thesis, Algorithms for Strategic Agents, presented a novel framework for

reasoning about mechanism design problems in an approximation setting that extend to multiple

items. He achieves this by reducing approximation mechanism design problems, as defined through

the problem BMeD, to GOOP, an algorithmic problem. [1]. Through this reduction, he is able to

provide a hardness of approximation result for mechanism design. Results in ASA are based upon

multiple research collaborations between Matt Weinberg, Yang Cai and Constantinos Daskalakis

[8] [9] [10]. In particular, their 2013 paper, Understanding Incentives: Mechanism Design becomes

Algorithm Design, forms the backbone for Wienberg’s hardness result [11].

BMeD. BMeD takes as input a set of types T and a distribution of bidder preferences. This

can be thought of as probabilistically describing the nature of the agents interacting with the mech-

anism. In addition, it takes as input an objective O. BMeD outputs a mechanism which is Bayesian

Incentive Compatible (BIC). In other words, if all agents know the distribution of outcomes, their

optimal strategy is to report their preferences truthfully. This mechanism approximately maximizes

the objective.

GOOP. For a given valuation class V , GOOP takes in a multiplier w ≥ 0, an objective func-

tion O, k valuation functions g1, ..., gk ∈ V , and valuation function f ∈ V x. Here, V x denotes the

closure of V under addition and scalar multiplication. The output of GOOPα is an outcome X from

a space of feasible outcomes F that outputs an X such that

(w ·O((g1, ..., gk), X) + f(X)) ≥ (1− α)(w ·O((g1, ..., gk), X∗) + f(X∗))

where X∗ is the maximizing outcome.

Weinberg performed an approximation-preserving reduction from BMeD to GOOP, demonstrat-

ing that approximation Bayesian mechanism design can be reformulated as an algorithmic problem.

GOOP to ODP. The intuition of Weinberg’s reduction from GOOP to ODP is as follows: in

the context of revenue maximization, we do not need to consider O. Then this problem simply

becomes that of approximately maximizing f(X). Recall that f(X) is a valuation function in V x.

16

Thus, assuming that V is closed under addition and positive scalar multiplication, we can write f

as f1 − f2, where f1 and f2 are in V . This optimization problem is exactly ODPV,α.

SADP to BMeD. The reduction provided from SADP to BMeD promises the following: if SADP

is D-balanced and has n input functions, an α-approximation in BMeD implies an (α − (1−α)D
n−1)-

approximation to SADP. We will define D-balanced in section 5.

Submodular Hardness Instance in ASA. In section 8 of ASA, Weinberg provides a hard

SADP instance for submodular functions. Through this, he demonstrates that SADP and thus

BMeD are hard problems in some instances. However, this instance does not correspond to any

ODP instance. Furthermore, this function is not gross substitute or matroid valuation. This paper

takes a more principled approach by providing a reduction that maps ODP problems to BMeD

problems. We are then able to use this framework to show an exponentially hard ODP instance that

can be solved using SADP. Through this, we are able to guarantee that SADP, and therefore BMeD,

is not only hard for some instances, but hard for instances that correspond to GOOP solutions–and

thus model actual mechanism design problems. Furthermore, our reduction holds for more specific

valuation classes.

3.3 Valuation Class Closures

In order to make claims about valuation class closures, we draw upon previous research on the

behavior of valuation classes under operations. The behavior of GS functions in particular is an

active area of research. Dr. Renato Pas Lemme has performed extensive research on the structure

and behavior of the GS class. In his 2018 paper On the Construction of Substitutes, he attempts

to generate a constructive description of the class [3]. While this result remains open, he generates

many strong conclusions useful for this paper, including some notable limitations of GS functions. In

particular, GS functions are not closed under addition. They are not even closed under the addition

of matroid rank functions, which are a strict subset of the GS class. The paper also delineates some

operations under which GS functions are closed, such as affine transformations and strong quotient

sum.

Another Pas Lemme paper, Gross Substitutability: An Algorithmic Survey, proves that GS func-

tions are well-layered [12]. We define well-layered below:

17

Well-layered: A function f is well-layered iff, when running a greedy algorithm on f − p for

any price vector p, the set Xi selected at step t (which will thus have size t) is s.t.

f(Xi)−
∑
∀i∈Xi

(pi) = maxXj ,|Xj |=t(f(Xj)−
∑
∀j∈Xj

(pj))

In other words, the set selected at step t of the greedy algorithm is the set with the highest payoff of

size t. This characteristic of gross substitute functions is central to our positive result for the class

in section 6.4.

4 Approach

In proving that SADP is harder than ODP for a given valuation class V , several approaches could

be taken. We will list them below in order of increasing power.

1. We could provide a SADPV,α instance that is NP-hard for any α 6= 1. While this does

not explicitly prove that SADPV,α is a harder problem than ODPV,α–perhaps ODPV,α is NP-hard

with greater complexity–it at least implies that BMeDV,α is NP-hard and therefore that the reduc-

tion from BMeDV,α to ODPV,α did not transform an easy problem into an NP-hard problem.

2. We could provide an ODPV,α instance that is NP-hard and then reduce this instance to

SADPV,α. As above, this would imply that solving SADPV , α for valuation class V is NP-hard.

ODPV,α and SADPV,α relate and demonstrate that the types of instances that are hard for SADPV,α

are typically the types of instances that are hard for ODPV,α. Such a reduction could possibly be

easier to construct than the full reduction needed for approach 3, as perhaps the structure of the

particular hard instance would permit a reduction which would be invalid for other inputs in V .

3.1 We could provide a general reduction from ODPV,α to SADPV,α that holds for all f, g ∈ V .

This result would demonstrate that SADPV,α is at least as hard as ODPV,α for each instance, thus

fully closing the circle of reductions between GOOP and BMeD.

3.2 After resolving 3.1, a powerful secondary result would be to find a hard ODPV , α instance

for some V and any α < 1. This would indicate not only that the circle of reductions is closed for

18

V , but also that BMeD and GOOP are NP-hard for V .

As mentioned in the introduction, we take approach 3.1 and 3.2 in this paper. Thus, in describing

the problem specifications below, our goal is to find a reduction that holds for all f, g ∈ V .

5 Reduction Requirements

Because of the specificity of this reduction, we must perform a thorough exploration of the restric-

tions. In this section, we introduce all reduction requirements, justify each, and provide an example

of a promising-looking approach that violates this requirement. Through this process we hope to

clarify the problem at hand and convince the reader that there are no trivial solutions.

All counterexamples provided in this section will make use of additive functions. While we are

not particularly interested in solving mechanism design problems on additive functions themselves–

optimizing such functions can be done very quickly–additive functions are contained within almost

all valuation classes relevant to this paper. Therefore a counterexample to an approach using addi-

tive functions is sufficient to completely invalidate the approach.

Note on 5.6.1 and 5.6.2. Weinberg’s reduction is approximation-preserving. Specifically, a

((1−α)D
n +α)-approximation to SADP implies a α-approximation to ODP. Here D denotes the con-

struction being D-balanced and n denotes the number of input functions. Note that, in order for

this to be useful, we must be able to make n much larger than D. The first two requirements that

follow ensure that this is the case.

5.1 Works for Large n

Definition. Our construction must work for any n, where n is the number of input functions to

SADP.

Intuition. As mentioned above, the reduction that Weinberg has constructed is not quite ap-

proximation preserving. Roughly, we lose a factor of D
n in approximation. However, if we are able

to make n very large, this approximation loss becomes negligible.

Violating Construction. An early thought when approaching this problem, one which takes

19

advantage of the clear similarities between SADP and ODP, is to set n = 2. Then the input to

SADP is exactly (f, g). SADP is required to approximately solve the difference between some adja-

cent set of functions, but there are only two functions. Thus, when n = 2, SADP is equivalent to

ODP.

However, as described above, this approach fails because our approximation guarantee depends

on having large n. Note that when α = 1
2 , we are guaranteed only a 0-approximation. Therefore

this promisingly straightforward approach fails. However, it is worth noting that this approach

does work when α = 1 (when we need a 1-approximation). Thus there is a trivial reduction when

considering the non-approximation setting.

5.2 D-balanced

Definition.

D− balanced :For a list of functions (f1, ..., fn), let X∗l denote the allocation that maximizes fl(·)− fl+1(·)

for all l ∈ [n]. We say that(f1, ..., fn)are D-balanced if fn(X∗n) ≤ D(fl(X
∗
l)− fl+1(X∗l)) for all l ∈ [n− 1].

Intuition. Even if we are able to make n large, we are only able to make D
n negligible if D

does not depend on n.

Violating Construction. Consider the following input to SADP:

f, g, 2g − f, 3g − 2f, ..., (n− 1)g − (n− 2)f, ng − (n− 1)f

Note that hi − hi+1 = f − g for all i. This looks promising! It will return the proper x∗ even when

we increase n. However, it is not D-balanced. Consider the case of two simple additive functions:

Table 3: Valuation function f

Sets of size 1 Value Sets of size 2 Value

{a} 2 {a,b} 8

{b} 6

20

Table 4: Valuation function g

Sets of size 1 Value Sets of size 2 Value

{a} 1 {a,b} 10

{b} 9

Here, x∗ = {a}, and

max(hi(x)− hi+1(x)) = f(x∗)− g(x∗) = 1

However, recall that the final function is defined as ng − (n− 1)f .

max(hn(x)) = hn(S) = 10n− 8(n− 1) = n+ 8

Thus we must find a D such that

D ≥ n+ 9

This D depends on n, so this construction is not D-balanced.

5.3 Explicitly Approximation-preserving (No addition of constants)

Definition. In addition to having the qualities above, which are necessary to ensure the implicit

approximation preservation between ODP and SADP, we also must ensure that the optimization

performed by SADP explicitly preserves approximation.

Intuition. Even if an α-approximation to SADP implies a roughly α-approximation to ODP,

this is only useful insofar as ODP and SADP agree on what they are approximating. If SADP is

generating a 1
2 -approximation for the expression f(x) − g(x) + 1, but f(x∗) − g(x∗) = 1, a valid

output by SADP is ∅. This garners a value of 1 for SADP, while the max is 2. However ∅ is a

0-approximation for the original ODP problem. As f(x)∗ − g(x∗) can be arbitrarily close to 0, the

addition of any constants that do not cancel out in subtraction will invalidate this approximation

preservation.

5.4 “Normal-looking”

Definition. Functions must be non-negative, monotone, and valued at 0 on the empty set,

21

Intuition. If the reason that ODP is a hard problem is because it is difficult for valuations with

negative values, this is not particularly interesting. Just as we want to reason about valuation classes

individually, we also want to reason only about the functions in these valuation classes which are

relevant to mechanism design problems.

Violating Construction. Consider attempting to fix our construction in the D-balanced sub-

section by subtracting a constant from all hi. Let a = ng(S)− (n− 1)f(S). We could then write

f − a, g − a, 2g − f − a, 3g − 2f − a, ..., (n− 1)g − (n− 2)f − a, ng − (n− 1)f − a

This function still returns the right x∗ with large n, as all the a’s cancel out in the subtraction.

Furthermore, it appears to be D-balanced as well: the difference between each consecutive function

is strictly positive, but the final expression evaluates to at most ng(S)− (n− 1)f(S)−ng(S) + (n−
1)f(S) = 0. Then even for D = 0 this is D-balanced.

However, these functions are now comprised of negative values. In addition, the empty set is nonzero.

Therefore this approach is also invalid.

5.5 Preserves Valuation Classes

Definition. If we are performing a reduction for some ODPV,α, all input functions to SADP must

be ∈ V .

Intuition. The original reduction from BMeD to GOOP holds for all valuation classes. We want

to ensure that our reduction holds for particular valuation classes as well. The true statement we

aim to prove in this paper is: “the problem of solving SADP with inputs h1, .., hn in valuation class

V is at least as hard as solving ODP with inputs f , g in valuation class V ”.

Recall our friend who wants to solve a mechanism design problem. Consider the case where she

wants to solve BMeD for matroid rank valuation functions. We provide her with the reduction and

promise her that the hardest instances of BMeD are no easier than the hardest instances of GOOP.

“That’s not good enough for me,” she replies. “What if all of the hard instances of BMeD involved

non-matroid rank valuations? Then this reduction could still make my problem much harder.”

Again, our clever friend is exactly right. The problem of solving BMeD certainly varies in hardness

22

for different valuation classes, and thus a reduction that does not preserve valuation class is not a

particularly useful result. This paper instead allows us to promise our friend the new algorithmic

problem will not be more difficult than solving BMeD on matroid rank functions (along with many

other classes).

Violating Construction. Here is yet another approach, which seems to follow all previous rules:

Let all functions input to SADP be evaluated over the set of items S′, which includes all items that

f and g were evaluated over, and n additional items t1, ..., tn. For any input x′ to some hi, let x

denote the subset of x′ from the original S.

Let hi(x
′) be f(x) if there are i items t in x. Let hi(x

′) be g(x) if there are less than i items t

in x, and let hi(x
′) be 0 if there are more than i items in t.

Consider attempting to maximize hi − hi+1. If we include less than i extra items, then this value

is equivalent to g − g = 0. If we include exactly i items, it is equivalent to f − g. If we include

exactly i+ 1 items, it is equivalent to 0− f(x). If we include more than i+ 1 items, it is equivalent

to 0 − g(x). Thus the only way to garner a non-negative output is to include i extra items. After

this, the problem is equivalent to f − g.

This construction is valid for arbitrary n, and is D-balanced because the final function does not

scale with n. It also has no non-negative values and is zero at the empty set. However, this function

is strange in a different way: it is certainly not guaranteed to be in the valuation class that f and g

belong to. Consider again the following valuation functions:

Table 5: Valuation function f

Sets of size 1 Value Sets of size 2 Value

{a} 2 {a,b} 8

{b} 6

23

Table 6: Valuation function g

Sets of size 1 Value Sets of size 2 Value

{a} 1 {a,b} 10

{b} 9

Now let us construct h1 according to our rules, considering just one additional item t. When t

is present, the evaluation will be according to f , and then t is not present the evaluation will be

according to g.

Table 7: Valuation function h1

Sets of size 1 Value Sets of size 2 Value Sets of size 3 Value

{a} 1 {a,b} 8 {a,b,t} 9

{b} 9 {a,t} 2

{t} 0 {b,t} 6

Despite our original functions being additive, this function is not even subadditive. Observe that

h(a) + h(t) < h(a, t). As every valuation class we are exploring in this paper includes additive func-

tions as a subset, and none include non-subadditive functions, this transformation does not preserve

valuation class for any relevant classes.

5.6 C-compatible

Definition. ASA defines C-compatibility as a subproperty of cyclic monotonicity. Both definitions

as written in the original paper are provided below:

Cyclic Monotonicity. A list of (possibly randomized) allocations X1, ..., Xn is said to be cyclic

monotone with respect to t1, ..., tn if the welfare-maximizing matching of types to allocations is to

match allocation Xi to type ti for all i.

C-compatibility. We say that a list of types (t1, ..., tn) and a list of (possible randomized)

24

allocations X1, ..., Xn are compatible if (X1, ..., Xn) is cyclic monotone with respect to (t1, ..., tn),

and for any i < j, the welfare-maximizing matching of types ti+1, ..., tj to Xi, ..., Xj−1 is to match

allocation Xl to type tl+1 for all l.

C-compatibility will be discussed in greater depth at the end of section 6.

5.7 Key Takeaway from Restriction Exploration

In the above examples we have struggled to find a construction that fulfills D-balanced and approx-

imation preservation simultaneously. Intuitively, we must somehow generate a long list of functions

such that hi − hi+1 behaves similarly to hi−1 − hi, but h1 and hn are on roughly the same scale.

These restrictions provide intuition for our ultimate approaches.

In further sections we will refer back to these restrictions. Therefore we will summarize the conditions

here along with their corresponding numbers:

Number Constraint

1 Large n

2 Small D

3 Approximation-preserving

4 Normal-looking

5 Preserves valuation class

6 C-compatible

6 Reduction Results

Notes on Compatibility While initially presenting our results, we will ignore the restriction of

C-compatibility. Compatibility can be achieved in all of our results by making slight adjustments

to the models. For the sake of clarity, proofs that these adjustments satisfy C-compatibility and do

not violate any other constraints will be withheld until the end of the results section.

25

6.1 Multi-packet Model

Here we present a key transformation that, while not getting us fully over the finish line, opens

up space for creative solutions. This framework, which we will refer to as the multi-packet model,

provides the backbone for all three final solutions.

Assume that we have an original input to ODP of two functions f and g over m items, where

f and g are within some valuation class V . Let us define n disjoint copies (or “packets”) of these

items, S1, ..., Sn. Thus for each xi ∈ S, we will now have xi1, ..., xin. Then we can define n valuation

functions h1, ..., hn, where hi has a separate valuation function over each packet and resulting packet

values are additive. Formally:

hi =

n∑
j=1

hij(Sj)

Here, hij represents the ith function’s valuation of packet j and Sj represents the items from the

jth set included. hij is defined as follows:

hij(·) = f(·) ⇐⇒ j ≥ i

hij(·) = g(·) ⇐⇒ j < i

To provide intuition, hi values each of the packets according to either f(·) or g(·). In particular,

h1(·) values all packets at f(·), and as i increases the f(·) valuation turn into g(·) valuations. Below

we provide an example where n = 5:

h1(X) = f(X1) + f(X2) + f(X3) + f(X4) + f(X5)

h2(X) = g(X1) + f(X2) + f(X3) + f(X4) + f(X5)

h3(X) = g(X1) + g(X2) + f(X3) + f(X4) + f(X5)

h5(X) = g(X1) + g(X2) + g(X3) + f(X4) + f(X5)

h5(X) = g(X1) + g(X2) + g(X3) + g(X4) + f(X5)

h6(X) = g(X1) + g(X2) + g(X3) + g(X4) + g(X5)

In the multi-packet model, the set of items from Si in the α-approximation for hi − hi+1 is an

α-approximation x∗ for f − g.

Proof: By construction, hi and hi+1 will have the same valuations on every packet except for

26

Si. Assume that hi − hi+1 is being evaluated on some set X. We can split X into two subsets, Xi

(items in Si) and Xa (items in some Sa, a 6= i). Because the value of h is the addition of its value

over all the packets, we can write

hi(X)− hi+1(X) = hi(Xi)− hi+1(Xi) + hi(Xa)− hi+1(Xa)

Regardless of the construction of Xa, hi(Xa)−hi+1(Xa) = 0, as hi and hi+1 have the same valuations

on all of these packets. Thus:

hi(X)− hi+1(X) = hi(Xi)− hi+1(Xi)

Finally, by our definition of h:

hi(Xi)− hi+1(Xi) = f(X)− g(X)

Thus the problem of maximizing hi − hi+1 for any i is exactly equivalent to maximizing f − g. A

valid solution to SADP could include additional items from other sets, but these items would have

no impact on the final value. So we can throw away these items and return Xi, which will have

exactly the same approximation ratio on ODP as on SADP. This concludes our proof.

This model seems promising, but by itself it does not actually solve our problem: the final function

has max value n ∗ g(S). This value scales with n, while hi(x) − hi+1(x) does not. Therefore it is

not D-balanced. To reach an appropriate solution, we need to place a cap on the size of hn(S). We

are in a better place than before, however: creating multiple item packets gives us more flexibility

to implement such constraints.

GS is closed under the addition of valuations over disjoint items.

As most valuation classes are closed under addition, it is clear that the addition of functions in V

over disjoint sets of items will certainly remain in V . However, given the unusually brittle nature of

the GS class, we will briefly prove this closure for GS.

Consider two GS functions f1 and f2 evaluated over disjoint sets S1 and S2. Let h = f1 + f2,

where h is evaluated over S = S1 ∪ S2. Assume that for some price vector p, the optimal set is X,

which includes item xi. Because no item adds value to both f1 and f2,

maxX∈S(h(X)−
∑
∀xi∈X

pi) = maxX1∈S1
(f1(X1)−

∑
∀xi∈S1

pi) + maxX2∈S2
(f2(X2)−

∑
∀xi∈S2

pi)

27

Now let us increase the price of xi, and w.l.o.g. assume that xi ∈ S1. This will only impact the

valuation of f1. Certainly the optimal set from S2 will not change. As f1 is GS, all items in Si 6= xi

will be in the new optimal set. Therefore h is GS.

6.2 Max Model

6.2.1 Model

Description. Let us provide our first positive result. Recall the functions h1, ..., hn defined in

section 6.1. Let us redefine them slightly: instead of summing up all hij for each hi, we will instead

take the maximum over all of them. So our inputs to SADP are now defined as follows:

hi = max
j∈1...n

hij(Sj)

Below is an example for the n = 5 case:

k1(X) = max(f(X1), f(X2), f(X3), f(X4), f(X5))

k2(X) = max(g(X1), f(X2), f(X3), f(X4), f(X5))

k3(X) = max(g(X1), g(X2), f(X3), f(X4), f(X5))

k4(X) = max(g(X1), g(X2), g(X3), f(X4), f(X5))

k5(X) = max(g(X1), g(X2), g(X3), g(X4), f(X5))

k6(X) = max(g(X1), g(X2), g(X3), g(X4), g(X5))

Constraint Satisfaction. We claim that this transformation represents aD-balanced, approximation-

preserving reduction that preserves certain valuation classes. Namely, if SADP can find a (1 − α)-

approximate x for the transformed input, then this x is also a (1−α)-approximation of ODP(f , g).

Let us consider the expression ki − ki+1 for any i. Let us assume that this was the set of func-

tions that SADP chose to maximize the difference between, and the approximate solution was a set

x∗∗. Let us define the optimal solution to ODP as x∗.

By definition:

ki(X
∗∗)− ki+1(X∗∗) = max

j∈1...n
hij(X

∗∗
j)− max

j∈1...n
h(i+1)j(X

∗∗
j)

If X∗∗ is an (1 − α)-approximation of the difference, then the maximum over all hij must be hii.

Assume for contradiction that the difference is approximately maximized and maxj∈1...n hij(X
∗∗
j) =

28

hik, where k 6= i. Then maxj∈1...n hij(X
∗∗
j) ≥ hik, as hik = h(i+1)k for all k 6= i. Then ki−ki+1 ≤ 0.

This contradicts our assumption about the difference being strictly positive.

Furthermore, a 1-approximation to SADP is exactly when the max of both the top and bottom

sets is evaluating Xi. If any other set from the bottom is chosen, then this will be strictly worse

than selecting g(Xi). Given this, the 1-approximation optimization of ODP and SADP are exactly

the same problem–though SADP could have a couple extra items..

Given that maxj∈1...nhij(X
∗∗
j) = hii, if X∗∗ is an (1− α)-approximation of SADP, then the subset

of X∗∗ in ci is a (1− α)-approximation of ODP. Let us define the max set in ki+1 as b(x∗∗∗), where

b could be f or g. Let us assume for contradiction that this is not true. Then SADP is correctly

approximated:

(f(x∗∗)− b(x∗∗∗)) ≥ (1− α)(f(x∗)− g(x∗))

However, ODP is not:

(f(x∗∗)− g(x∗∗)) < (1− α)(f(x∗)− g(x∗))

Because the max function in ki+1 is b(x∗∗∗),

b(x∗∗∗) ≥ g(x∗∗)

It follows that

(1− α)(f(x∗)− g(x∗)) ≤ f(x∗∗)− b(x∗∗∗) ≤ f(x∗∗)− g(x∗∗) < (1− α)(f(x∗)− g(x∗))

We have thus derived a contradiction. Thus our construction satisfies constraints 1 2 and 3. All

the functions involved are evaluated at 0 at the empty set and are nonzero everywhere (assuming

that f and g are of this nature), and thus it also satisfies constraint 4. An exploration of the closed

valuation classes (constraint 5) will be performed below. C-compatibility (constraint 6) will again

be covered at the end.

6.2.2 Closures

Unit-Demand. Unit demand is defined as the make singleton item over all available items. Triv-

ially, taking the max over unit demand functions is unit demand.

29

XOS. The XOS function can be thought of as the class of functions constructed from the max

of multiple additive functions. If we have some h = max(f, g) where f and g are XOS, then:

h = max(max(f1, f2, ..., fx),max(g1, g2, ..., gy))

Where fi and gi are the ith additive functions used in the construction of f and g respectively. This

can be rewritten as

h = max(f1, f2, ..., fx, g1, g2, ..., gy)

Thus h is the max over a set of additive functions, so h is closed under the max operation.

Subadditive. Subadditive functions are defined by the following constraint: if f is subaddi-

tive, for every disjoint set of items S, T , f(S ∪ T) ≤ f(S) + f(T). Proof: Take some function

h = max(f, g), where f and g are subadditive functions. Then

h(S ∪ T) = max(f(S ∪ T), g(S ∪ T))

≤max(f(S) + f(T), g(S) + g(T)) (by subadditivity of f and g)

≤max(f(S), g(S)) + max(f(T), g(T)) (by the definition of max)

= h(S) + h(T) (by the definition of h)

Thus,

h(S ∪ T) ≤ h(S) + h(T)

This fulfills the specifications of subadditivity. As any h that is the max of two subadditive functions

is subadditive, subadditive functions are closed under the max operator.

6.3 Min with a Constant Model

6.3.1 Model

Description. While the above model satisfies all constraints, it is not closed for many important

valuation classes (see appendix). Here we present another transformation that is valid for a different

set of valuation classes.

Similarly to the max model, we will place a limit on the growth of our functions. Again recall

the functions h1, ..., hn defined in section 6.1. Here we will define our new input functions to SADP

30

k1, ..., kn as ki = min(hi, f(S)). Note that f(S) is a constant that can be easily calculated upon

input of f and g. Below is an example for the n = 5 case:

k1 = min(f(X1) + f(X2) + f(X3) + f(X4) + f(X5), f(S))

k2 = min(g(X1) + f(X2) + f(X3) + f(X4) + f(X5), f(S))

k3 = min(g(X1) + g(X2) + f(X3) + f(X4) + f(X5), f(S))

k4 = min(g(X1) + g(X2) + g(X3) + f(X4) + f(X5), f(S))

k5 = min(g(X1) + g(X2) + g(X3) + g(X4) + f(X5), f(S))

k6 = min(g(X1) + g(X2) + g(X3) + g(X4) + g(X5), f(S))

Constraint Satisfaction. We claim that this transformation represents aD-balanced, approximation-

preserving reduction. Namely, if SADP can find a (1−α)-approximate x for the transformed input,

then this x is also a (1− α)-approximation of ODP(f , g).

Let us consider the expression ki − ki+1 for any i. Let us assume that this was the set of func-

tions that SADP chose to maximize the difference between, and the approximate solution was a set

x∗.

By definition:

ki(x
∗)− ki+1(x∗) = min(hi(x

∗), f(S))−min(hi+1(x∗), f(S))

= min(f(x∗i) + h−ii (x))− g(x∗i)− h−ii+1)(x))

By construction, hi and hi+1 will have the same valuations on every packet except for the ith. We

can split x∗ into two subsets, x∗i (items in Si) and x∗a (items in some Sa, a 6= i). Let us consider

what could happen to the value of min(hi(x
∗), f(S))−min(hi+1(x∗), f(S)) if we remove any item

in xa by considering different cases.

Case 1: hi(x) < f(S), hi+1(x) < f(S)

Here, neither value has met its cap. Thus ki − ki+1 = hi − hi+1. As proven in section 6.1,

α-approximation solution to hi−hi+1 is an α-approximation solution to f − g, and therefore we are

done.

31

Case 2: hi(x) < f(S), hi+1(x) > f(S)

This case cannot occur. The resulting value would be negative and therefore x would not be an

approximation of the optimal solution.

Case 3: hi(x) > f(S), hi+1(x) > f(S)

The resulting value would be zero and therefore x would not be an approximation of the optimal

solution. Again, this case cannot occur.

Case 4: hi(x) > f(S), hi+1(x) < f(S)

Here, hi has met its cap but hi+1 has not. Removing some element in xa would decrease the

value of the negative term more than it would decrease the value of the positive term. Therefore

removing this item would increase the final value.

Therefore all items in xa contribute a non-positive value to ki(x)−ki+1(x). This immediately implies

that the x garnering a 1-approximation for this expression is the x that maximizes ki(xi)−ki+1(xi),

which is equal to

min(hii(x), f(S))−min(h(i+1)i(x), f(S))

= min(f(x), f(S))−min(g(x), f(S))

= f(x)− g(x)

Therefore (ki(x
∗)− ki+1(x∗)) = f(x∗)− g(x∗) for x∗ = maxx∈X(ki(x)− ki+1(x))

(1− α)(f(x∗)− g(x∗))

= (1− α)(ki(x
∗)− ki+1(x∗))

≤ ki(x)− ki+1(x) (By the approximation of SADP)

Therefore (1− α)(f(x∗)− g(x∗)) ≤ ki(x)− ki+1(x), so x is a (1− α)-approximation for ODP. This

input is D-balanced for small D. The maximum value for each function is f(S). As this value

is a constant and does not scale with n, for large enough n D approaches 1. Our h are simply

32

the addition of multiple functions in V , so assuming closure under addition, h is certainly in V .

However, k is the minimum of h and a constant. Therefore this reduction only holds for V that are

closed under min(f, c). This construction is also D-balanced, assuming that f(x∗)− g(x∗) > 0.

6.3.2 Closures

Submodular. It is a known result that submodular functions are closed under taking the minimum

with a constant.

6.4 Item Cap Model

6.4.1 Model

Description. Similarly to the previous two models, the Item Cap (IC) operation places a limit

on the total welfare of the final set. However, now we approach this limit indirectly by constraining

the total number of items that our functions can have valuations over. Consider the multi-packet

model, but with an item cap that is exactly |S|, the size of the original set of items. As with the

previous models, we still have sufficient space to maximize f − g between functions, but not a lot

more space than that.

Constraint Satisfaction. Assume that functions h1, ..., hn are constructed via the item cap

transformation from functions f and g. Furthermore, assume that SADPV,0 returns the set x∗.

Finally, for some hi and hi+1 that SADP chooses to maximize, assume that the max-valued subset

of size m is x1 in hi and x2 in hi+1.

Let us define a−ii as the evaluation of hi on all chunks but the ith, before the IC operation. Similarly,

we will define a−ii+1 as the evaluation of hi on all chunks but the ith, before the IC operation.

Then

hi(x
∗)− hi+1(x∗) = ICm(a−ii + fi)− ICm(a−ii+1 + gi)

= a−ii (x1) + f(x1)− a−ii+1(x2)− g(x2)

Note that a−ii and a−ii+1 are equivalent, so we will refer to them as a−i from now on. Con-

sider the allocation xOPT , the allocation maximizing our original ODP problem. As |xOPT | ≤ m,

hi(xOPT) − hi+1(xOPT) = f(xOPT) − g(xOPT). Let us consider possible ways to improve this set,

33

and disprove all cases.

1) If we remove or add any set of items from ci, by the definition of xOPT this will decrease

or not impact the value.

2) Now consider the addition of some set in some other chunk cj . If some of these items are

included in the top m items for g but not for f , then the value for g is increased and the value for

f stays the same.

3) If some of these items are included in the top m items for f but not for g, then if we de-

fine the set of items hi is kicking out of ci as Y and the new items as Z,

f(xOPT \Y) + a−i(Z)− g(xOPT) > f(xOPT)− g(xOPT)

f(xOPT \Y) > f(xOPT)− a−i(Z)

And as hi+1 did not make any substitutions,

g(xOPT \Y) ≤ g(xOPT)− a−i(Z)

Thus

f(xOPT \Y)− g(xOPT \Y) > f(xOPT)− g(xOPT)

This contradiction our assumption about the optimality of xOPT .

4) If some new items are included in the top m items for both f and g, both valuations will

have kicked out some items. Then our new payoff is f(xOPT \Y) − g(xOPT \Z). Let us assume for

contradiction that this is an improvement. Then:

f(xOPT \Y)− g(xOPT \Z) > f(xOPT)− g(xOPT)

But, by assumption that xOPT is optimal:

f(xOPT)− g(xOPT) ≥ f(xOPT \Y)− g(xOPT \Y)

Thus

f(xOPT \Y)− g(xOPT \Z) > f(xOPT \Y)− g(xOPT \Y)

g(xOPT \Z) < g(xOPT \Y)

34

However, this derives a contradiction: if this were true, then hi+1 would have selected the subset

xOPT \Y instead. Therefore this case is not possible .

There is no way to construct some input set that gives a solution to SADPV,α which does not

give a solution to ODPV,α. Thus getting a (1 − α)-approximation to SADP is thus an equivalent

problem to getting a (1 − α)-approximation to ODP. This takes care of constraint 3. The logic

holds for an arbitrary n, so constraint 1 is satisfied. The IC operation will retain the value of 0 on

the empty set and produce non-negative functions, and therefore constraint 4 is satisfied. Finally,

for constraint 2, D does not scale with n. Because our functions are subadditive, hn is maximized

by selecting c copies of the max-valued singleton item from disjoint sets. Thus, if the maximum

singleton value is v, hn = cv. In the case of our reduction c = m where m = |X|. Thus

maxx∈S(hn(x)) = mv

Neither m nor v depend on n, and therefore constraint 2 is satisfied. Now we will consider the

behavior of valuation classes under the IC operation.

6.4.2 Closures

Matroid valuation. Matroid valuations are known to be closed under the operation of limiting

the max valid matroid size. This is exactly the IC operation.

GS. As per Pas Lemme, Gross Substitute functions are well-layered [12]. This means that when

performing the greedy algorithm with some GS function f and some price vector p, the set con-

structed at each step is the max-value set of all sets of the same size. Now consider the function

h = IC(f, c).

Let us run the greedy algorithm on h with price vector p. If the optimal set in f has size ≤ c, then

max(hp) = max(fp), and thus the greedy algorithm will find the max-payoff set. If the optimal set

in f has size > c, then at step c the greedy algorithm will have the set which is the optimal set for fp

of size c. This set certainly has better payoff for hp than any smaller set encountered via the greedy

algorithm, as otherwise the greedy algorithm would have terminated previously. Furthermore, as

all of these previously encountered sets had better payoff than all sets of their same size (by the

well-layered characteristic), our final set is certainly the optimal. Therefore the greedy algorithm

for h on any price vector will return the max-payoff set. This is exactly the definition of GS, so GS

is closed under IC.

35

One important note is that, as GS functions are not closed under addition, the reduction from

GOOP to OP (as stated in section 3) is no longer completely sound. This reduction involves adding

together functions to form f − g, but f and g may no longer be GS. A particular type of GS func-

tions, called tree-concordant functions, are closed under addition [3]. Therefore only if all valuation

functions input to GOOP are tree-concordant does the complete circle of reductions certainly hold.

Otherwise, the hardness result in section 7 at least holds, as maximizing the difference between two

GS functions is certainly no harder than maximizing the difference between many GS functions.

Therefore if the former is NP-hard, the latter is NP-hard as well.

Subadditivity. Let us define some function h = IC(f, c) for some constant c and some sub-

additive function f . Now we can consider the value of h(S ∪ T) for any two disjoint sets S and

T .

h(S ∪ T) = IC(f(S ∪ T), c)

By the subadditivity of f , f(S ∪ T) ≤ f(S) + f(T). Consider any item cap on these functions. For

any such cap, the best set of size c to pick for f(S ∪ T) is some X, which includes some subset of T

T ′ and some subset of S S′. Thus

IC(f(S ∪ T), c) = f(X) = f(T ′ ∪ S′)

By the subadditivity of f :

≤ f(T ′) + f(S′)

By construction, we know that |T | and |S| ≤ c. Thus

f(T ′) + f(S′) = IC(f(T ′), c) + IC(f(S′), c)

This expression is ≤ IC(f(T), c) + IC(f(S), c). This is clear because whatever T ′ and S′ are, they

could certainly be selected in the IC protocol by their supersets T and S. Thus

h(S ∪ T) = IC(f(S ∪ T), c) ≤ f(T ′) + f(S′) ≤ IC(f(T), c) + IC(f(S), c) = h(S) + h(T)

h satisfies the subadditivity condition, so subadditive functions are closed under IC.

6.5 Reintroduction of C-compatibility

Lemma 1. Any set of functions h1...hn and corresponding allocations x1...xn where:

36

1) Matching xi to hi for all i yields the max-weight matching

2) xi maximizes hi − hi−1 for all i

3) hi(xi) ≤ na for some constant a

4) hi(xi−1)− hi(xi−b) ≥ 1
nd for some constant d and all 0 ≤ b ≤ i− 2

is C-compatible for some C = na+d+1.

Proof: We can set Qi = 2n
a+di. Then the welfare difference of allocating xi−1 to hi and allocating

any other set to hi is at least

2n
a+di 1

nd
= 2n

a+di 1

2log(n)d
= 2n

a+di−dlog(n)

Deciding on this allocation in the worse case will mean that all other matchings have weight 0. In

this case, the amount of weight lost is equal to

i−1∑
j=0

Qjn
a =

i−1∑
j=0

Qj2
alog(n) ≤ Qi−1(i−1)2alog(n) = 2n

a+d(i−1)(i−1)2alog(n) ≤ 2n
a+di−na+d+alog(n)+log(n)

This upper bound on the total value lost by other players when set xi−1 is given to player hi is

smaller than the benefit.

Claim:

2n
a+di−dlog(n) > 2n

a+di−na+d+alog(n)+log(n)

We can show this by starting with the following inequality, which holds for n > 2:

na+d > (a+ d+ 1)log(n)

−dlog(n) > −na+d + alog(n) + log(n)

2−dlog(n) > 2−n
a+d+alog(n)+log(n)

2n
a+di−dlog(n) > 2n

a+di−na+d+alog(n)+log(n)

As the benefit of giving hi xi−1 over any other set is greater than the total possible value in-

curred in the matching by all other hi−b, the max-weight matching will certainly match hi to xi−1.

Given this, we now have a new weight-maximization problem with functions up to hi−1 and sets

up to xi−2. Using the same logic as above, we know that the allocation must assign xi−2 to hi−1.

37

Continuing in this manner, we can inductively assign all xi−k to hi−k−1 to create a max-weight

matching. This construction therefore satisfies compatibility. The maximum value of any multiplier

Qn is 2n
a+d+1

, and therefore the construction is na+d+1-compatible.

Transformation Patterns. The alterations that must be made to the three constructions in

order to satisfy C-compatibility are extremely similar. For clarity we have written out each, but

note that the intuition for any example holds for all.

6.5.1 Max Alteration

We can transform our constructions into a form that satisfies this lemma. Recall that the original

max construction was of the following form:

max(f(x1), f(x2), ..., f(xn))

max(g(x1), f(x2), ..., f(xn))

max(g(x1), g(x2), ..., f(xn))

And so on.

Consider the following transformation:

max(f(x1) + b(x1), (1 +
1

n2
)(f(x2) + b(x2)), ..., (1 +

n

n2
)(f(xn) + b(xn)))

max(g(x1) + b(x1), (1 +
1

n2
)(f(x2) + b(x2)), ..., (1 +

n

n2
)(f(xn) + b(xn)))

max(g(x1) + b(x1), (1 +
1

n2
)(g(x2) + b(x2)), ..., (1 +

n

n2
)(f(xn) + b(xn)))

Here, b(x) = |x|
n . Let us first confirm that this construction is still approximation-preserving, D-

balanced, and closed under the operations we claimed it was previously. Our final function has

scaled only by a factor of 1 + 1
n . In addition, we have scaled each packet valuation in exactly the

same manner throughout the functions. Therefore constraints 1 and 2 hold, and it remains the case

that an α-approximation of hi − hi+1 is an α-approximation of hi,i(x)− hi+1,i(x).

Furthermore, this difference is equal to

max(f(x1)+b(x1), (1+
1

n2
)(f(x2)+b(x2)), ..., (1+

n

n2
)(f(xn)+b(xn)))−max(g(x1)+b(x1), (1+

1

n2
)(f(x2)+b(x2)), ...,

(1 +
n

n2
)(f(xn) + b(xn)))

38

As before, any item allocated to a set that is not the set i will provide no value to hi − hi+1. Thus

the same logic from proof 6.2 remains.

Now let us confirm that this construction satisfies our constraints for C-compatible. Let the set

of allocations be x∗1, x
∗
2, ..., x

∗
n−1, S, where S is the complete set. hi − hi−1 is maximized exactly at

x∗i , and hn is maximized at S. Therefore condition 2) is satisfied. Each of our functions hi are

bounded by (1 + 1
n)max(f(S),g(S)). Thus for large enough n, hi(xi) ≤ max(f(S),g(S)) ≤ n1.

Therefore condition 3) holds with a = 1.

Finally, hi(xi−1) = (1 + i−2
n)(g(x∗) + |x∗|

n), and hi(i − b) ≤ (1 + i−3
n)(g(x∗) + |x∗|

n). Thus for

all b:

hi(xi−1)− hi(i− b) ≥
g(x∗) + |x∗|

n

n
≥ |x

∗|
n2

And, per our assumption that |x∗| > 0,

hi(xi−1)− hi(i− b) ≥
1

n2

This restriction 4 holds with d = 2. Thus this construction is na+d+1 = n4-compatible.

6.5.2 Min Alteration

In a similar fashion, recall that the original min construction was of the following form:

min(f(x1) + f(x2) + ...+ f(xn), f(S))

min(g(x1) + f(x2) + ...+ f(xn), f(S))

min(g(x1) + g(x2) + ...+ f(xn), f(S))

And so on. Consider the following transformation:

min(f(x1) + b(x1) + (1 +
1

n2
)(f(x2) + b(x2)) + ...+ (1 +

n

n2
)(f(xn) + b(xn)), 2f(S))

min(g(x1) + b(x1) + (1 +
1

n2
)(f(x2) + b(x2)) + ...+ (1 +

n

n2
)(f(xn) + b(xn)), 2f(S))

min(g(x1) + b(x1) + (1 +
1

n2
)(g(x2) + b(x2)) + ...+ (1 +

n

n2
)(f(xn) + b(xn)), 2f(S))

39

Here, b(x) = |x|
n . Let us first confirm that this construction is still approximation-preserving, D-

balanced, and closed under the operations we claimed it was previously. Note that we have increased

the ceiling to 2f(S), as f(x∗), after scaling, could now garner a slightly higher value than f(S). How-

ever, this multiple is always less than 2, so f(x∗) < 2f(S). In addition, we have scaled each packet

valuation in exactly the same manner throughout the functions. Therefore it remains the case that

an α-approximation of hi − hi+1 is an α-approximation of hi,i(x)− hi+1,i(x).

Furthermore, this difference is equal to

(1 +
i− 1

n2
)(f(xi) +

|x|
n

)− (1 +
i− 1

n2
)(g(xi) +

|x|
n

) = (1 +
i− 1

n2
)(fxi − gxi)

This is simply a scalar multiple of f − g. Therefore our approximation guarantee remains. Fur-

thermore, this construction remains D-balanced, as the max(hn) = 2f(S) and max(hi − hi+1) ≥
f(x∗)− g(x∗). Assuming that f(x∗) = c > 0, we can write

2f(S) ≤ D ∗ c

D ≥ 2f(S)

c

There will always exist some constant c independent of n such that this inequality holds true.

Now let us confirm that this construction satisfies our constraints for C-compatible. Let the set

of allocations be x∗1, x
∗
2, ..., x

∗
n−1, S, where S is the complete set. hi − hi−1 is maximized exactly

at x∗i , and hn is maximized at S. Therefore condition 2) is satisfied. Each of our functions hi are

bounded by 2f(S). Thus for large enough n, hi(xi) ≤ 2f(S) ≤ n1. Therefore condition 3) holds

with a = 1.

Finally, exactly as with the max alteration, hi(xi−1) = (1 + i−2
n)(g(x∗) + |x∗|

n), and hi(i − b) ≤
(1 + i−3

n)(g(x∗) + |x∗|
n). Thus for all b:

hi(xi−1)− hi(i− b) ≥
g(x∗) + |x∗|

n

n
≥ |x

∗|
n2

And, per our assumption that |x∗| > 0,

hi(xi−1)− hi(i− b) ≥
1

n2

This restriction 4 holds with d = 2. Thus this construction is na+d+1 = n4-compatible.

40

6.5.3 IC Alteration

We will transform our functions exactly as above before taking the item cap. The item cap value

will remain m. As above, scaling the values of our disjoint sets before adding them together will not

impact closure results.1

The final construction is equivalent to the final min construction, except for the operation per-

formed upon the functions:

ICm(f(x1) + b(x1) + (1 +
1

n2
)(f(x2) + b(x2)) + ...+ (1 +

n

n2
)(f(xn) + b(xn)))

ICm(g(x1) + b(x1) + (1 +
1

n2
)(f(x2) + b(x2)) + ...+ (1 +

n

n2
)(f(xn) + b(xn)))

ICm(g(x1) + b(x1) + (1 +
1

n2
)(g(x2) + b(x2)) + ...+ (1 +

n

n2
)(f(xn) + b(xn)))

Again, b(x) = |x|
n .

All of the valuation classes that we state are closed under IC–subadditive, gross substitutes, unit

demand and matroid valuation–are all closed under scalar multiplication and under the addition

of valuations over disjoint sets. Therefore the transformation does not impact function closures.

Furthermore, the max value of hn is now only increased by a factor of roughly 1
n at most. This value

does not increase as n increases, and therefore constraint 2 is still satisfied. The logic still holds for

arbitrary n, and therefore constraint 1 is still satisfied. We retain functions of the form specified by

constraint 4.

Now the difference between any two consecutive functions is:

IC(g(x1) + b(x1) + (1 +
1

n2
)(f(x2) + b(x2)) + ...+ (1 +

n

n2
)(f(xn) + b(xn)))− IC(g(x1)+

b(x1) + (1 +
1

n2
)(g(x2) + b(x2)) + ...+ (1 +

n

n2
)(f(xn) + b(xn)))

Furthermore, the proof that this is in fact a valid, explicitly approximation-preserving reduction is

analogous to the proof provided in section 6.4. Note that the operations of scaling the functions and

adding a constant that cancels out in subtraction do not violate any aspects of the proof.

1The key exception to this statement is the class of matroid rank functions. These functions are constrained

to integer valuations and increases of 0 or 1 upon the addition of an item. Adjustments to ensure C-compatibility

make the functions no longer integer-valued. Thus, even though matroid rank functions are closed under the non-C-

compatible construction, the complete construction does not constitute a valid reduction for the class.

41

6.6 Results Summary

Table 8: Summary of Closure Results

Transformation Max Min Item Cap

Subadditive Yes No Yes

Submodular No Yes No

Gross Substitute No No Yes

XOS Yes

Unit Demand Yes

Matroid Valuation Yes

Matroid Rank No No No∗

Budget Additive No No No

7 Hardness Results

In this section, we provide a hardness result for matroid valuation functions by showing a hard ODP

instance. As the class of matroid valuation functions is contained within GS functions, this proof

provides the first hardness result for both classes. Furthermore, as our proof is a full reduction

from ODP to SADP it provides a more meaningful hardness result for submodular functions than

that provided in ASA. Our work proves that SADP under submodular (as well as the other classes

provided) is hard in cases we care about–when it is used to solve ODP.

ODP instance. We will show an f and g here that are matroid valuation functions such that

approximating the max of f − g is exponential in complexity for any α 6= 0. We will provide f

and g that are OXS functions, and for clarify we will describe them by their bipartite graphs. Note

that after our IC transformation the inputs to SADP are not OXS. However, OXS is a subclass of

matroid valuation (and this is a subclass of GS), and thus f and g are also matroid valuation and

GS. These classes are closed under IC.

Let us begin by describing f . The function is an OXS function modeled as follows: there will

be m left-hand nodes and m
2 right-hand nodes. All left-hand nodes will have edges to all right-

hand nodes with weights of 1. g will be represented by a similar graph, except an arbitrary set of

m
2 left-hand nodes will not have edges to the final right-hand node. Below is an instance where m = 6:

42

L1

L2

L3

L4

L5

L6

R1

R2

R3

L1

L2

L3

L4

L5

L6

R1

R2

R3

Achieving any nonzero approximation of f −g is exponentially hard. Let us define r∗ as the final

right-hand node. Let us define x∗ as the left-hand nodes in g which have no edges to r∗. For any

set of items x where |x| < m
2 , f(x) = g(x) = |x|, because we can match all of the left hand nodes

representing the items to right-hand nodes. For any set of items x where |x| > m
2 , f(x) = g(x) = m

2 .

This is because, given the size of the set there must be at least one item with an edge to r∗, so

we can match these nodes. Then we can match exactly m
2 − 1 other nodes before we run out of

right-hand nodes. For any set of items x where |x| = m
2 again x 6= x∗, f(x) = g(x) = m

2 . We can

match a node not in x∗ to r∗ and all of the remaining nodes to other right-hand nodes.

The only remaining case is when x = x∗. In this case we can match all nodes in the f graph,

gaining a value of m2 . But none of these nodes have an edge to r∗ in the g graph, so the max-weight

matching is m
2 − 1. Thus f(x∗)− g(x∗) = 1, and for all other x f(x)− g(x) = 0. Therefore the only

set which provides a nonzero approximation of the max is the optimal set itself, x∗. Furthermore,

finding this set is exponentially hard, even if the optimizer discerns that the optimal set must be of

size m
2 . There are

(
n
m
2

)
sets of size m

2 to examine, and only one x∗. All other sets provide exactly

the same value, so querying the value of an incorrect set provides no information to the optimizer.

Thus finding x∗ takes 2cm time.

Given our proof that there is a valuation class-preserving, approximation-preserving reduction from

ODP to SADP using IC for matroid rank and GS functions, providing this instance is sufficient to

43

prove hardness of approximation.

8 Future Work

In this paper we have provided a framework for transforming ODP instances into SADP instances.

The positive results above prove reduction tightness from BMeD to GOOP for many valuation

classes. However, some valuation classes remain unsolved. In particular, budget-additive functions

and matroid rank functions are both interesting classes that both lack full reductions and hardness

results. Furthermore, no current reduction fully closes the circle for each GS instance, as the

reduction from GOOP to ODP necessitates closure under addition. All these valuation classes

are interesting to reason about, and future work may attempt to extend this framework to draw

stronger conclusions about their hardness.

44

References

[1] S. Matthew Weinberg. Algorithms for Strategic Agents. PhD thesis, Massachusetts Institute of

Technology, 2014.

[2] United Nations Framework Convention in Climate Change. The kyoto protocol mechanisms,

2010.

[3] Eric Balkanski and Renato Paes Leme. On the construction of substitutes. 2018.

[4] Xi Chen, Ilias Diakonikolas, Dimitris Paparas, Xiaorui Sun, and Mihalis Yannakakis. The

complexity of optimal multidimensional pricing. In Proceedings of the Twenty-Fifth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January

5-7, 2014, pages 1319–1328, 2014.

[5] Xi Chen, Ilias Diakonikolas, Anthi Orfanou, Dimitris Paparas, Xiaorui Sun, and Mihalis Yan-

nakakis. On the complexity of optimal lottery pricing and randomized mechanisms. In IEEE

56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,

USA, 17-20 October, 2015, pages 1464–1479, 2015.

[6] Shahar Dobzinski, Hu Fu, and Robert D. Kleinberg. Optimal Auctions with Correlated Bidders

are Easy. In the 43rd ACM Symposium on Theory of Computing (STOC), 2011.

[7] Constantinos Daskalakis, Alan Deckelbaum, and Christos Tzamos. Mechanism Design via

Optimal Transport. In The 14th ACM Conference on Electronic Commerce (EC), 2013.

[8] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. An Algorithmic Characteri-

zation of Multi-Dimensional Mechanisms. In the 44th Annual ACM Symposium on Theory of

Computing (STOC), 2012.

[9] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. Optimal Multi-Dimensional

Mechanism Design: Reducing Revenue to Welfare Maximization. In the 53rd Annual IEEE

Symposium on Foundations of Computer Science (FOCS), 2012.

[10] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. Reducing Revenue to Welfare

Maximization: Approximation Algorithms and other Generalizations. In the 24th Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA), 2013.

45

[11] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. Understanding Incentives:

Mechanism Design becomes Algorithm Design. In the 54th Annual IEEE Symposium on Foun-

dations of Computer Science (FOCS), 2013.

[12] Renato Paes Leme. Gross substitutability: An algorithmic survey. 106:294–316, 2017.

46

9 Appendix

Below we present proofs that various valuation classes are not closed under various models. We

must present multiple solutions because certain valuation classes are not closed under certain trans-

formations.

9.1 Budget Additive is not closed under Max, Min or IC

In all three of these transformations we consider disjoint sets of items. However, if f and g have

different budgets, any addition of these functions will not be budget additive.

Budget additive functions are also not closed under the max operations. Consider any two

additive functions f and g. Create two new budget additive functions f ′ and g′ with budgets

b ≥max(f(S), g(S)). Here S is the complete set. Then these functions behave exactly as f and g.

However, we know that there exist additive functions f and g such that max(f, g) is not submodular.

Therefore there exist budget-additive functions f ′ and g′ such that max(f ′, g′) is not submodular,

and thus not budget additive.

9.2 Submodular and GS are not closed under max

We present two additive functions where, when the max is taken, the result is not submodular. As

all additive functions are submodular, it follows that submodular functions are not closed under the

max operation. Furthermore, all additive functions are GS, and all GS are submodular. Thus GS is

not closed under the max operation.

Consider the following two additive valuation functions over three items:

Table 9: Valuation function f

Sets of size 1 Value Sets of size 2 Value Sets of size 3 Value

{a} 4 {a,b} 10 {a,b,c} 10

{b} 6 {a,c} 4

{c} 0 {b,c} 6

47

Table 10: Valuation function g

Sets of size 1 Value Sets of size 2 Value Sets of size 3 Value

{a} 0 {a,b} 0 {a,b,c} 4

{b} 0 {a,c} 4

{c} 4 {b,c} 4

Now we can consider some function h = max(f, g).

Table 11: Valuation function h

Sets of size 1 Value Sets of size 2 Value Sets of size 3 Value

{a} 4 {a,b} 10 {a,b,c} 10

{b} 6 {a,c} 4

{c} 4 {b,c} 6

Note that

h(a, b, c)− h(a, c) = 10− 4 = 6

h(b, c)− h(c) = 6− 4 = 2

Adding item b to the set garners a larger increase when a is in the set than when a is not present. This

violates the restriction of submodularity. h was constructed from taking the max of two additive

(and therefore submodular) functions. Therefore the class of submodular functions is not closed

under the max operation.

9.3 GS is not closed under min with a constant

Additive functions are a subclass of GS functions. The min operation on an additive function is a

budget-additive function. This class is not contained within gross substitutes, and therefore GS is

not closed under min with a constant. We show an illustrative example with the following additive

function:

48

Table 12: Valuation function f

Sets of size 1 Value Sets of size 2 Value Sets of size 3 Value

{a} 2 {a,b} 4 {a,b,c} 14

{b} 2 {a,c} 12

{c} 10 {b,c} 12

Now consider some function h = min(f, 3):

Table 13: Valuation function h

Sets of size 1 Value Sets of size 2 Value Sets of size 3 Value

{a} 2 {a,b} 3 {a,b,c} 3

{b} 2 {a,c} 3

{c} 3 {b,c} 3

Consider the price vector p = {.5, .5, 1}. The two optimal sets are {a, b} and {c}, each with

payoff 2. Now consider the vector q = {5, .5, 1}. All sets including item a now provide a negative

payoff. Of the remaining sets, h(c) − p(c) = 3 − 1 = 2, h(b, c) − p(b, c) = 3 − 1.5 = 1.5, and

h(b)− p(b) = 2− .5 = 1.5. Therefore the single optimal set is {c}.
By increasing the price of a, b was removed from the optimal set. Therefore h is not GS.

9.4 Submodular is not closed under IC

Interestingly, though GS and subadditive functions are closed under IC, the class of submodular

functions is not. We prove this by providing an example of a submodular function that is no longer

submodular when an item cap is placed on it. We then show how this counterexample can be easily

transformed into a case of the addition of two equal functions on disjoint sets where the item cap is

the number of items in each set. As a counterexample exists in this specific case, there is no way to

use this model to transform submodular functions.

49

Table 14: Valuation function f

Sets of size 1 Value Sets of size 2 Value Sets of size 3 Value Sets of size 4 Value

{a} 5 {c,d} 10 {a,b,c} 9 {a,b,c,d} 10

{b} 5 {a,d} 9 {a,b,d} 10

{c} 5 {b,d} 9 {a,c,d} 10

{d} 5 {a,c} 9 {b,c,d} 10

{b,c} 9

{a,b} 9

This valuation function is submodular. Recall the definition of submodularity. For any set of

items X and any items y, z /∈ X:

f(X ∪ y ∪ z)− f(X ∪ y) ≤ f(X ∪ z)− f(X)

First consider the case of X = ∅. For all items y and z:

f(y ∪ z)− f(y) ≤ 5 = f(z)− f(∅)

Now consider any set X of size 1. For all items y and z:

f(X ∪ y ∪ z)− f(X ∪ y) ≤ 1 < 4 ≤ f(X ∪ z)− f(X)

Now consider any set X of size 2. If z 6= d, X ∪ y cannot be the set {a, b, c}. In this case,

f(X ∪ y) = f(X ∪ z) = 10, so:

f(X ∪ y ∪ z)− f(X ∪ y) = 0 ≤ f(X ∪ z)− f(X)

Finally, consider the case where z = d. Then X 6= {c, d}, so f(X) = 9. X ∪ y must be equal to

{a, b, c}, so f(X ∪ y) = 9. Furthermore, X ∪ z 6= {a, b, c}, so f(X ∪ z) = 10.

f(X ∪ y ∪ z)− f(X ∪ y) = 10− 9 = 1 = f(X ∪ z)− f(X)

The function is also monotone. Note that the only sets (X,Y) where |X| < |Y | but f(X) > f(Y)

are ({c, d}, {a, b, c}). In this case X * Y , so it does not violate monotonicity. Thus, f represents a

monotone submodular function.

50

Now let us introduce an item cap of size 2. For every valuation function over 3 or more items,

the value is the highest-valued subset of size 2. The new valuation function is as follows, with the

singular change in bold:

Table 15: Valuation function h

Sets of size 1 Value Sets of size 2 Value Sets of size 3 Value Sets of size 4 Value

{a} 5 {c,d} 10 {a,b,c} 9 {a,b,c,d} 10

{b} 5 {a,d} 9 {a,b,d} 9

{c} 5 {b,d} 9 {a,c,d} 10

{d} 5 {a,c} 9 {b,c,d} 10

{b,c} 9

{a,b} 9

All sets that contain items c and d will have value 10, because f(c, d) = 10. However, the value

of the set a, b, d decreases because there is no possible subset of size 2 to select with value 10. Now

the value of f(a, b, c, d)−f(a, b, d) = 10−9 = 1. However, the value of f(a, b, c)−f(a, b) = 9−9 = 0.

Thus

f(a, b, c, d)− f(a, b, d) > f(a, b, c)− f(a, b)

If we let X = {a, b}, x = c and y = d, we see that

f(X ∪ x ∪ y)− f(X ∪ y) > f(X ∪ x)− f(X)

Thus contradicting the submodularity definition.

This function is not a counterexample for the GS case, as it is not GS: consider the price vector

p = {4.8, 10, 4.85, 4.85}. A greedy algorithm would select a at first with payoff .2, then terminate.

However, the optimal set is c, d, with payoff .3. As the greedy algorithm does not find the optimal

payoff set, this valuation function is not GS. As we see in section 6.4, gross substitutes are in fact

closed under IC.

51

	Introduction
	Mechanism Design
	Goal
	Outline

	Background
	Bidders and Auctions
	Valuation Function Classes
	Valuation Class Intersections
	Valuation Class Closures
	Computational Complexity and Reductions
	ODP and SADP

	Related Work
	Hardness of Revenue Maximization
	Algorithms for Strategic Agents
	Valuation Class Closures

	Approach
	Reduction Requirements
	Works for Large n
	D-balanced
	Explicitly Approximation-preserving (No addition of constants)
	``Normal-looking"
	Preserves Valuation Classes
	C-compatible
	Key Takeaway from Restriction Exploration

	Reduction Results
	Multi-packet Model
	Max Model
	Min with a Constant Model
	Item Cap Model
	Reintroduction of C-compatibility
	Results Summary

	Hardness Results
	Future Work
	Appendix
	Budget Additive is not closed under Max, Min or IC
	Submodular and GS are not closed under max
	GS is not closed under min with a constant
	Submodular is not closed under IC

