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What is Trustworthy Machine Learning?



Standard Machine Learning Pipeline

New mput X

Data Z = {(x;,v;)} Machine learning Model f
algorithm

Predlcted output y

Goal: Maximize performance (e.g., accuracy, MSE, etc.) on new predictions
Is this enough?



Beyond Accuracy

* Example: Help a doctor
determine whether a patient has
diabetic retinopathy

* Does the doctor trust the
prediction? (interpretability)

* Should the doctor double check
the prediction? (uncertainty
guantification)




Beyond Accuracy

(a) Husky classified as wolf (b) Explanation

Figure 11: Raw data and explanation of a bad
model’s prediction in the “Husky vs Wolf”’ task.

Ribeiro et al., “Why Should | Trust You? Explaining the Predictions of Any Classifier”, 2016



Beyond Accuracy

Right for the Wrong Reason: Can Interpretable
ML Techniques Detect Spurious Correlations?

Susu Sun!, Lisa M. Koch?3, and Christian F. Baumgartner!

! Cluster of Excellence — ML for Science, University of Tiibingen, Germany
2 Hertie Institute for AI in Brain Health, University of Tiibingen, Germany
® Institute of Ophthalmic Research, University of Tiibingen, Germany
{susu.sun,lisa.koch,christian.baumgartner}@uni-tuebingen.de

Abstract. While deep neural network models offer unmatched classifi-
cation performance, they are prone to learning spurious correlations in
the data. Such dependencies on confounding information can be diffi-
cult to detect using performance metrics if the test data comes from the
same distribution as the training data. Interpretable ML methods such
as post-hoc explanations or inherently interpretable classifiers promise
to identify faulty model reasoning. However, there is mixed evidence
whether many of these techniques are actually able to do so. In this
paper, we propose a rigorous evaluation strategy to assess an explana-
tion technique’s ability to correctly identify spurious correlations. Using
this strategy, we evaluate five post-hoc explanation techniques and one
inherently interpretable method for their ability to detect three types
of artificially added confounders in a chest x-ray diagnosis task. We find | ‘ .
that the post-hoc technique SHAP, as well as the inherently interpretable M ass NO d u Ie ‘ Pn eumonia
Attri-Net provide the best performance and can be used to reliably iden-

tify faulty model behavior.

Atelectasis

' Pneumothorax

Keywords: Interpretable machine learning - Confounder detection



Beyond Accuracy

* Example: Help a judge decide - T 4
whether to give a defendant bai - S

* Does the judge trust the
rediction? (interpretability)

* Does the algorithm discriminate
against minorities? (fairness)




Beyond Accuracy

Algorithms were supposed to make
Virginia judges fairer. What happened was
far more complicated.




Beyond Accuracy

* Example: Deploy on a self-driving
car to classify obstacles from
LIDAR point clouds

* Should the car act more
cautiously? (uncertainty
guantification)

* What if the caris driving in a new
city? In the snow? (robustness)




Beyond Accuracy




Beyond Accuracy

* Example: Facial recognition
based login system

e What if someone tries to fool the
algorithm? (robustness)

* Does the algorithm work for all
racial subgroups? (fairness)




Beyond Accuracy

MAY 18,2023 | 5MIN READ

Police Facial Recognition Technology Can’t Tell
Black People Apart

Al-powered facial recognition will lead to increased racial profiling

BY THADDEUS L. JOHNSON & NATASHA N. JOHNSON

Credit: Steffi Loos/Getty Images



What is Trustworthy Machine Learning?

* Desiderata for machine learning systems deployed in real-world
settings beyond test set accuracy

» Key areas of focus for this class:

Robustness (distribution shift and adversarial)
Uncertainty quantification

Fairness

Interpretability

* Emphasis on mathematical frameworks for thinking rigorously about
these concepts
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Course Staff

Prof. Rajeev Alur Prof. Osbert Bastani Alaia Solko-Breslin
Co-Instructor Co-Instructor TA

Office hours by appointment (for now)



Prerequisites

* Math
* University-level probability, linear algebra, and multivariable calculus
 Comfortable with proofs, general mathematical maturity

* Programming
* Comfort coding in Python, specifically in PyTorch

* Machine learning
e CIS 5200 (CIS 5190 is also OK if you are comfortable with proofs)
* Comfortable with deep learning



Workload

* Homework
* 4 assignments
* Mix of coding and written

* Final project



Communication

* All materials will be posted on the course website:
e https://www.seas.upenn.edu/~cis5190/fall2023/

* We will use Ed Discussion for questions and course discussions

* We will use GradeScope for submitting/grading assignments


https://www.seas.upenn.edu/~cis5190/fall2023/
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A Simple Neural Network

* Feedforward neural network model family (for regression):
fw,p () =B g(Wx)

* Parameters: Matrix I/ € R¥*% and vector f € R¥
e k is a hyperparameter called the number of hidden neurons

* Here, g: R — R is a given activation function

1 9(21)])
2 (22)

* Example: g(z) = d(z) (where o is the sigm0|d functlon)

* Itis applied componentwise in fy, 5 (i.e., g



A Simple Neural Network

* Possible choice of activation function: g(z) = 0(2)

1




A Simple Neural Network

* Possible choice of activation function: g(z) = ReLU(z) = max{z, 0}

-10.0 -7.5 -5.0 =25 0.0 2.5 5.0 7.5



A Simple Neural Network

* Feedforward neural network model family (for regression):

fw,ﬁ (x) =



A Simple Neural Network

* Feedforward neural network model family (for regression):

fw,ﬁ (x) = X

O ©®



A Simple Neural Network

* Feedforward neural network model family (for regression):




A Simple Neural Network

* Feedforward neural network model family (for regression):




A Simple Neural Network

* Feedforward neural network model family (for regression):

fw,p () =B g(Wx)




What About Classification?

* For binary classification:

pw Y =11x)=0a(Bf g(Wx))




What About Classification?

* For multi-class classification:

pwuY =ylx)= softmax(Ug(Wx))y




Historical vs. Modern View

* Historical view: Specific model families
e Feedforward neural networks, convolutional neural networks, etc.
* Each new model family (“architecture”) requires a custom implementation

* Modern view: Design model families by composing building blocks
* Building blocks are “layers”

e Layers can be programmatically composed together (by composing,
concatenating, etc.) to form different model families



Historical View

* Feedforward neural network model family (for regression):

fw,p () =B g(Wx)




Modern View

* Feedforward neural network model family (for regression):

fW,,B(x) = fﬁ (g(fw(x))) = fﬁ o g o fy(x)




Modern View
* Each layer is a parametric function fyy R* — R" for some k, h
* Compose sequentially to form model family:

fw(x) = fw,, ( (fwl(x)) )

* We will use the following notation:

fw = me 000 le



Modern View

* Feedforward neural network model family (for regression):

fwp()=fgege f(x)




Modern View

* Feedforward neural network model family (for regression):

fwp()=fgege f(x)

<




Modern VleW hidden layer

nodes or “units” (i.e., components of a layer)
input layer

\ '8 —"~ Y
X fw z(M) g z(?) fp y
| \
parameters (sometimes called “weights”)

output layer



Neural Networks

* Pros
* “Meta” strategy: Enables users to design model family

* Design model families that capture symmetries/structure in the data (e.g.,
read a sentence forwards, translation invariance for images, etc.)

» “Representation learning” (automatically learn features for certain domains)
* More parameters!

* Cons
e Very hard to train! (Non-convex loss functions)
* Lots of parameters = need lots of data!
* Lots of design decisions
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Optimization Algorithm

* Based on gradient descent, with a few tweaks
* Note: Loss is nonconvex, but gradient descent works well in practice

* Key challenge: How to compute the gradient?

* Backpropagation: Algorithm for computing gradient of an arbitrary
programmatic composition of layers



Gradient Descent

* W, « Initialize()
* fort € {1,2, ...} until convergence:

n
a "
Wersj e Wey == > Vi L(fir, (), y)  (for each ))
=1

* return f,



Backpropagation

* Input
* Example-label pair (x,y)
* Arbitrary model fy, oo fy,
* Loss L(y,y) for predicted label ¥ and true label y
* Derivative V;L(J,y) (as a function)
* Derivatives DijWj (z) and DZij (z) (e.g., as a function)

* Output: VW].L(fW (x),y)



Backpropagation Example

* Gradient of MSE loss (for regression):

Vi L(W,B;72) = VW%Z?:l(fW,ﬁ(xi) - yi)z

=2 Z?=1(fw,ﬁ (x;) — yi)DWfW,B ()

n

VeL(W,B;7Z) = Vg %2?:1(fw,,8(xi) - )’i)z

=230 (Fur s ) = v)Dg fr 5 ()

n



Recall: Multi-Dimensional Derivatives

e Consider a single layer f(z, /)
* Maps parameters I/ € R? and input z € R¥ to output f(z, W) € R"

* The partial derivatives of f are:

* With respectto z: 9,f(z, W) € R¥*¥
* With respect to W: 8, f (z, W) € R4

* Intuition: The linear function that best approximates f;, at W and z:

fGz+dz,W +dW) = f(z,W)+0,f(z, W)dz + 0y, f(z, W)dW



Backpropagation by Example

* Consider a function f(x, W, ) = f,(f1(x, W), ), where
° fl(Z' W) — g(WZ)
° fZ(ZuB) — IBTZ

e |ts derivatives are

Dpf (e, W,B) = Dpfo(fi(x, W), B)
— aZfZ(fl(xl W)JIB)Dﬁfl(X; W) + 5ﬁf2(f1(x, W)':B)
- Opfo(fy(x, W), B)



Backpropagation by Example

* Consider a function f(x, W, B) = f,(f1(x, W), ), where
* fl(Z' W) — g(WZ)
° fZ(ZuB) — IBTZ

e |ts derivatives are

Dy, f(x,W,B) = Dy, fo(f1(x, W), B)
= 0,f2(f1 (e, W), B)Dyy f1(x, W) + aﬁfz (frCo, W), B)ow
= 0,f,(f1 (e, W), B)Oy, f1(x, W)



Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 le(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

DWme(X)



Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 le(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

DWme(X) =



Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 fwl(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

Dy, fuw(x)=0w fuw, (Z(m_l))



Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 fwl(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

DWm_lfW(x)



Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 le(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

DWm_lfW(x) =



Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 fwl(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

Dy, _ fw(x)=0,fw (Z(m_l))



Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 le(x)
zY) = fy 0o fy, (x) = fw, (Z(] )) 1f] > 0

* We have

Dy, fw() = 0,fu, (2" )oy,,  fw, ,(2"")



Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 fwl(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

DWm_sz(x)



Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 le(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

DWm_sz(x) =



Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 fwl(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

Dy,  fw(x)=0,fw (Z(m_l))



Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 le(x)
() _ B ifj=0
zY) = fy 0o fy, (x) = fw, (Z(] D) ifj > 0

* We have

Dy,  fw(x)=0,fw (z (m—1))aZme_1 (z (m—Z))



Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 fwl(x)
zY) = fy 0o fy, (x) = fw, (Z(] )) 1f] > 0

* We have

Dy, fw () = 8, fu,, (2" )0, fu,,, (22w, f,,, (27)



Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 le(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

DijW(x)



Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 le(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

DijW(x) =



Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 fwl(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

Dy, fw(x) = 0,fw,, (zm=V)



Backpropagation

 General case: Consider a neural network

fuw(x) = me °me_1 o °fW1(x)
() _ B ifj=0
207 = fwy oo fur () = fw; (Z(] ) if j > 0

* We have

DijW(x) — aZme (Z(m_l)) aZijH(Z(j))



Backpropagation

 General case: Consider a neural network

fuw(x) = me °me_1 o °fW1(x)
() _ B ifj=0
207 = fwy oo fur () = fw; (Z(] ) if j > 0

* We have

Dy fir () = 0, fu,, (2" ) 8, fw,, (29)0y fur (2U77)



Backpropagation

aZme (Z)
0 w1 . Ofwpa 1
621 (Z) aZk (Z)
of Wm.,h af Wm.,h
L 074 (Z) 0z (Z)-




Backpropagation

aszm (2) aszm_l (2)
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Backpropagation
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Backpropagation
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Backpropagation

 General case: Consider a neural network

fur () = me © me_1 © 00 fwl(x)

. 1f] =0

* We have

Dy fir () = 0, fu,, (2" ) 8, fw,, (29)0y fur (2U77)

\\

h 4

shared across terms, denote it by pW



Backpropagation Algorithm
* Compute recursively starting fromj =mtoj = 1:

pU) = 0, fw. (Z(m—l)) asz,-+1(z(”)

_) 1 o dfj=m
— D(]+1)aZij+1(Z(])) ifj <m

Dy, fw(x) = D(j)awjfwj (V=)



Backpropagation

* Forward pass: Compute forwards fromj =0toj =m

- ifj=0
o () = _
z {fw (Z(] )) ifj >0

* Backward pass: Compute backwards fromj =mtoj=1

. 1 1f =
« DU — J =

* DijW(X) = D(])awjfwj(z(] 1))

* Final output: VWjL(fW(x),y)T = VyL(Z(m),y)TDijw(X) for each j



Backpropagation

ey ;) ,3) ey

Forward pass: Compute z/) = f;, (zU~")

Backward pass: Compute DY) = D(f+1)6Zij+1(z(f)) and Dy fyy (x) = DU)aijWj (zU-V)

Final output: VyL(z(m), y)TDWj Jur ()

<




Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation Algorithm

* Forward pass: Compute forwards fromj =0toj =m

- ifj=0
o () = _
z {fW (Z(] )) ifj >0

* Backward pass: Compute backwards fromj =mtoj=1

. 1 ifj =
e DD = J =
b {D(]H)a fw +1(Z(])) ifj<m
* DijW(X) = D(])awjfwj(z(] 1))

* Final output: VWjL(fW(x),y)T = VyL(Z(m),y)TDijw(X) for each j



Gradient Descent

* W, « Initialize()
* fort € {1,2, ...} until convergence:

n
a "
Wersj e Wey == > Vi L(fir, (), y)  (for each ))
=1

* return f,



Gradient Descent
* W, « Initialize()
* fort € {1,2, ...} until convergence:

* Compute gradients VWJ.L(th (xl-),yi) using backpropagation
* Update parameters:

n
Q
Werj < Wej—— z VW,-L(th(xi),)’i) (for each j)
i=1

* return fy,



Backpropagation

* Backpropagation can be used to automatically compute gradients
* Also called “reverse-mode automatic differentiation”

* Algorithm has been known for a long time but good implementations
have only recently been popularized
* Tensorflow, PyTorch, Jax
* Also encode many other tricks used to train neural networks



