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Robustness vs. Uncertainty Quantification

* Robustness aims to ensure the model performs well on shifted inputs

* Doesn’t say anything about performance on original inputs!
* A model that always predicts “dog” is robust, but not very useful

* What can we guarantee for performance on original inputs?
* In general, we can’t guarantee much (maybe the problem is just really hard!)
e But, we can give uncertainty quantification (“knows what it doesn’t know”)
* Initially focus on on-distribution (no shifts, no adversarial attacks, etc.)



Uncertainty Quantification
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Uncertainty Quantification




Modern Neural Networks are Overconfident

* Guo et al., On Calibration of Modern Neural Networks. ICML 2017.



Modern Neural Networks are Overconfident

LeNet (1998) ResNet (2016)
0 CIFAR-100 CIFAR-100
' 1 1
Sy >y
0.8 ud &5
8 Q. .~ —
L -csllg gl ra]l
2 0.6 Gng S8
& ST 1 S
7p . :
ST IR | I <
' 1 1 ;1
0.0 - AT e

.0.0 0.2 04 06 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0



Uncertainty Quantification

 Calibrated Prediction (Platt 1999, Guo 2017)

* Predict a probability p(x),, for each label y
* What does it mean for the probabilities to be correct?

* Prediction Sets
e Predict a set C(x) C Y of possible labels
e Setis correct if y* € C(x)



Agenda

* Definition of calibration

* Measuring calibration

* Miscalibration of neural networks
e Re-calibration

 Calibration under covariate shift



Calibrated Prediction

* Consider a probability predictor p: X — [O,1]|Y|

* Let §(x) = arg max, ey p(x), denote the corresponding labeling function
e Letp(x) = ﬁ(x,f/(x)) be the probability of the predicted label

* We say p is calibrated if for all p € [0,1], we have

p= Pr [J(x)=y"1pkx)=np]
p(x,y*)



Calibrated Prediction
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Calibrated Prediction

e What does “40% chance of rain”
mean?

* Among all days with 40% chance
of rain, it rains in 40% of them
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Calibrated Prediction
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Calibrated Prediction
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Calibrated Prediction
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Calibrated Prediction
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Calibrated Prediction
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Calibrated Prediction
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Calibrated Prediction

 Example 1: Model has perfect prediction accuracy
* Always predicts 0% rain or 100% rain, perfectly calibrated!
* Always predicts 20% rain or 80% rain, miscalibrated!

* Example 2: Model predicts randomly rain vs. no rain
* Always predicts 0% rain or 100% rain, miscalibrated!
* Always predicts 50% rain or 50% rain, perfectly calibrated!
* (Model is correct half the time)



Calibration and Binning

e Recall: Calibration is defined as

Pr [y(x)=y"1p(x)=pl=p (Vp€|0,1])
p(x,y*)



Calibration and Binning

e Recall: Calibration is defined as

Pr [y(x)=y"1px)=pl=p (Vp€|0,1])
p(x,y*)

* Conditions on potentially zero probability event
* In practice, two inputs may never have exactly the same probability p(x)

* Idea: Bin probabilities into bins P; = [plow,i,phigh,i) instead:

Pr @ =y 1P € Pl = Conf(R) (Vi€ {L,..., k})



Calibration and Binning

* Idea: Bin probabilities into bins P; = [plow,i,phigh,i) instead:

* Conf(P) = E, 1 p(x) | p(x) € P|is the average probability of bin P



Agenda

* Definition of calibration

* Measuring calibration

* Miscalibration of neural networks
e Re-calibration

 Calibration under covariate shift



Measuring Calibration

e Recall: Binned calibration is defined as

p(}fc’g*)[y(x) =vy* | p(x) € P;] = Conf(P;) (Vi € {1, ..., k})

* Chances of equality holding exactly is effectively zero
 How to measure calibration error (instead of requiring exact calibration)?

* ldea: Use mean absolute error (called expected calibration error):

ECE(p) = ey || P [9(x) = ¥" 1 p(x) € P] — Conf(P)|



Measuring Calibration

* ldea: Use mean absolute error (called expected calibration error):

ECE(P) = Epepy || Pr. [9(0) = ¥* 1 5() € P] — Conf(P)|

* P = [Pmin, Pmax) S [0,1] is a bin in probability space
* p(P) = (Pr*) |p(x) € P]is the probability of bin P
p(x,y

* Conf(P) = Ep 1 [P(x) | p(x) € P|is the average probability of bin P



Measuring Calibration
* ldea: Use mean absolute error (called expected calibration error):

ECE(P) = Epepy || Pr. [9(0) = ¥* 1 5() € P] — Conf(P)|

* Equivalently, we have

ECE(D) = E,pllAcc(P) — Conf(P)]



Measuring Calibration

* ldea: Use mean absolute error (called expected calibration error):
ECE(P) = Epepy || Pr. [9(0) = ¥* 1 5() € P] — Conf(P)|

* On a held-out test set Z, we have the approximation

B 1 1
ECE(2) = ) [ ), 100 =)= ) )

i=1 (x,y*)EB; (x,y*)EB;

* Here, B; = {(x,y*) € Z | p(x) € P; }is the bin in feature space




Reliability Diagrams

* For each bin P;, plot accuracy

Pr [J(x) =y |px) € P]
p(x,y*)
E 1(V(x) =y*)
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* Measuring calibration

* Miscalibration of neural networks
e Re-calibration

 Calibration under covariate shift



Miscalibration of Neural Networks

* Typical approach in deep learning
* However, most state-of-the-art models have high calibration error

* Potential explanation
* Models need to be overparameterized to aid optimization
* Overparameterization leads to overfitting probabilities (even if accuracy is good!)



Miscalibration of Neural Networks
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Recall: Negative Log Likelihood

* Negative log likelihood is

NLL() = — 2 log (x),-

(x,y*)EZ

* NLL is zero if and only if p = p*, where p* are the “true” probabilities
* Thus, good NLL roughly corresponds to good calibration



Miscalibration and Overfitting
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Error/ECE

Miscalibration and Overfitting
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Improving Calibration

* How can we fix the problem?

* Better training algorithms
e Regularization

* Post-hoc modifications (called recalibration)
e Histogram binning
* Temperature scaling



Recalibration

* Goal: Rescale outputs using a function to minimize ECE

* Inputs: Probability predictor p, held-out calibration dataset Z

* Output: For some function ¢:[0,1] — [0,1], define new probabilities
4(0) = p(p(x))

* Works well since ¢ is a 1D transformation, so it is “simple”



Histogram Binning

* Idea: Use a honparametric ¢ obtained via binning

* Algorithm:
* Input: Probability predictor p, calibration dataset Z, example x
* Let P be the probability bin containing x (i.e., p(x) € P)
e letB={(x",y*) € Z | p(x") € P} be the corresponding bin over Z
e Output: Define the following (values can be precomputed for each bin):

1
b = ) 196 =)

(x",y*)eB



Histogram Binning
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Histogram Binning

 Why does this work?
* After transformation, all points with p(x) = P now have §(x) = Acc(P)
* Their new bin is Q, where §(x) € Q
* We also have Acc(Q) = Acc(P) (ignoring other points in Q for simplicity)
* Putting the above together, we have Acc(Q) = G(x)
* Thus, ECE(g) =0

* The derivation uses the true accuracy, but our algorithm uses the
empirical accuracy, so there can be some error during evaluation

* Intuition: Set empirical ECE to zero on the calibration dataset Z



Aside: [sotonic Regression

* Modification of histogram binning

* Minimize jointly over bin boundaries and bin values
* Histogram binning fixes the bin boundaries and only optimizes bin values

* Impose that the bin values are monotonically increasing to improve
sample efficiency



Temperature Scaling

* Only fits a single parameter 7, even for the multi-class setting
* Called the temperature

* Works best when ordering of probabilities is good



Temperature Scaling

* Consider the model family

T

logits(x
g, (x) = softmax( Bits( ))

 Taking T = 1 recovers the original model: g;(x) = p(x)
* Taking T > 1 decreases confidence (Tt = oo yields probabilities equal to %)

» Taking T < 1 increases confidence (T — 0 yields probabilities equal in {0,1})

 Choose T to minimize NLL of g, on calibration dataset Z
e Can use grid search to do so (i.e., search over fixed set of choices for 1)



Re-Calibration for Multi-Class Classification

* Only calibrates the predicted probability for the most likely label

* To obtain a full vector of calibrated probabilities
* Calibrate individually as k = |Y| binary classification problems
* Rescales probabilities separately for each class
* Normalize probabilities to ensure they sum to one

* For histogram binning, the number of parameters can become large
e ## parameters = # classes X # bins

* Temperature scaling naturally calibrates all class probabilities



Empirical Evaluation

Dataset Model Uncalibrated Hist. Binning Isotonic BBQ  Temp. Scaling Vector Scaling Matrix Scaling
Birds ResNet 50 9.19% 4.34% 522%  4.12% 1.85% 3.0% 21.13%
Cars ResNet 50 4.3% 1.74% 429%  1.84% 2.35% 2.37% 10.5%
CIFAR-10 ResNet 110 4.6% 0.58% 0.81% 0.54% 0.83% 0.88% 1.0%
CIFAR-10 ResNet 110 (SD) 4.12% 0.67% 1.11% 0.9% 0.6 % 0.64% 0.72%
CIFAR-10 Wide ResNet 32 4.52% 0.72% 1.08%  0.74% 0.54 % 0.6% 0.72%
CIFAR-10 DenseNet 40 3.28% 0.44% 0.61% 0.81% 0.33% 0.41% 0.41%
CIFAR-10 LeNet 5 3.02% 1.56% 1.85% 1.59% 0.93 % 1.15% 1.16%
CIFAR-100 ResNet 110 16.53% 2.66% 499%  5.46% 1.26 % 1.32% 25.49%
CIFAR-100 ResNet 110 (SD) 12.67% 2.46% 416%  3.58% 0.96% 0.9% 20.09%
CIFAR-100 Wide ResNet 32 15.0% 3.01% 585% 5.77% 2.32% 2.57% 24.44%
CIFAR-100 DenseNet 40 10.37% 2.68% 451%  3.59% 1.18% 1.09% 21.87%
CIFAR-100 LeNet 5 4.85% 6.48% 235%  3.77% 2.02% 2.09% 13.24%
ImageNet DenseNet 161 6.28% 4.52% 5.18% 3.51% 1.99 % 2.24% -
ImageNet ResNet 152 5.48% 4.36% 477%  3.56% 1.86 % 2.23% -
SVHN ResNet 152 (SD) 0.44% 0.14% 0.28%  0.22% 0.17% 0.27% 0.17%
20 News DAN 3 8.02% 3.6% 5.52%  4.98% 4.11% 4.61% 9.1%
Reuters DAN 3 0.85% 1.75% 1.15% 0.97% 0.91% 0.66% 1.58%
SST Binary TreeLSTM 6.63% 1.93% 1.65% 2.27% 1.84% 1.84% 1.84%

SST Fine Grained TreeLSTM 6.71% 2.09% 1.65% 2.61% 2.56% 2.98% 2.39%




Reliability Diagrams for Re-Calibration
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Calibration Under Distribution Shift

e Uncertainty quantification is especially important for flagging
potential distribution shift

e Goal:

* Given calibration dataset of i.i.d. samples from p and unlabeled examples
from shifted distribution q

* Obtain model that is calibrated with respect to g:

p= Pr [y(x)=y"1pkx)=np]
q(x,y*)



Importance Weighted Calibration Error

 Recall: We have

ECE(p) = E,(py||Acc, (P) — Conf, (P)|]

e Shifted ECE: We have

ECE(p) = E,(p[|Acc, (P) — Conf, (P)|]



Importance Weighted Calibration Error

 Note that

ECE(P)



Importance Weighted Calibration Error

 Note that

ECE(P) = E,(p||Acc, (P) — Conf, (P)|]
=E,p Acc,(P) — Conf,(P)| - W(P)]

* We have

w(P)



Importance Weighted Calibration Error

 Note that

ECE(P) = E,(p||Acc, (P) — Conf, (P)|]
=E,p Acc,(P) — Conf,(P)| - W(P)]

* We have

a(P)

wiP) = p(P)



Importance Weighted Calibration Error

 Note that

ECE(P) = E,(p||Acc, (P) — Conf, (P)|]
=E,p Acc,(P) — Conf,(P)| - W(P)]

* We have

- c p
sy A0 _ o5 PRI €T
p(P) Pr [p(x) € P

p(x,y*)




Importance Weighted Calibration Error

 Note that

ECE(P) = E,(p||Acc, (P) — Conf, (P)|]
=E,p Acc,(P) — Conf,(P)| - W(P)]

* Similar importance weighting for Acc, (P) and Conf, (P)



Calibration Under Distribution Shift

* Histogram binning
* Minimize importance weighted calibration error

* Temperature scaling
* Minimize importance weighted NLL



Empirical Results

V
p
y(x) = letter tray y(x) = tape dispenser y(x) = bookcase
F(z) =1.00 - 0.99 — 0.38 f(x)=1.00—»0.93 - 0.60 F(z)=0.99 — 0.91 — 0.53
y(x) = laptop computer y(x) = phone y(x) = stapler

o f(z) = (original)—(temperature scaling) — (ours)

Park et al., Calibrated Predictions with Covariate Shift via Unsupervised Domain Adaptation. AISTATS 2020.
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