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Robustness vs. Uncertainty Quantification

• Robustness aims to ensure the model performs well on shifted inputs

• Doesn’t say anything about performance on original inputs!
• A model that always predicts “dog” is robust, but not very useful

• What can we guarantee for performance on original inputs?
• In general, we can’t guarantee much (maybe the problem is just really hard!)
• But, we can give uncertainty quantification (“knows what it doesn’t know”)
• Initially focus on on-distribution (no shifts, no adversarial attacks, etc.)



Uncertainty Quantification



Uncertainty Quan4fica4on



Modern Neural Networks are Overconfident

• Guo et al., On Calibration of Modern Neural Networks. ICML 2017.



Modern Neural Networks are Overconfident



Uncertainty Quantification

• Calibrated Prediction (Platt 1999, Guo 2017)
• Predict a probability 𝑝⃗ 𝑥 ! for each label 𝑦
• What does it mean for the probabilities to be correct?

• Prediction Sets
• Predict a set %𝐶 𝑥 ⊆ 𝑌	of possible labels
• Set is correct if 𝑦∗ ∈ %𝐶 𝑥



Agenda

• Definition of calibration
• Measuring calibration
• Miscalibration of neural networks
• Re-calibration
• Calibration under covariate shift



Calibrated Predic4on

• Consider a probability predictor 𝑝⃗: 𝑋 → 0,1 !

• Let +𝑦 𝑥 = arg	max!∈$ 𝑝⃗ 𝑥 ! denote the corresponding labeling funcQon
• Let 𝑝̂ 𝑥 = 𝑝⃗ 𝑥, +𝑦 𝑥  be the probability of the predicted label

• We say 𝑝̂ is calibrated if for all 𝑝 ∈ 0,1 , we have

𝑝 = Pr
" #,%∗

.𝑦 𝑥 = 𝑦∗ ∣ 𝑝̂ 𝑥 = 𝑝



Calibrated Prediction

𝑋×𝑌

𝑝̂ 𝑥 = 𝑝



Calibrated Prediction

Goal: +,--.
+,--./,-0

= 𝑝
1𝑦 𝑥 = 𝑦∗

1𝑦 𝑥 ≠ 𝑦∗

𝑝̂ 𝑥 = 𝑝

𝑋×𝑌



Calibrated Prediction

• What does “40% chance of rain” 
mean?

• Among all days with 40% chance 
of rain, it rains in 40% of them



Calibrated Prediction

Actual:

Prediction: 75% 
chance rain

75% 
chance rain

75% 
chance rain

75% 
chance rain

0% 
chance rain

0% 
chance rain

Pr
! "∗

𝑦∗ = rain ∣ )𝑝 = 0.75 = 0.75
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Calibrated Predic4on
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Calibrated Prediction

Actual:
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chance rain
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Calibrated Prediction

Actual:

Prediction: 75% 
chance rain

75% 
chance rain

75% 
chance rain

75% 
chance rain

25% 
chance rain

25% 
chance rain

Pr
! "∗

𝑦∗ = rain ∣ )𝑝 = 0.25 = 0



Calibrated Prediction

Actual:

Predic7on: 75% 
chance rain

75% 
chance rain

75% 
chance rain

75% 
chance rain

0% 
chance rain

0% 
chance rain

Pr
! "∗

𝑦∗ = rain ∣ )𝑝 = 0 = 0.5



Calibrated Predic4on

• Example 1: Model has perfect prediction accuracy
• Always predicts 0% rain or 100% rain, perfectly calibrated!
• Always predicts 20% rain or 80% rain, miscalibrated!

• Example 2: Model predicts randomly rain vs. no rain
• Always predicts 0% rain or 100% rain, miscalibrated!
• Always predicts 50% rain or 50% rain, perfectly calibrated!
• (Model is correct half the time)



Calibration and Binning

• Recall: Calibration is defined as

Pr
" #,%∗

.𝑦 𝑥 = 𝑦∗ ∣ 𝑝̂ 𝑥 = 𝑝 = 𝑝	 ∀𝑝 ∈ 0,1



Calibration and Binning

• Recall: Calibration is defined as

Pr
" #,%∗

.𝑦 𝑥 = 𝑦∗ ∣ 𝑝̂ 𝑥 = 𝑝 = 𝑝	 ∀𝑝 ∈ 0,1

• Conditions on potentially zero probability event
• In practice, two inputs may never have exactly the same probability 𝑝̂ 𝑥

• Idea: Bin probabilities into bins 𝑃4 = 𝑝567,4 , 𝑝89+8,4  instead:

Pr
" #,%∗

.𝑦 𝑥 = 𝑦∗ ∣ 𝑝̂ 𝑥 ∈ 𝑃4 = Conf 𝑃4 	 ∀𝑖 ∈ 1,… , 𝑘



Calibration and Binning

• Idea: Bin probabiliSes into bins 𝑃4 = 𝑝567,4 , 𝑝89+8,4  instead:

Pr
" #,%∗

.𝑦 𝑥 = 𝑦∗ ∣ 𝑝̂ 𝑥 ∈ 𝑃4 = Conf 𝑃4 	 ∀𝑖 ∈ 1,… , 𝑘

• Conf 𝑃 = 𝔼% &,!∗ 𝑝̂ 𝑥 ∣ 𝑝̂ 𝑥 ∈ 𝑃  is the average probability of bin 𝑃



Agenda

• Definition of calibration
• Measuring calibration
• Miscalibration of neural networks
• Re-calibration
• Calibration under covariate shift



Measuring Calibration

• Recall: Binned calibration is defined as

Pr
" #,%∗

.𝑦 𝑥 = 𝑦∗ ∣ 𝑝̂ 𝑥 ∈ 𝑃4 = Conf 𝑃4 	 ∀𝑖 ∈ 1,… , 𝑘

• Chances of equality holding exactly is effectively zero
• How to measure calibration error (instead of requiring exact calibration)?

• Idea: Use mean absolute error (called expected calibration error):

ECE 𝑝̂ = 𝔼" : Pr
" #,%∗

4 .𝑦 𝑥 = 𝑦∗ ∣ 𝑝̂ 𝑥 ∈ 𝑃 − Conf 𝑃



Measuring Calibration

• Idea: Use mean absolute error (called expected calibration error):

ECE 𝑝̂ = 𝔼" : Pr
" #,%∗

4 .𝑦 𝑥 = 𝑦∗ ∣ 𝑝̂ 𝑥 ∈ 𝑃 − Conf 𝑃

• 𝑃 = 𝑝()*, 𝑝(+, ⊆ 0,1  is a bin in probability space
• 𝑝 𝑃 = Pr

% &,!∗
- 𝑝̂ 𝑥 ∈ 𝑃  is the probability of bin 𝑃

• Conf 𝑃 = 𝔼% &,!∗ 𝑝̂ 𝑥 ∣ 𝑝̂ 𝑥 ∈ 𝑃  is the average probability of bin 𝑃



Measuring Calibration

• Idea: Use mean absolute error (called expected calibraBon error):

ECE 𝑝̂ = 𝔼" : Pr
" #,%∗

4 .𝑦 𝑥 = 𝑦∗ ∣ 𝑝̂ 𝑥 ∈ 𝑃 − Conf 𝑃

• Equivalently, we have

ECE 𝑝̂ = 𝔼" : Acc 𝑃 − Conf 𝑃



Measuring Calibra4on

• Idea: Use mean absolute error (called expected calibration error):

ECE 𝑝̂ = 𝔼" : Pr
" #,%∗

4 .𝑦 𝑥 = 𝑦∗ ∣ 𝑝̂ 𝑥 ∈ 𝑃 − Conf 𝑃

• On a held-out test set 𝑍, we have the approximation

ECE 𝑝̂; 𝑍 =C
4;<

=
𝐵4
𝑍
⋅

1
𝐵4

C
#,%∗ ∈?"

1 .𝑦 𝑥 = 𝑦∗ −
1
𝐵4

C
#,%∗ ∈?"

𝑝̂ 𝑥

• Here, 𝐵- = 𝑥, 𝑦∗ ∈ 𝑍 𝑝̂ 𝑥 ∈ 𝑃-  is the bin in feature space



Reliability Diagrams

• For each bin 𝑃4, plot accuracy

Pr
" #,%∗

4 .𝑦 𝑥 = 𝑦∗ ∣ 𝑝̂ 𝑥 ∈ 𝑃

≈
1
𝐵4

C
#,%∗ ∈?"

1 .𝑦 𝑥 = 𝑦∗



Agenda

• Definition of calibration
• Measuring calibration
• Miscalibration of neural networks
• Re-calibration
• Calibration under covariate shift



Miscalibration of Neural Networks

• Typical approach in deep learning
• However, most state-of-the-art models have high calibraQon error

• PotenBal explanaBon
• Models need to be overparameterized to aid opQmizaQon
• OverparameterizaQon leads to overfi]ng probabiliQes (even if accuracy is good!)



Miscalibra4on of Neural Networks



Recall: Negative Log Likelihood

• Negative log likelihood is

NLL 𝑝⃗ = − C
#,%∗ ∈@

log 𝑝⃗ 𝑥 %∗

• NLL is zero if and only if 𝑝⃗ = 𝑝∗, where 𝑝∗ are the “true” probabilities
• Thus, good NLL roughly corresponds to good calibration



Miscalibration and Overfitting



Miscalibration and Overfitting



Agenda

• Definition of calibration
• Measuring calibration
• Miscalibration of neural networks
• Re-calibration
• Calibration under covariate shift



Improving Calibra4on

• How can we fix the problem?

• Be_er training algorithms
• RegularizaQon

• Post-hoc modificaSons (called recalibraBon)
• Histogram binning
• Temperature scaling



Recalibration

• Goal: Rescale outputs using a function to minimize ECE

• Inputs: Probability predictor 𝑝̂, held-out calibration dataset 𝑍

• Output: For some function 𝜙: 0,1 → 0,1 , define new probabilities

.𝑞 𝑥 = 𝜙 𝑝̂ 𝑥

• Works well since 𝜙 is a 1D transformation, so it is “simple”



Histogram Binning

• Idea: Use a nonparametric 𝜙 obtained via binning

• Algorithm:
• Input: Probability predictor 𝑝̂, calibration dataset 𝑍, example 𝑥
• Let 𝑃 be the probability bin containing 𝑥 (i.e., 𝑝̂ 𝑥 ∈ 𝑃)
• Let 𝐵 = 𝑥., 𝑦∗ ∈ 𝑍 𝑝̂ 𝑥. ∈ 𝑃  be the corresponding bin over 𝑍
• Output: Define the following (values can be precomputed for each bin):

𝜙 𝑥 =
1
𝐵

C
##,%∗ ∈?

1 .𝑦 𝑥 = 𝑦∗



Histogram Binning

Given 𝑥

𝑝̂ 𝑥 = 0.62 ∈ 0.6,0.7 ≔ 𝑃

Acc 𝑃 =
1
𝐵

C
##,%∗ ∈?

1 .𝑦 𝑥A = 𝑦∗ = 0.35

𝜙 𝑥 = Acc 𝑃 = 0.35



Histogram Binning

• Why does this work?
• After transformation, all points with 𝑝̂ 𝑥 = 𝑃 now have +𝑞 𝑥 = Acc 𝑃
• Their new bin is 𝑄, where +𝑞 𝑥 ∈ 𝑄
• We also have Acc 𝑄 = Acc 𝑃  (ignoring other points in 𝑄 for simplicity)
• Putting the above together, we have Acc 𝑄 = +𝑞 𝑥
• Thus, ECE +𝑞 = 0

• The derivation uses the true accuracy, but our algorithm uses the 
empirical accuracy, so there can be some error during evaluation

• Intuition: Set empirical ECE to zero on the calibration dataset 𝑍



Aside: Isotonic Regression

• Modification of histogram binning

• Minimize jointly over bin boundaries and bin values
• Histogram binning fixes the bin boundaries and only optimizes bin values

• Impose that the bin values are monotonically increasing to improve 
sample efficiency



Temperature Scaling

• Only fits a single parameter 𝜏, even for the mulS-class secng
• Called the temperature

• Works best when ordering of probabiliSes is good



Temperature Scaling

• Consider the model family

𝑞⃗B 𝑥 = softmax
logits 𝑥

𝜏

• Taking 𝜏 = 1 recovers the original model: 𝑞⃗/ 𝑥 = 𝑝⃗ 𝑥
• Taking 𝜏 > 1 decreases confidence (𝜏 → ∞ yields probabilities equal to /0)
• Taking 𝜏 < 1 increases confidence (𝜏 → 0 yields probabilities equal in 0,1 )

• Choose 𝜏 to minimize NLL of 𝑞⃗B on calibration dataset 𝑍
• Can use grid search to do so (i.e., search over fixed set of choices for 𝜏)



Re-Calibration for Multi-Class Classification

• Only calibrates the predicted probability for the most likely label

• To obtain a full vector of calibrated probabilities
• Calibrate individually as 𝑘 = 𝑌  binary classification problems
• Rescales probabilities separately for each class
• Normalize probabilities to ensure they sum to one

• For histogram binning, the number of parameters can become large
• # parameters = # classes × # bins

• Temperature scaling naturally calibrates all class probabilities



Empirical Evaluation



Reliability Diagrams for Re-Calibration



Agenda

• DefiniSon of calibraSon
• Measuring calibraSon
• MiscalibraSon of neural networks
• Re-calibraSon
• CalibraSon under covariate shid



Calibra4on Under Distribu4on ShiN

• Uncertainty quantification is especially important for flagging 
potential distribution shift

• Goal:
• Given calibration dataset of i.i.d. samples from 𝑝 and unlabeled examples 

from shifted distribution 𝑞
• Obtain model that is calibrated with respect to 𝑞:

𝑝 = Pr
C #,%∗

.𝑦 𝑥 = 𝑦∗ ∣ 𝑝̂ 𝑥 = 𝑝



Importance Weighted Calibration Error

• Recall: We have

ECE 𝑝̂ = 𝔼" : Acc" 𝑃 − Conf" 𝑃

• Shifted ECE: We have

ECE 𝑝̂ = 𝔼C : AccC 𝑃 − ConfC 𝑃



Importance Weighted Calibration Error

• Note that

  ECE 𝑝̂ = 𝔼C : AccC 𝑃 − ConfC 𝑃



Importance Weighted Calibration Error

• Note that
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𝑝 𝑃

=
Pr

C #,%∗
4 𝑝̂ 𝑥 ∈ 𝑃

Pr
" #,%∗
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Importance Weighted Calibration Error

• Note that

  ECE 𝑝̂ = 𝔼C : AccC 𝑃 − ConfC 𝑃
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• We have
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Importance Weighted Calibration Error

• Note that

  ECE 𝑝̂ = 𝔼C : AccC 𝑃 − ConfC 𝑃
  ECE 𝑝̂ = 𝔼" : AccC 𝑃 − ConfC 𝑃 ⋅ 𝑤 𝑃

• Similar importance weighting for AccC 𝑃  and ConfC 𝑃



Calibration Under Distribution Shift

• Histogram binning
• Minimize importance weighted calibraQon error

• Temperature scaling
• Minimize importance weighted NLL



Empirical Results

Park et al., Calibrated Predictions with Covariate Shift via Unsupervised Domain Adaptation. AISTATS 2020.



Agenda

• Definition of calibration
• Measuring calibration
• Miscalibration of neural networks
• Re-calibration
• Calibration under covariate shift


