Lecture 12: Conformal Prediction

CIS 7000: Trustworthy Machine Learning Spring 2024

Course Project

- Goals
 - Exposure to research ideas in trustworthy machine learning
 - Understand some aspect of trustworthy machine learning more deeply
- Course project is a major component of this class

Course Project

- We urge you to start thinking about the course project now
- The project can be done individually or in a group of two
- You are welcome to set up a meeting with one of us to discuss project ideas at any time

Possible Project Categories

- Implementing and rigorously evaluating a technique discussed in class, in a bit more in depth than homework
- Review a specific paper, implement the described technique, and evaluate it empirically
- Review two or three papers with a common theme, and summarize their techniques with relative strengths and weaknesses
- Intersection of your current research and the course theme

Tentative Project Timeline

- Monday, March 25: Decide on team and project topic
- Monday, April 1: Finalize a concrete project with approval from us
- Monday, April 22: Submit project report
 - 4-5 pages is typical length
- April 22, 24, 29, May 1: In-class project presentations
 - 15 min talk + 5 min Q&A

Homework 2

- Covers distribution shift and uncertainty quantification
 - Written homework focused on theoretical understanding
- Plan to release by Friday (March 1)
- Due Monday, March 11

Calibrated Prediction

- Predict a **probability** $\vec{p}(x)_y$ for each label y
- Probabilities are correct if conditioned on $\hat{p}(x) = p$, the accuracy is p

Why Calibration?

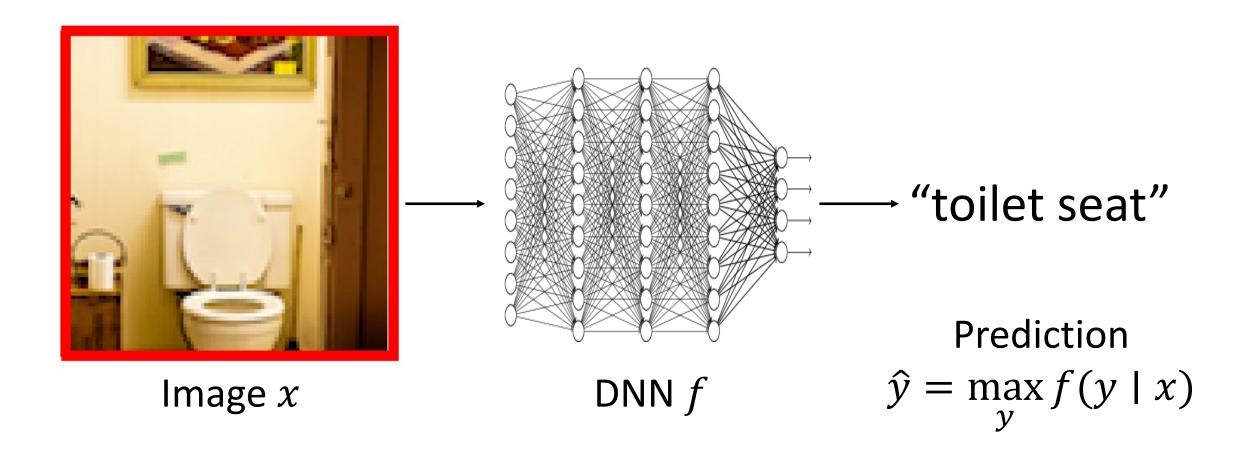
- Imagine you are making a decision with utility $U(y^*)$ (for $y^* \in \{0,1\}$)
- Claim: If making decisions purely based on $\hat{p}(x)$, you can act as if $\hat{p}(x)$ is the true probability of $y^* = 1$
- "Proof":
 - Among all x for which $\hat{p}(x) = p$, exactly p fraction of them satisfy $y^* = 1$
 - Thus, you obtain the payoff that you expected among these values of x

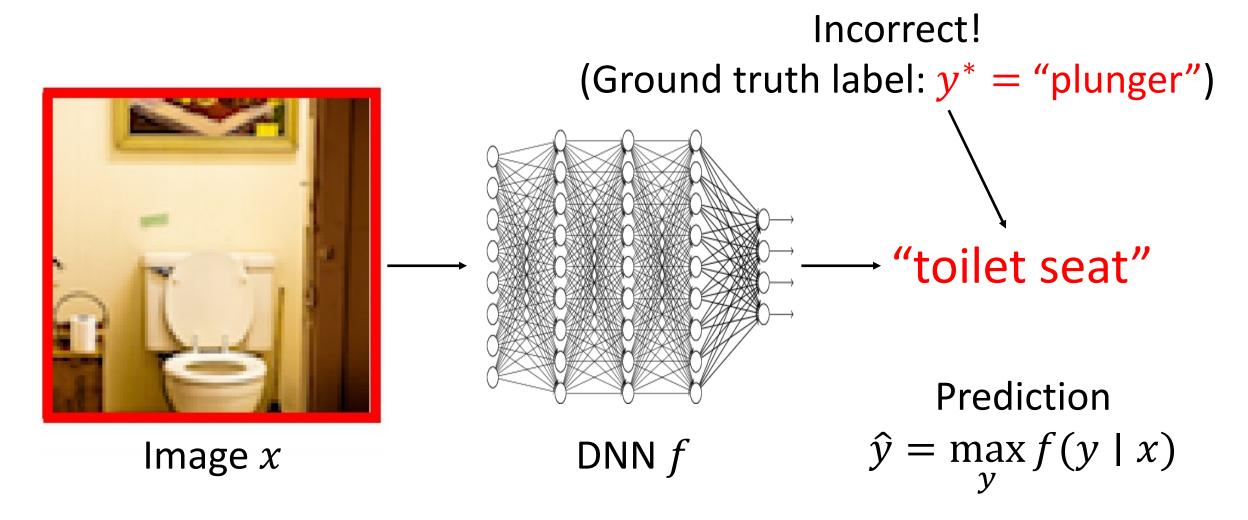
Shortcomings of Calibration

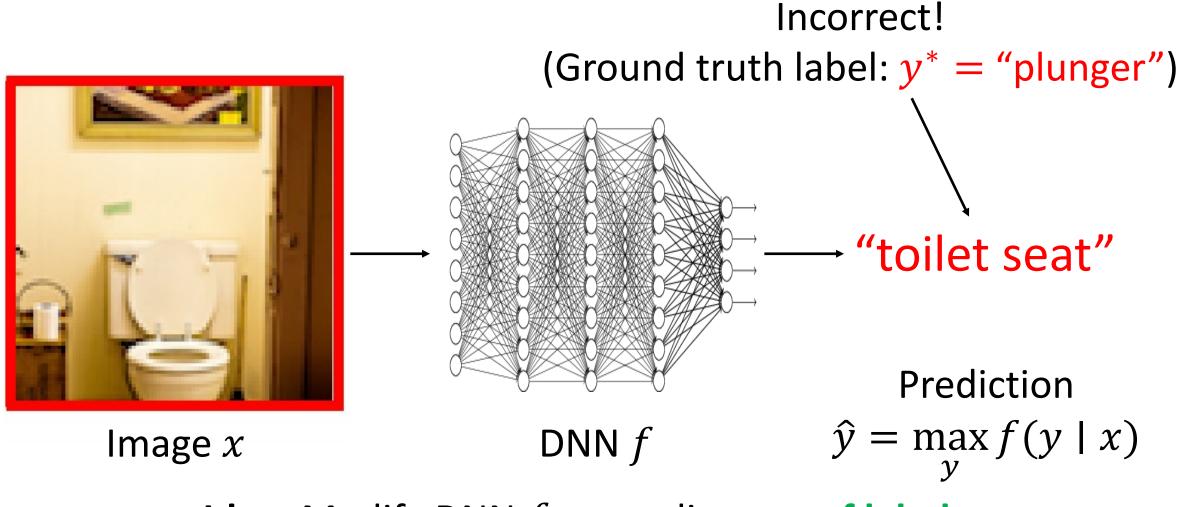
- Unintuitive/hard to reason about probabilities
 - Both for humans and for algorithms
- Structured prediction (e.g., sentences, object detection, etc.)
 - Probabilities of complex outputs quickly become small
 - Probabilities of different portions of the output can be highly correlated
- Conformal prediction
 - Represents of uncertainty using **prediction sets**, which can be more intuitive
 - Also easier to reason about algorithmically

Agenda

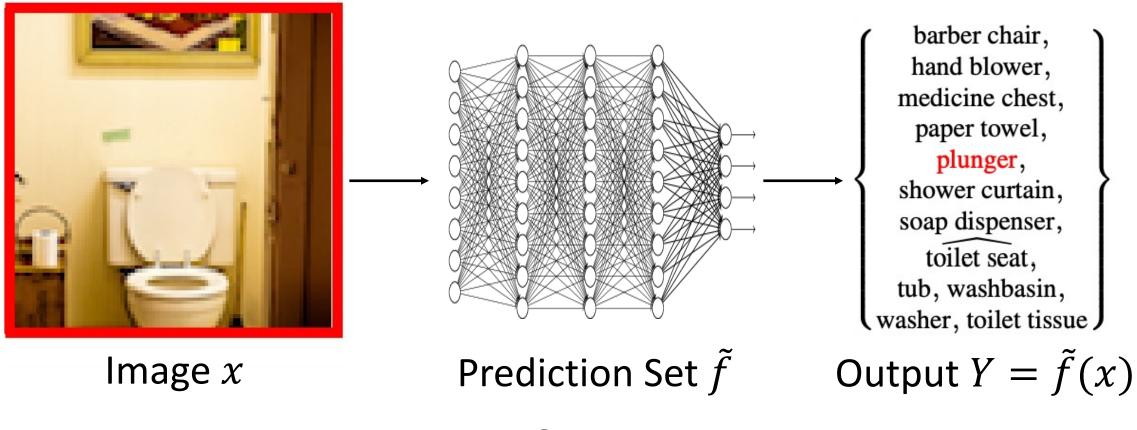
- Conformal prediction problem
- Conformal prediction algorithm
- Correctness proof



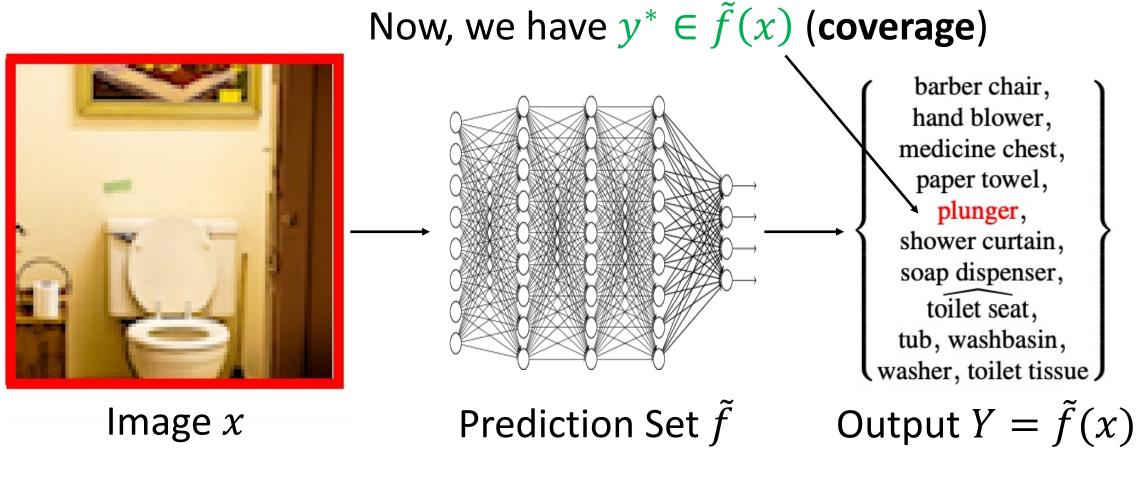




Idea: Modify DNN *f* to predict **sets of labels**



Idea: Modify DNN *f* to predict **sets of labels**

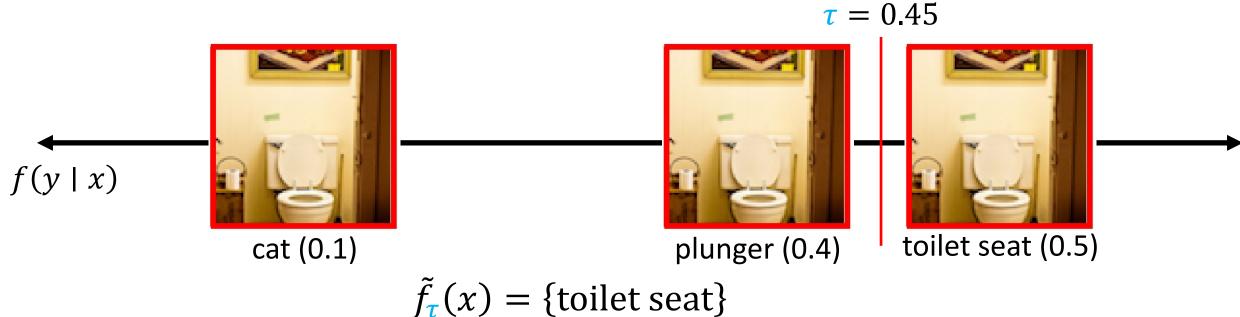


Idea: Modify DNN *f* to predict sets of labels

• Parametric model family of prediction sets

- We construct prediction sets based on an **existing** DNN f(y | x)
- Consider prediction sets that are **level sets** of *f* :

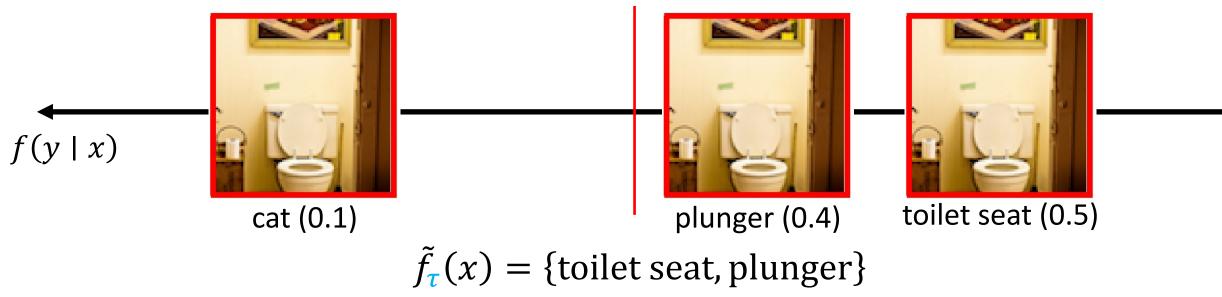
$$\tilde{f}_{\tau}(x) = \{ y \mid f(y \mid x) \ge \tau \}$$



• Parametric model family of prediction sets

- We construct prediction sets based on an **existing** DNN f(y | x)
- Consider prediction sets that are **level sets** of *f* :

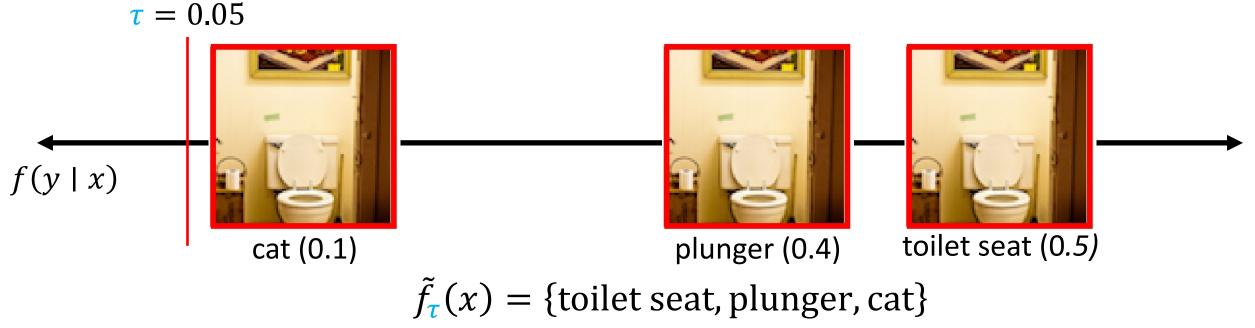
$$\tilde{f}_{\tau}(x) = \{ y \mid f(y \mid x) \ge \tau \}$$
$$\tau = 0.35$$

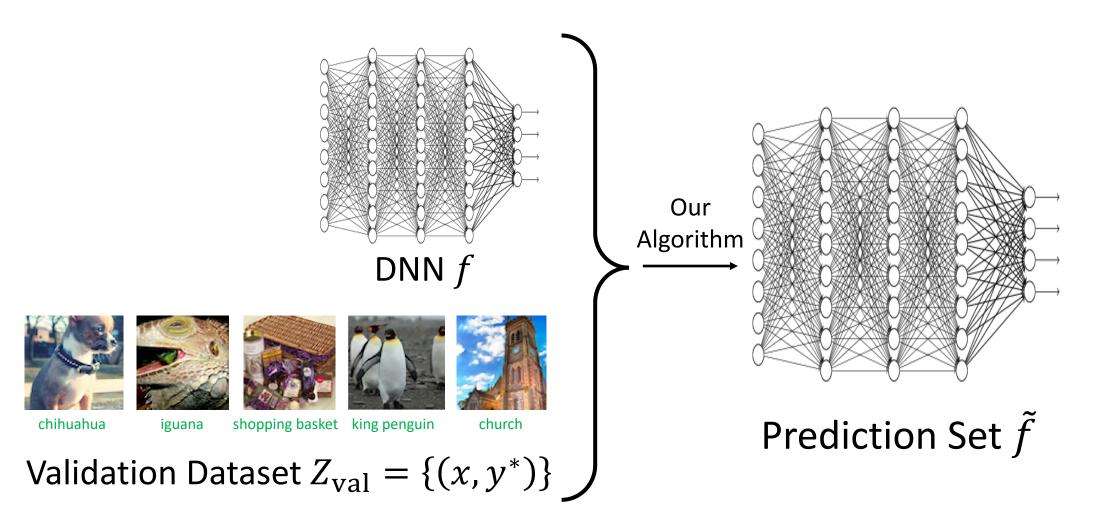


• Parametric model family of prediction sets

- We construct prediction sets based on an **existing** DNN f(y | x)
- Consider prediction sets that are **level sets** of *f* :

$$\tilde{f}_{\tau}(x) = \{ y \mid f(y \mid x) \ge \tau \}$$





PAC Prediction Sets

• IID assumption (standard in learning theory)

- Assume an "underlying distribution" $p(x, y^*)$
- Validation examples are $Z_{\rm val} \sim_{\rm iid} p$
- Given τ , we say prediction set \tilde{f}_{τ} is ϵ approximately correct (AC) if

$$\Pr_{p(x,y^*)}\left[y^* \in \tilde{f}_{\tau}(x)\right] \ge 1 - \epsilon$$

• I.e., $\tilde{f}_{\tau}(x)$ contains true label y^* with probability $\geq 1 - \epsilon$ over $p(x, y^*)$

PAC Prediction Sets

- Consider a learning algorithm $\hat{\tau}(Z_{val})$
 - Input: Validation dataset Z_{val} (and implicitly, DNN f)
 - **Output:** PAC prediction set $\tilde{f}_{\hat{\tau}(Z_{val})}$
- We say $\hat{\tau}$ is (ϵ, δ) probably approximately correct (PAC) if

$$\Pr_{p(Z_{val})}\left[\tilde{f}_{\hat{\tau}(Z_{val})} \text{ is } \epsilon \text{ AC}\right] \ge 1 - \delta$$

• I.e., $\tilde{f}_{\hat{\tau}(Z_{val})}$ is ϵ AC with probability $\geq 1 - \delta$ over $p(Z_{val})$

PAC Prediction Set Problem

- Devise a prediction set algorithm $\hat{\tau}(Z_{val})$ satisfying the PAC property
- Can always take $\hat{\tau}(Z_{val}) = -\infty$ to satisfy PAC guarantee!
- Goal: Construct "smallest" PAC prediction sets

Aside: Types of Conformal Prediction

Traditional conformal prediction

- Guarantees $\Pr_{p(Z_{val}), p(x, y^*)} \left[y^* \in \tilde{f}_{\hat{\tau}(Z_{val})}(x) \right] \ge 1 \alpha$
- Combines ϵ and $\delta,$ called a marginal guarantee
- Different algorithm and proof based on exchangeability argument

Training-conditional conformal prediction

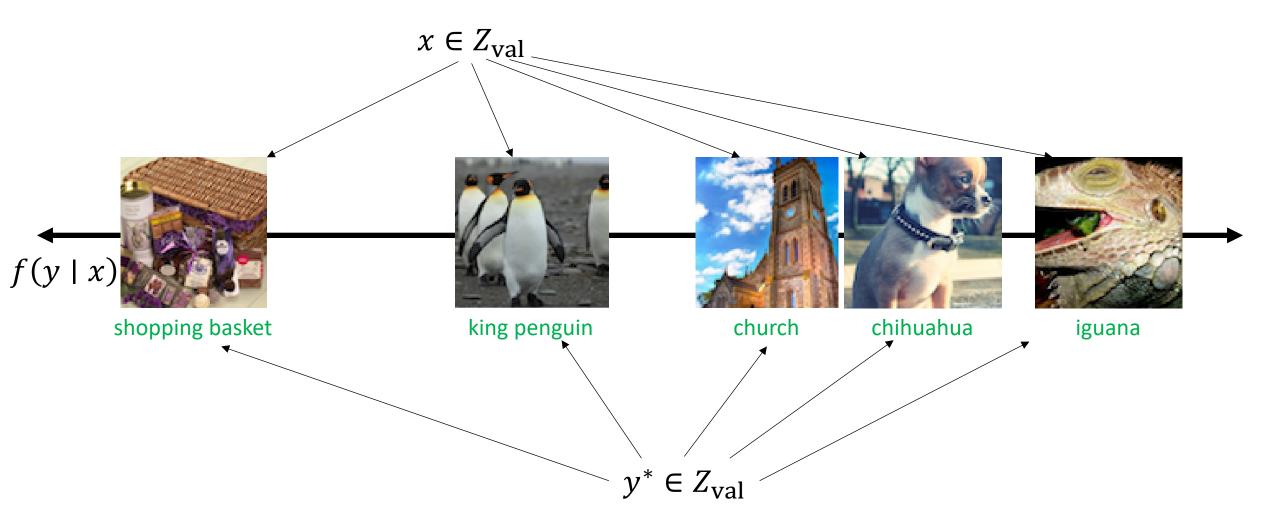
- Same as PAC guarantee
- Much more closely aligned with learning theory

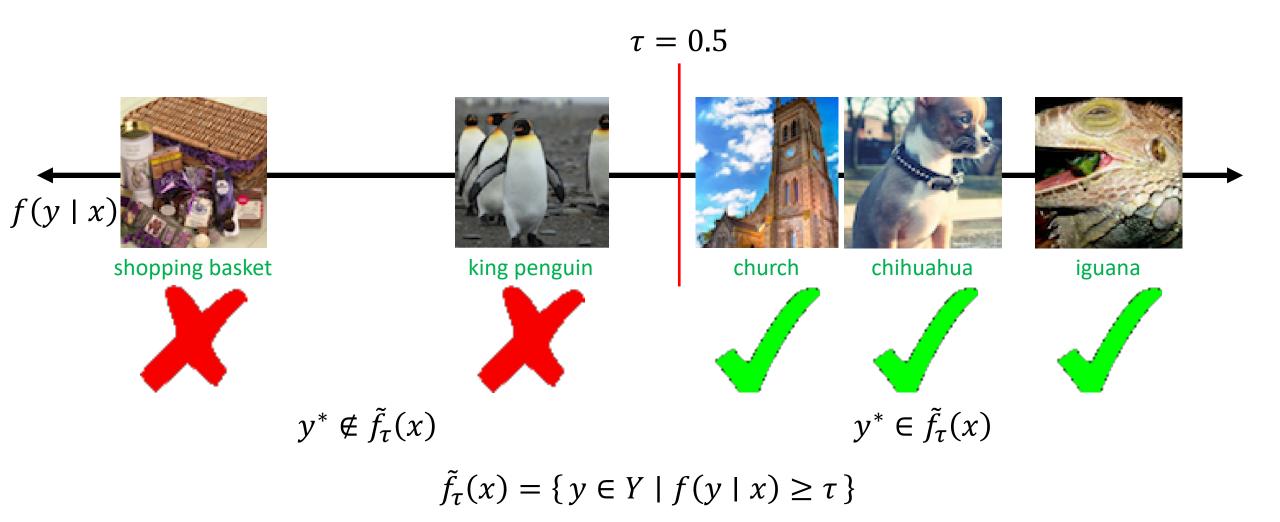
Agenda

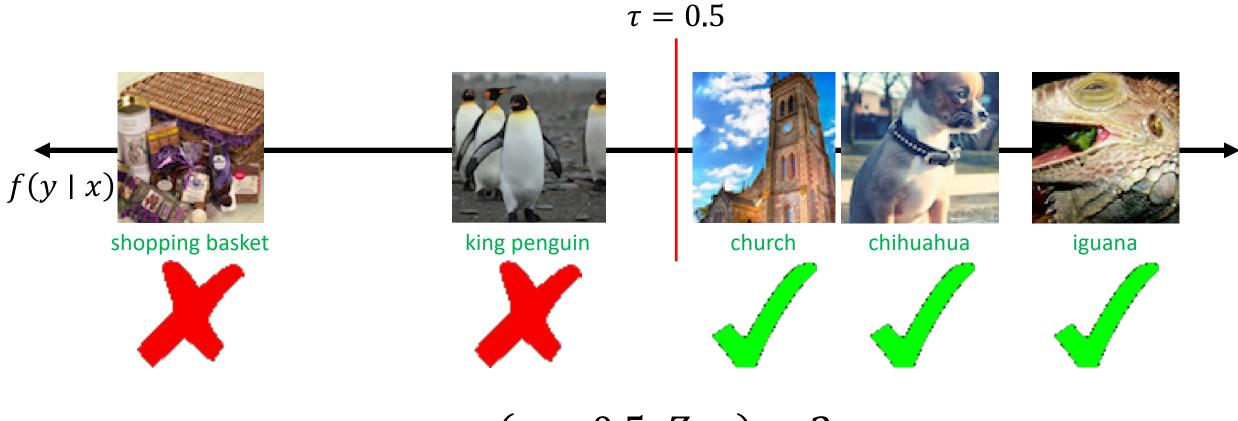
- Conformal prediction problem
- Conformal prediction algorithm
- Correctness proof

PAC Prediction Set Algorithm

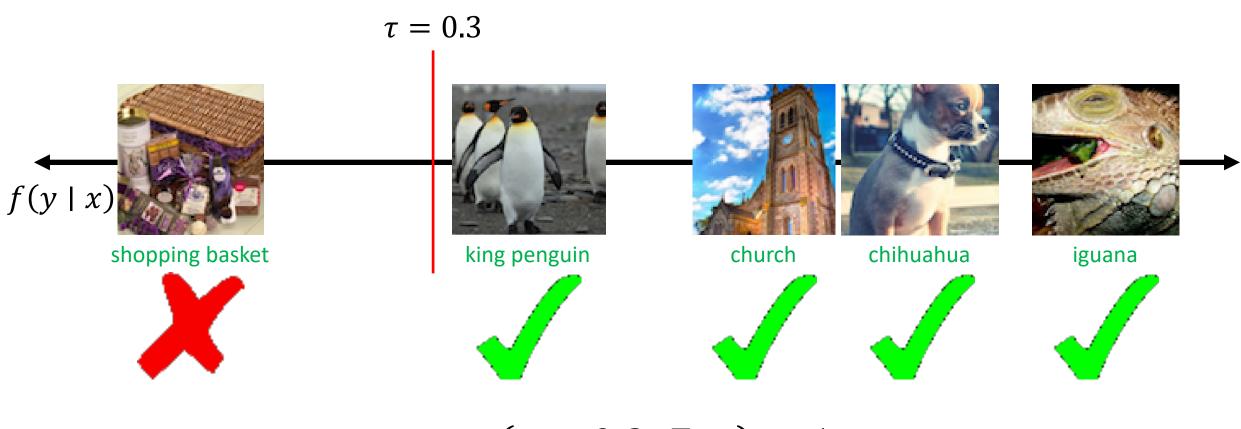
- Step 1: Reduce problem to supervised learning problem
 - Binary classification
 - 1D covariate space
 - 1D parameter space
- Step 2: Devise a statistical learning algorithm to solve this problem



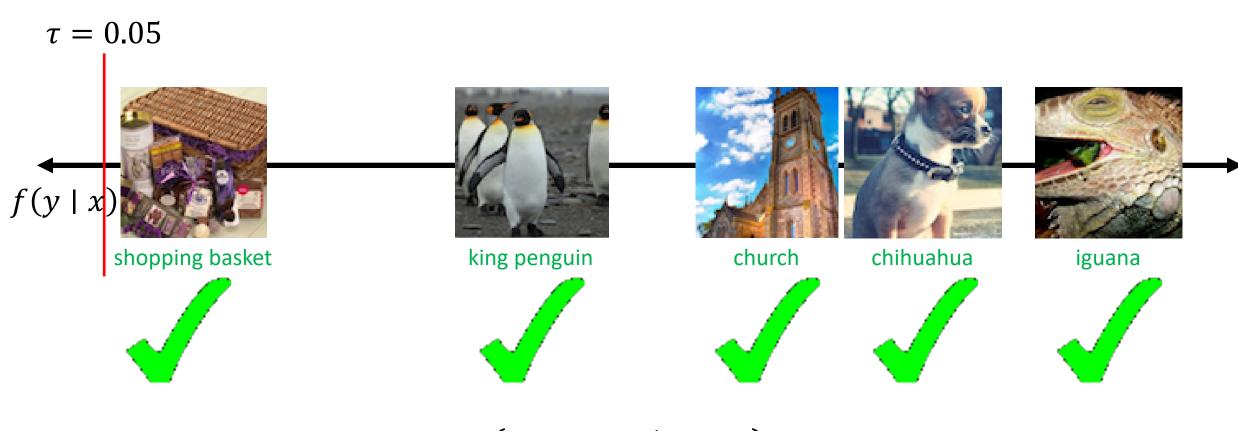




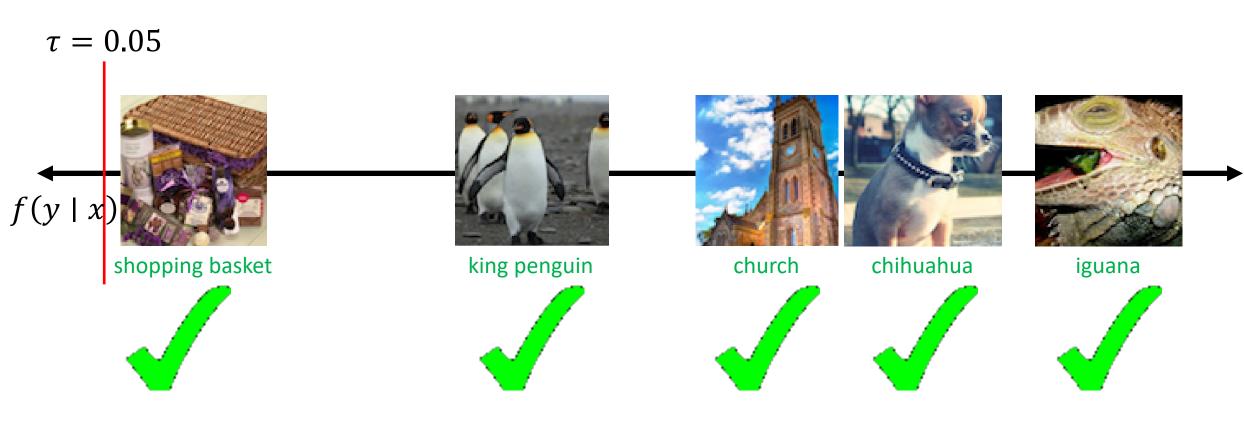
 $err(\tau = 0.5; Z_{val}) = 2$



 $err(\tau = 0.3; Z_{val}) = 1$

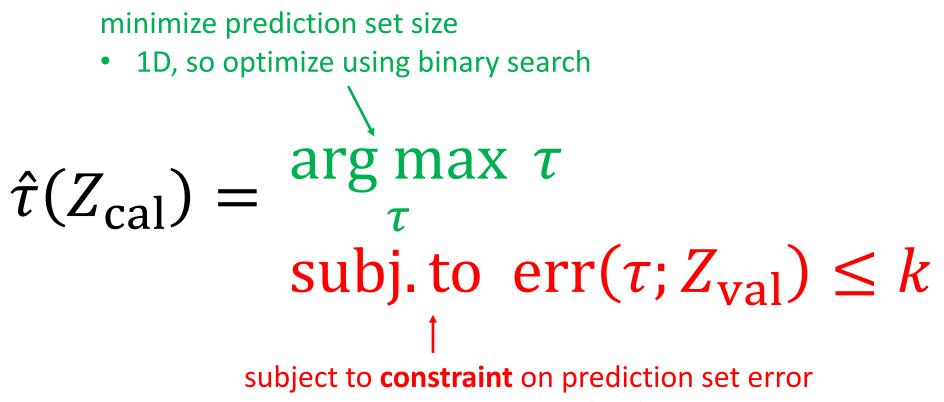


 $err(\tau = 0.05; Z_{val}) = 0$



larger, higher coverage prediction sets

Step 2: Statistical Learning Algorithm

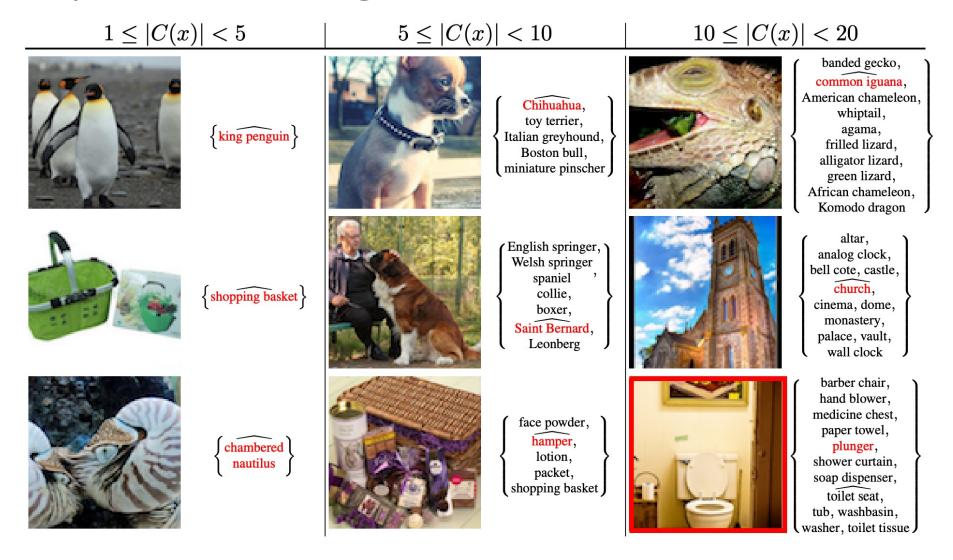


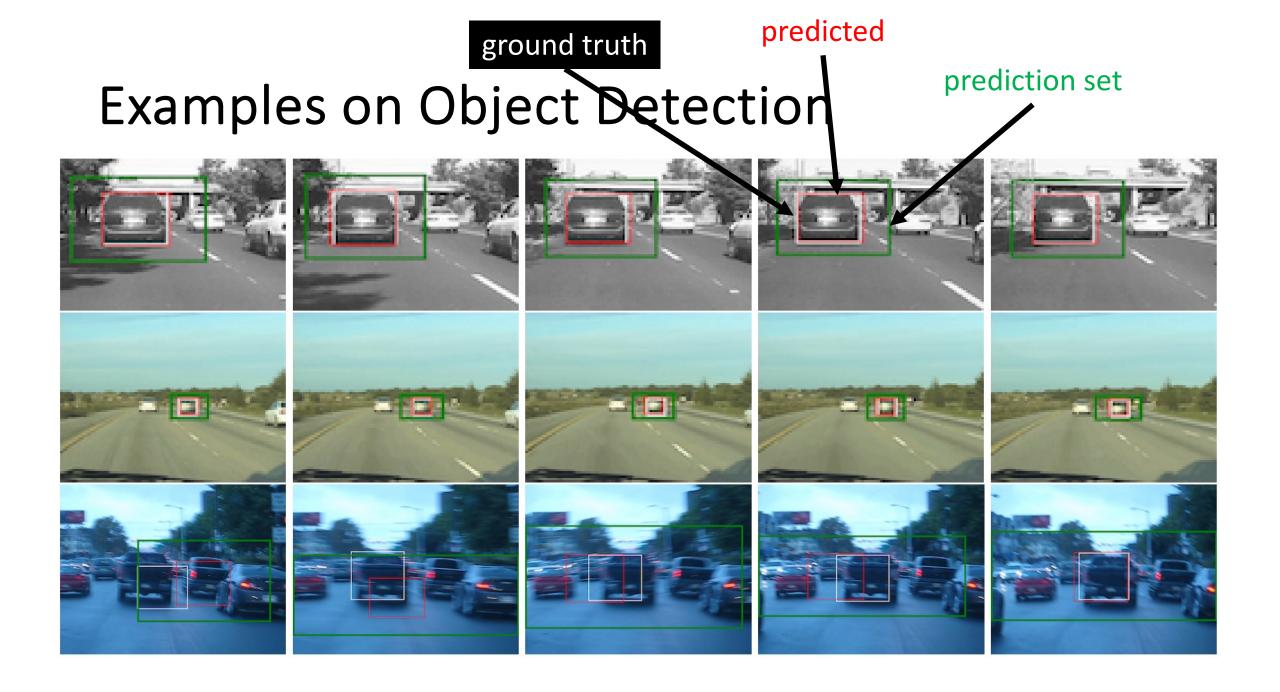
• k chosen to satisfy the (ϵ, δ) PAC property

Theoretical Guarantees

Theorem: $\tilde{f}_{\hat{\tau}(Z_{val})}$ is an (ϵ, δ) PAC prediction set

Examples on ImageNet



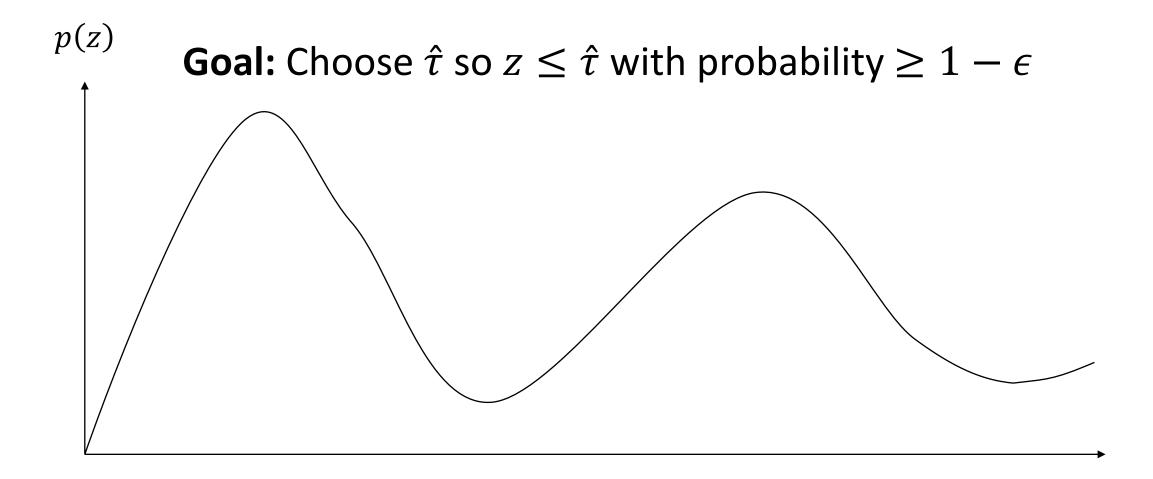


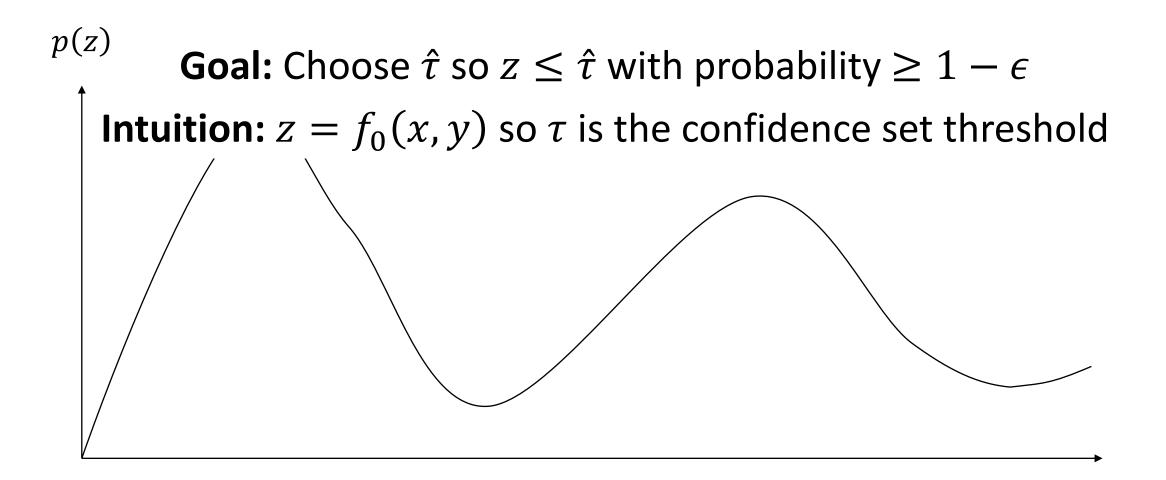
Examples on Code Generation

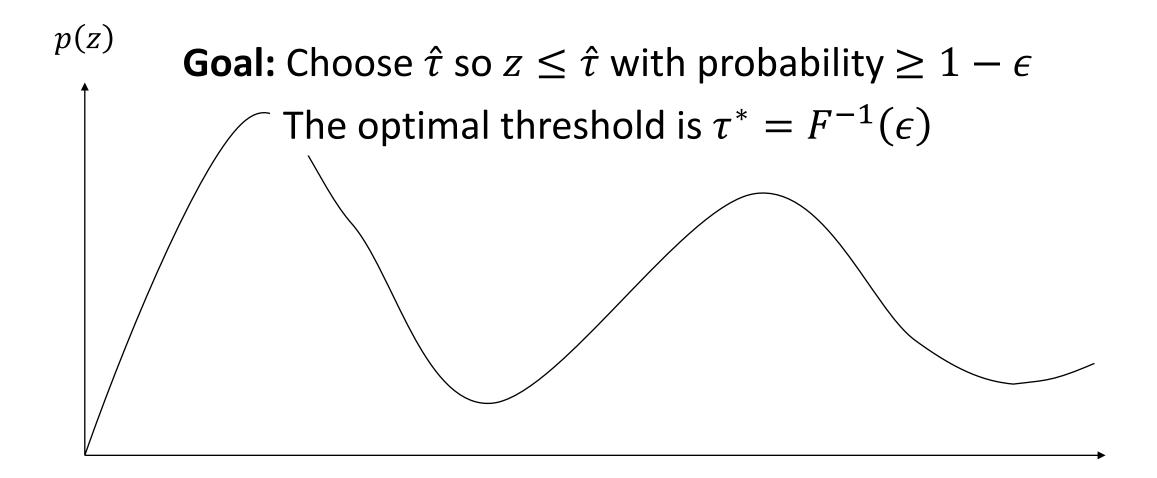
SELECT COUNT(*) FROM countries AS t1
JOIN car_makers as t2 on t1.countryid = t2.country
WHERE t1.countryname = "usa";

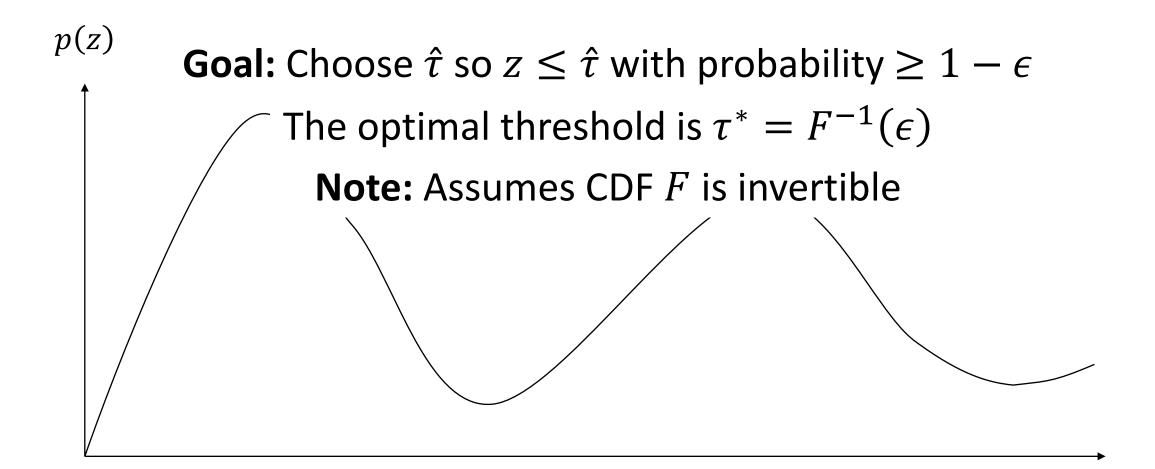
Agenda

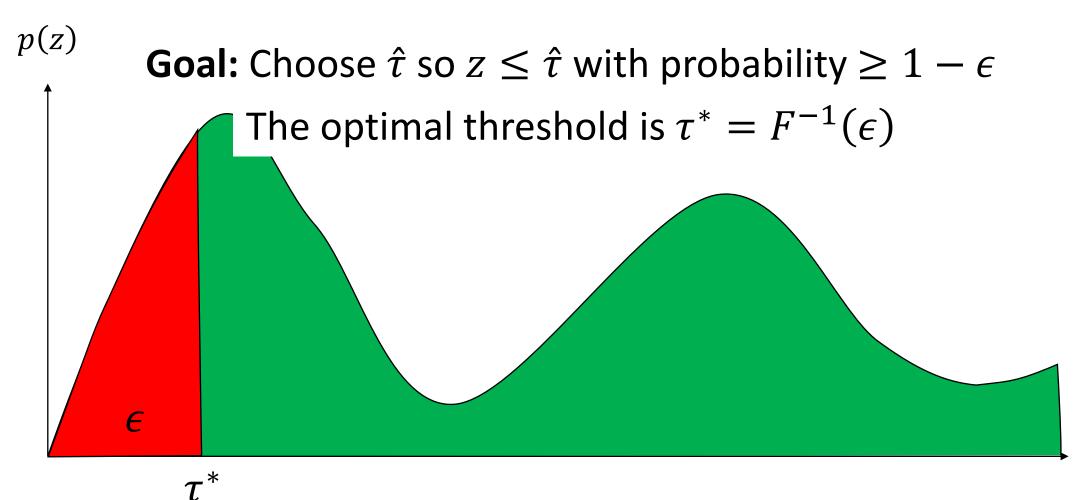
- Conformal prediction problem
- Conformal prediction algorithm
- Correctness proof

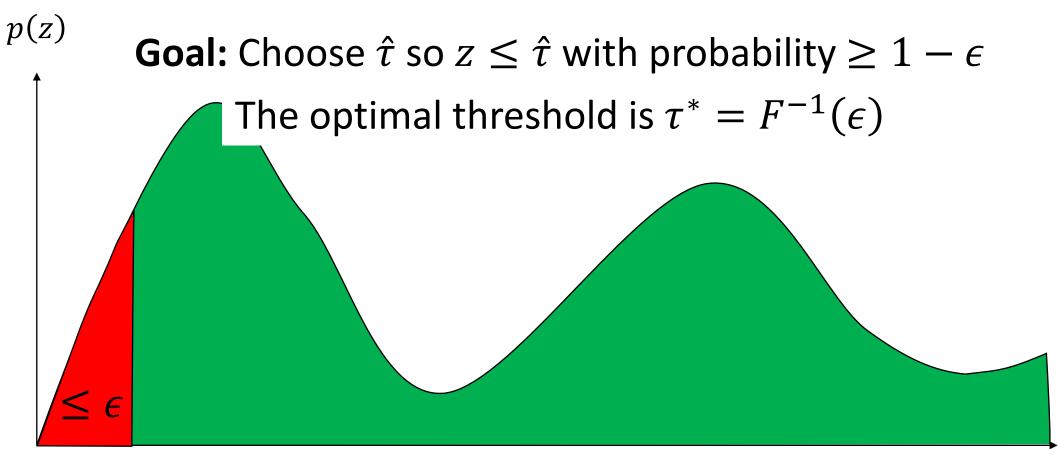


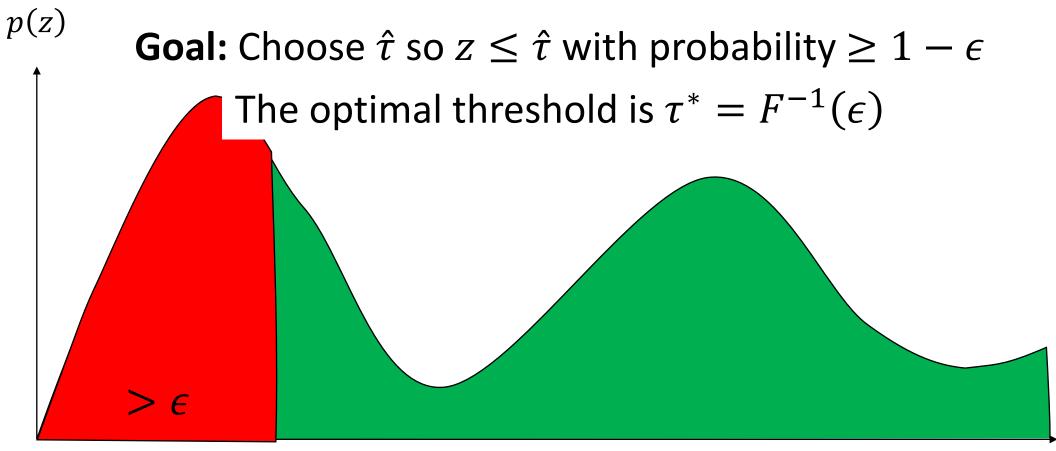




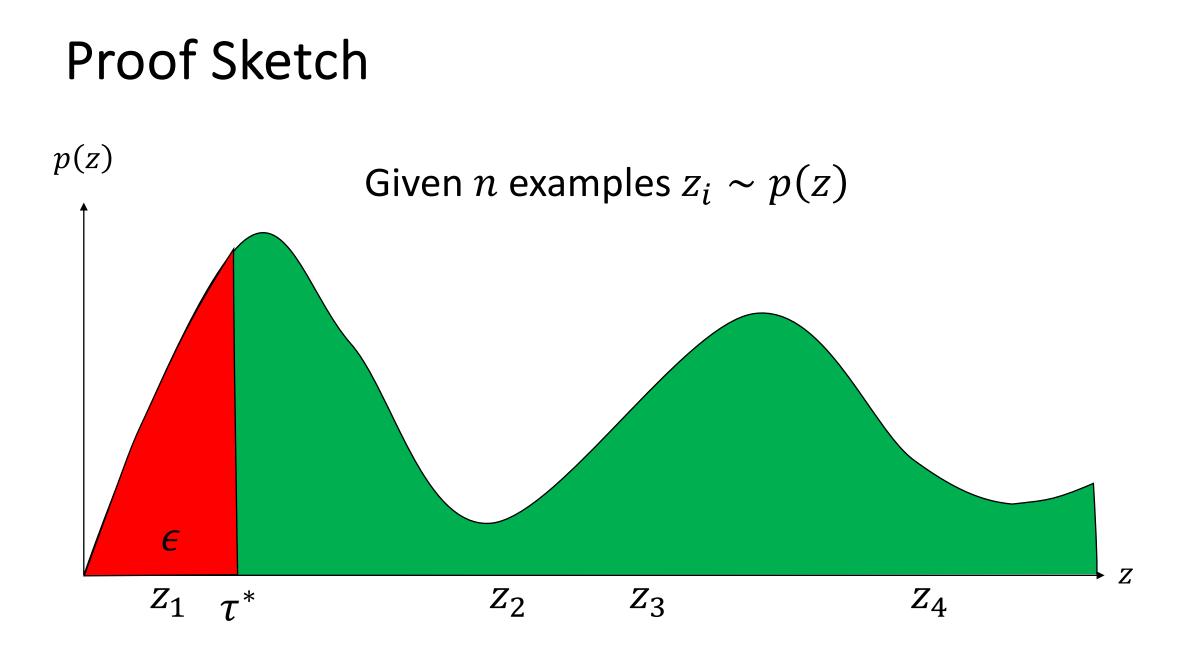


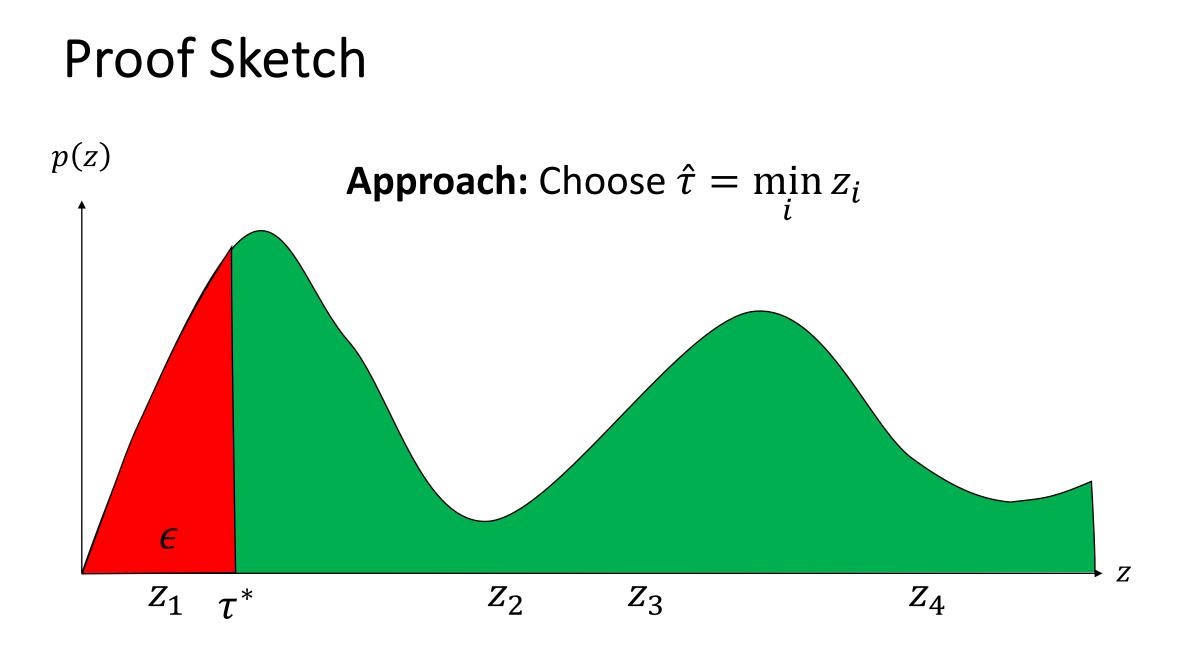


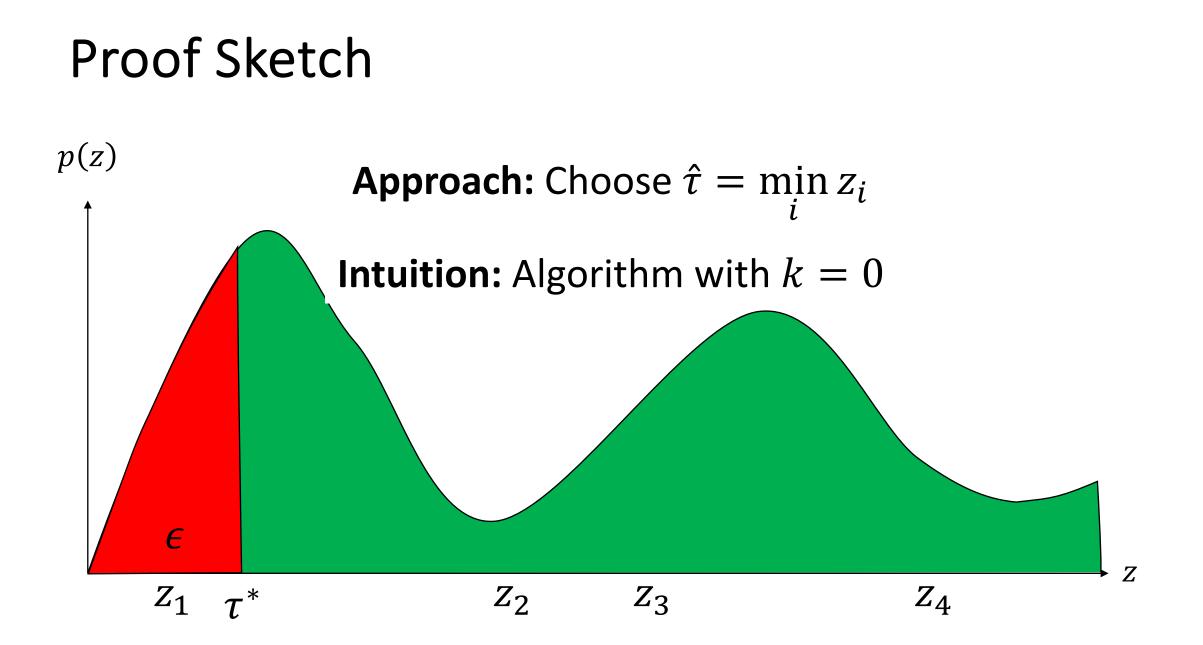


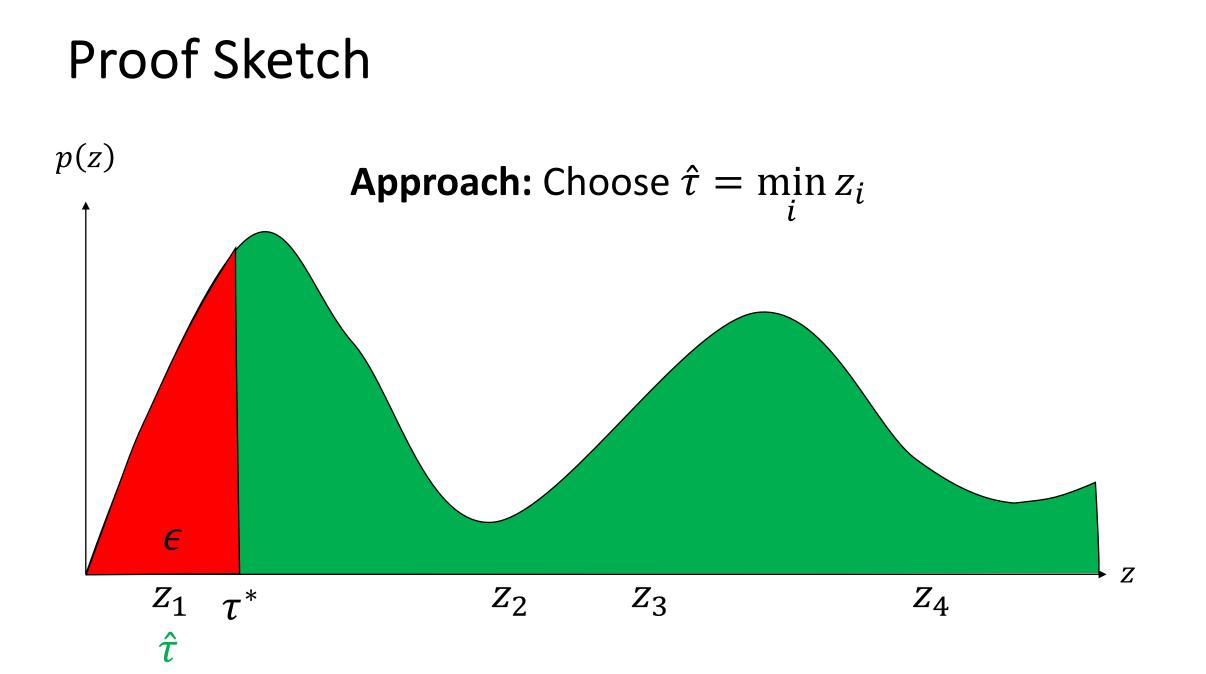


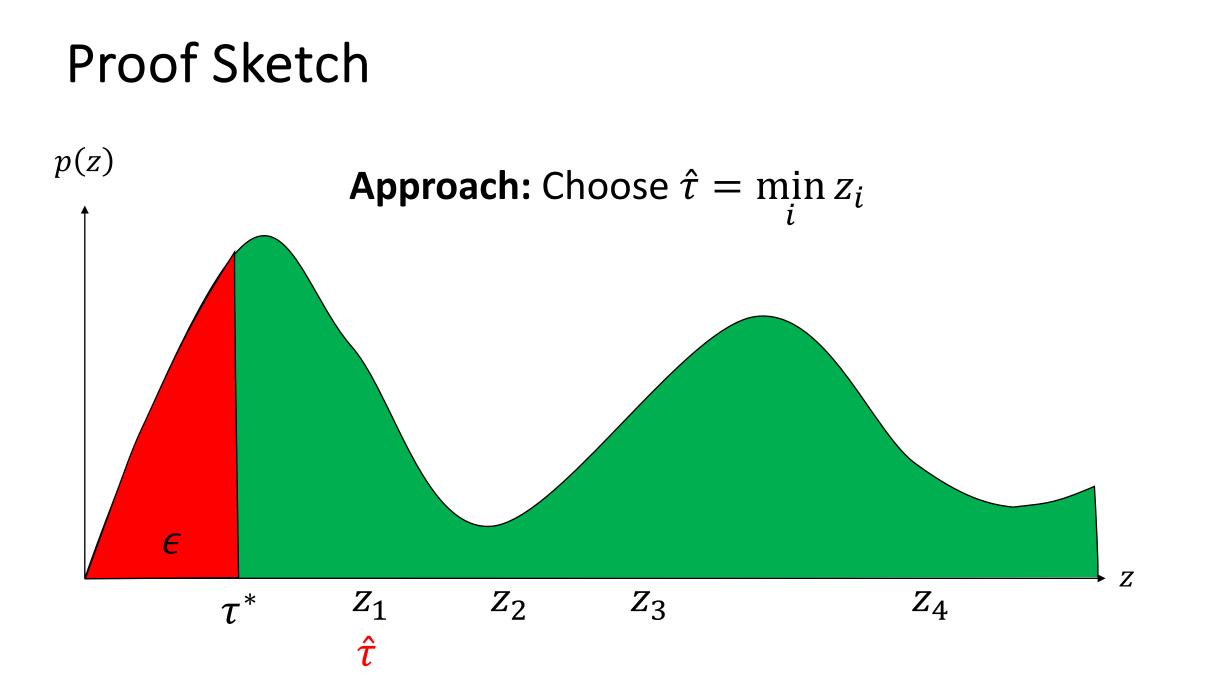
 $\hat{\tau}$ au^*

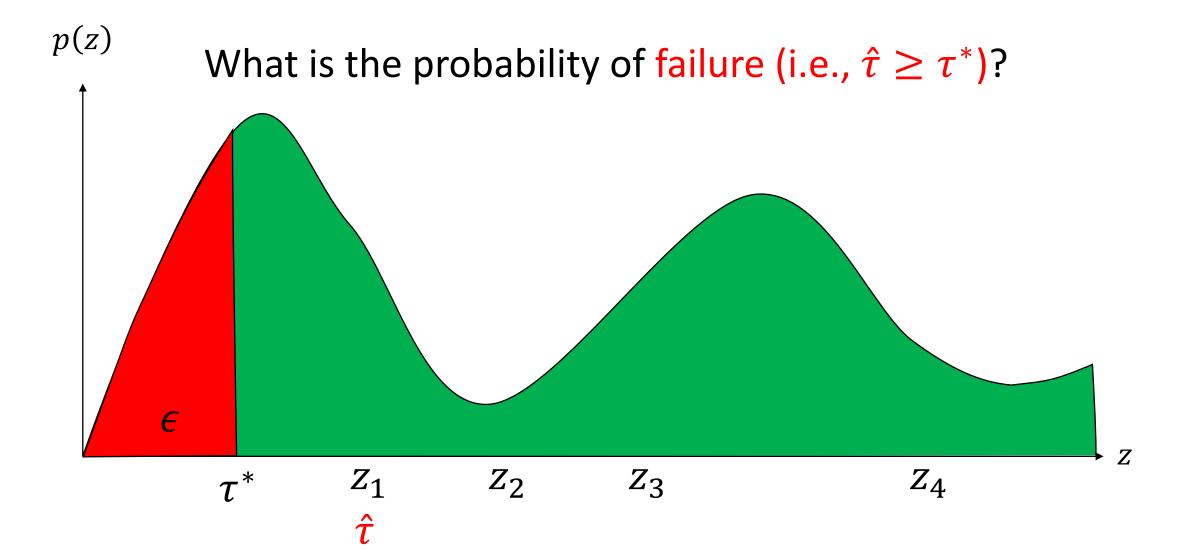


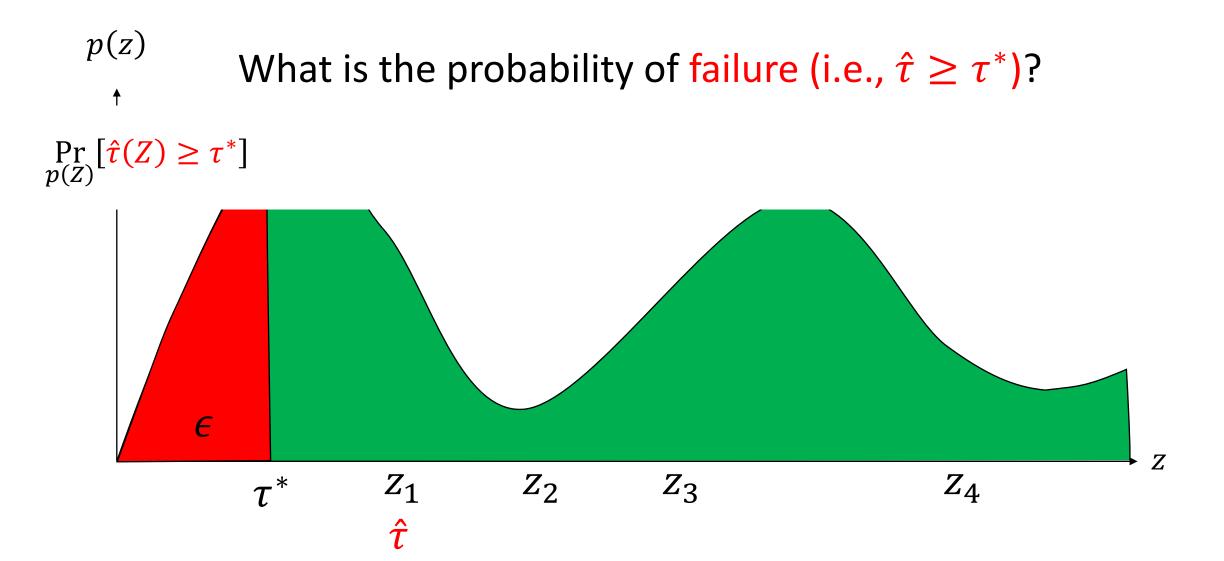


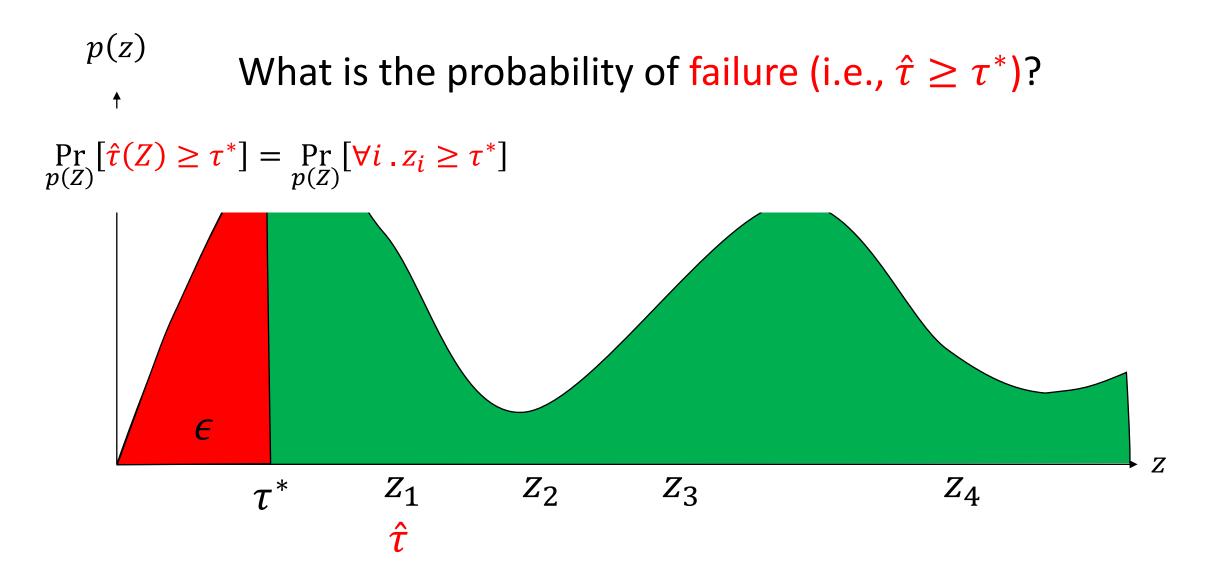


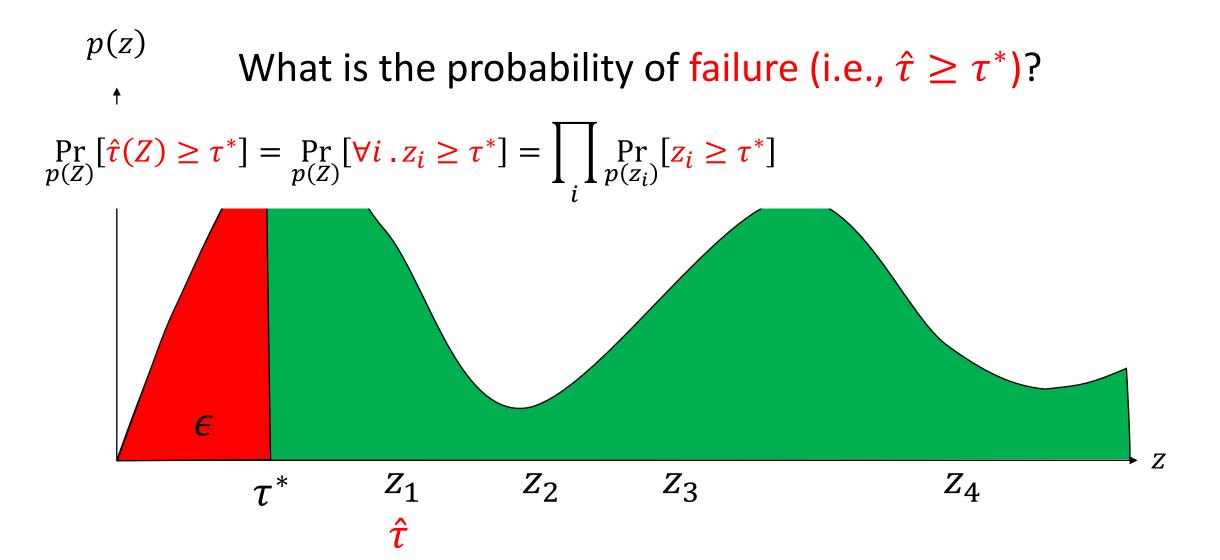


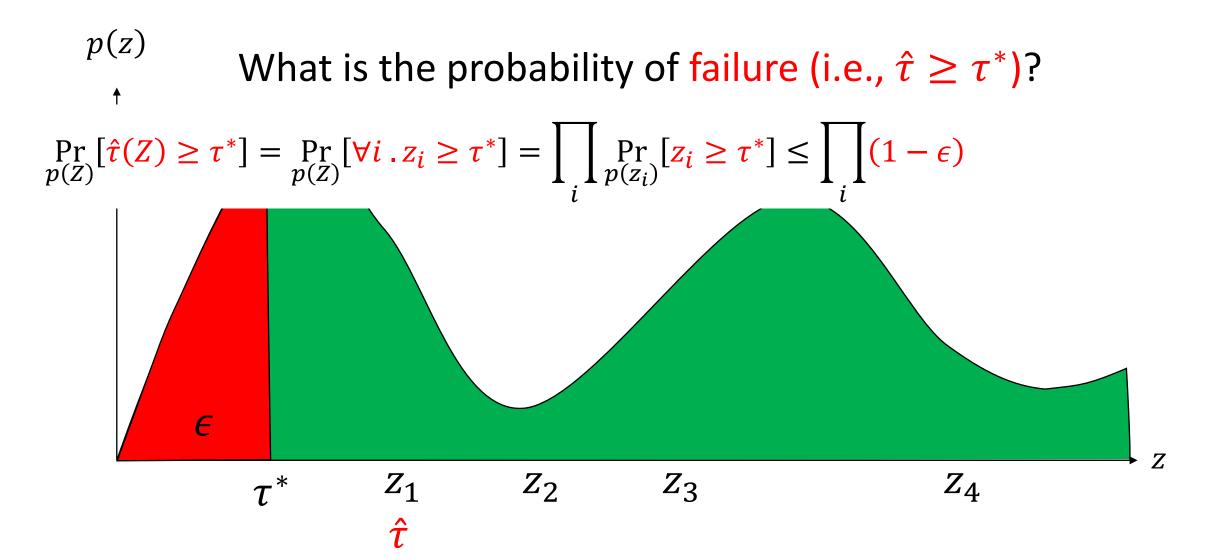


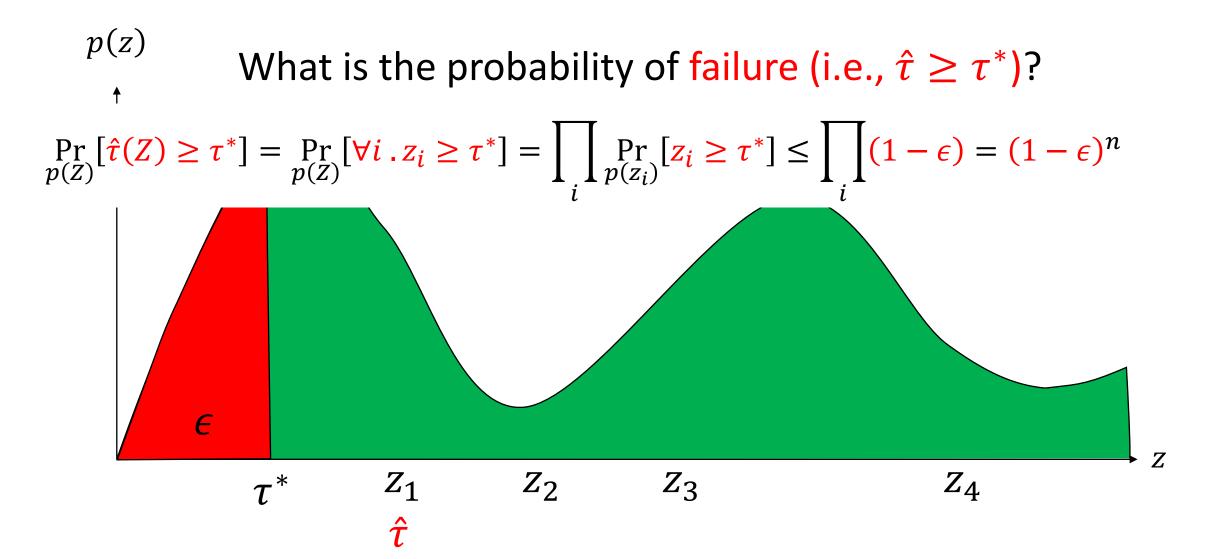


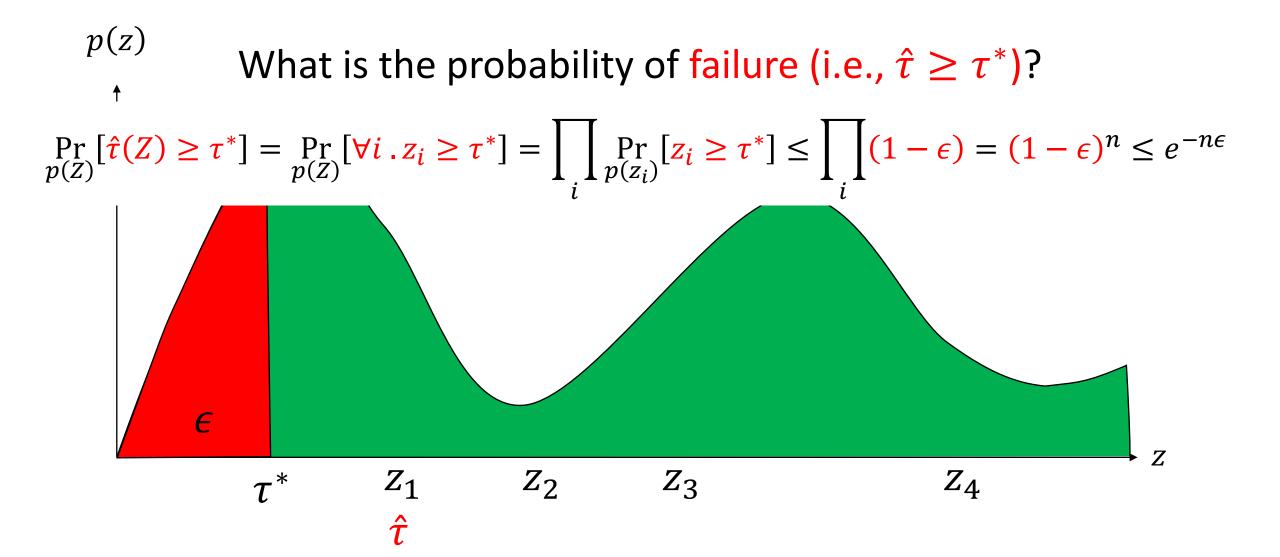


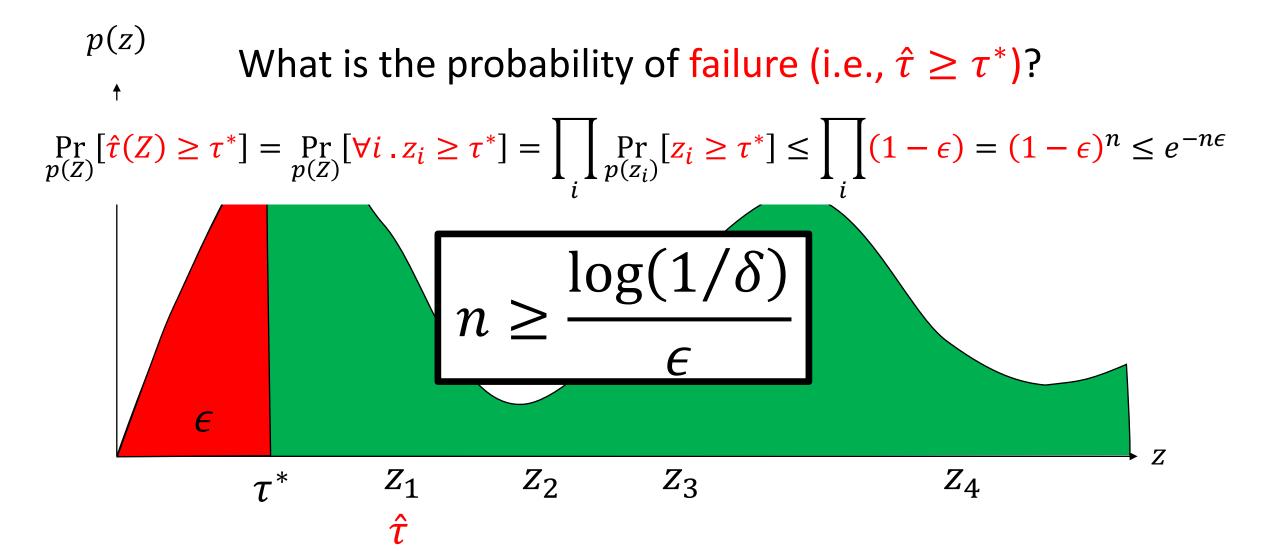












Agenda

- Conformal prediction problem
- Conformal prediction algorithm
- Correctness proof