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Course Project

• Goals
• Exposure to research ideas in trustworthy machine learning
• Understand some aspect of trustworthy machine learning more deeply

• Course project is a major component of this class



Course Project

• We urge you to start thinking about the course project now

• The project can be done individually or in a group of two

• You are welcome to set up a meeting with one of us to discuss project 
ideas at any time



Possible Project Categories

• Implementing and rigorously evaluating a technique discussed in 
class, in a bit more in depth than homework

• Review a specific paper, implement the described technique, and 
evaluate it empirically

• Review two or three papers with a common theme, and summarize 
their techniques with relative strengths and weaknesses

• Intersection of your current research and the course theme



Tentative Project Timeline

• Monday, March 25: Decide on team and project topic

• Monday, April 1: Finalize a concrete project with approval from us

• Monday, April 22: Submit project report
• 4-5 pages is typical length

• April 22, 24, 29, May 1: In-class project presentations
• 15 min talk + 5 min Q&A



Homework 2

• Covers distribution shift and uncertainty quantification
• Written homework focused on theoretical understanding

• Plan to release by Friday (March 1)

• Due Monday, March 11



Calibrated Prediction

• Predict a probability �⃗� 𝑥 !  for each label 𝑦

• Probabilities are correct if conditioned on �̂� 𝑥 = 𝑝, the accuracy is 𝑝



Why Calibration?

• Imagine you are making a decision with utility 𝑈 𝑦∗  (for 𝑦∗ ∈ 0,1 )

• Claim: If making decisions purely based on �̂� 𝑥 , you can act as if 
�̂� 𝑥  is the true probability of 𝑦∗ = 1

• “Proof”:
• Among all 𝑥 for which �̂� 𝑥 = 𝑝, exactly 𝑝 fraction of them satisfy 𝑦∗ = 1
• Thus, you obtain the payoff that you expected among these values of 𝑥



Shortcomings of Calibration

• Unintuitive/hard to reason about probabilities
• Both for humans and for algorithms

• Structured prediction (e.g., sentences, object detection, etc.)
• Probabilities of complex outputs quickly become small
• Probabilities of different portions of the output can be highly correlated

• Conformal prediction
• Represents of uncertainty using prediction sets, which can be more intuitive
• Also easier to reason about algorithmically



Agenda

• Conformal prediction problem
• Conformal prediction algorithm
• Correctness proof



Conformal Prediction

Image 𝑥 DNN 𝑓

“toilet seat”

Prediction
#𝑦 = max

!
𝑓(𝑦 ∣ 𝑥)



Conformal Prediction

Image 𝑥 DNN 𝑓

“toilet seat”

Incorrect!
(Ground truth label: 𝑦∗ = “plunger”)

Prediction
#𝑦 = max

!
𝑓(𝑦 ∣ 𝑥)



Conformal Prediction

Image 𝑥 DNN 𝑓

“toilet seat”

Prediction
#𝑦 = max

!
𝑓(𝑦 ∣ 𝑥)

Idea: Modify DNN 𝑓 to predict sets of labels

Incorrect!
(Ground truth label: 𝑦∗ = “plunger”)



Conformal Prediction

Output 𝑌 = -𝑓(𝑥)Image 𝑥

Idea: Modify DNN 𝑓 to predict sets of labels

Prediction Set -𝑓



Conformal Prediction

Image 𝑥 Prediction Set -𝑓

Idea: Modify DNN 𝑓 to predict sets of labels

Output 𝑌 = -𝑓(𝑥)

Now, we have 𝑦∗ ∈ -𝑓 𝑥  (coverage)



Conformal Prediction Problem

• Parametric model family of prediction sets
• We construct prediction sets based on an existing DNN 𝑓 𝑦 𝑥
• Consider prediction sets that are level sets of 𝑓:

,𝑓# 𝑥 = 𝑦 𝑓 𝑦 ∣ 𝑥 ≥ 𝜏

𝑓 𝑦 ∣ 𝑥

toilet seat (0.5)plunger (0.4)cat (0.1)

𝜏 = 0.45

,𝑓# 𝑥 = toilet	seat



Conformal Prediction Problem

• Parametric model family of prediction sets
• We construct prediction sets based on an existing DNN 𝑓 𝑦 𝑥
• Consider prediction sets that are level sets of 𝑓:

,𝑓# 𝑥 = 𝑦 𝑓 𝑦 ∣ 𝑥 ≥ 𝜏

𝑓 𝑦 ∣ 𝑥

𝜏 = 0.35

,𝑓# 𝑥 = toilet	seat, plunger
toilet seat (0.5)plunger (0.4)cat (0.1)



Conformal Prediction Problem

• Parametric model family of prediction sets
• We construct prediction sets based on an existing DNN 𝑓 𝑦 𝑥
• Consider prediction sets that are level sets of 𝑓:

,𝑓# 𝑥 = 𝑦 𝑓 𝑦 ∣ 𝑥 ≥ 𝜏

𝑓 𝑦 ∣ 𝑥

𝜏 = 0.05

,𝑓# 𝑥 = toilet	seat, plunger, cat
toilet seat (0.5)plunger (0.4)cat (0.1)



Conformal Prediction Problem

DNN 𝑓

chihuahua churchking penguinshopping basketiguana

Validation Dataset 𝑍$%& = 𝑥, 𝑦∗
Prediction Set -𝑓

Our 
Algorithm



PAC Prediction Sets

• IID assumption (standard in learning theory)
• Assume an “underlying distribution” 𝑝 𝑥, 𝑦∗
• Validation examples are 𝑍"#$ ∼%%& 𝑝

• Given 𝜏, we say prediction set ,𝑓# is 𝜖 approximately correct (AC) if

Pr' (,!∗ 𝑦∗ ∈ ,𝑓# 𝑥 ≥ 1 − 𝜖

• I.e., ,𝑓# 𝑥  contains true label 𝑦∗ with probability ≥ 1 − 𝜖 over 𝑝 𝑥, 𝑦∗  



PAC Prediction Sets

• Consider a learning algorithm �̂� 𝑍$%&
• Input: Validation dataset 𝑍"#$ (and implicitly, DNN 𝑓)
• Output: PAC prediction set 2𝑓'( )!"#

• We say �̂� is 𝜖, 𝛿  probably approximately correct (PAC) if

Pr' *"#$
,𝑓+# *"#$ 	is	𝜖	AC ≥ 1 − 𝛿

• I.e., ,𝑓+# *"#$  is 𝜖	AC with probability ≥ 1 − 𝛿 over 𝑝 𝑍$%&



PAC Prediction Set Problem

• Devise a prediction set algorithm �̂� 𝑍$%&  satisfying the PAC property

• Can always take �̂� 𝑍$%& = −∞ to satisfy PAC guarantee!

• Goal: Construct “smallest” PAC prediction sets



Aside: Types of Conformal Prediction
• Traditional conformal prediction
• Guarantees Pr* )!"# ,* ,,-∗ 𝑦∗ ∈ 2𝑓'( )!"# 𝑥 ≥ 1 − 𝛼
• Combines 𝜖 and 𝛿, called a marginal guarantee
• Different algorithm and proof based on exchangeability argument

• Training-conditional conformal prediction
• Same as PAC guarantee
• Much more closely aligned with learning theory



Agenda

• Conformal prediction problem
• Conformal prediction algorithm
• Correctness proof



PAC Prediction Set Algorithm

• Step 1: Reduce problem to supervised learning problem
• Binary classification
• 1D covariate space
• 1D parameter space

• Step 2: Devise a statistical learning algorithm to solve this problem



Step 1: Reduction to Binary Classification

chihuahuachurchking penguinshopping basket iguana

𝑦∗ ∈ 𝑍"#$

𝑥 ∈ 𝑍"#$

𝑓 𝑦 ∣ 𝑥



Step 1: Reduction to Binary Classification

chihuahuachurchking penguinshopping basket iguana

𝜏 = 0.5

2𝑓( 𝑥 = 𝑦 ∈ 𝑌 𝑓 𝑦 ∣ 𝑥 ≥ 𝜏

𝑦∗ ∈ 2𝑓( 𝑥𝑦∗ ∉ 2𝑓( 𝑥

𝑓 𝑦 ∣ 𝑥



Step 1: Reduction to Binary Classification

chihuahuachurchking penguinshopping basket iguana

𝜏 = 0.5

err 𝜏 = 0.5; 𝑍#$% = 2

𝑓 𝑦 ∣ 𝑥



Step 1: Reduction to Binary Classification

chihuahuachurchking penguinshopping basket iguana

𝜏 = 0.3

err 𝜏 = 0.3; 𝑍#$% = 1

𝑓 𝑦 ∣ 𝑥



Step 1: Reduction to Binary Classification

chihuahuachurchking penguinshopping basket iguana

𝜏 = 0.05

err 𝜏 = 0.05; 𝑍#$% = 0

𝑓 𝑦 ∣ 𝑥



Step 1: Reduction to Binary Classification

chihuahuachurchking penguinshopping basket iguana

𝜏 = 0.05

larger, higher coverage prediction sets

𝑓 𝑦 ∣ 𝑥



Step 2: Statistical Learning Algorithm

arg	max
!

	𝜏 

subj. to	 err 𝜏; 𝑍"#$ ≤ 𝑘 
�̂� 𝑍%#$ =

minimize prediction set size
• 1D, so optimize using binary search

subject to constraint on prediction set error
• 𝑘 chosen to satisfy the 𝜖, 𝛿  PAC property



Theoretical Guarantees

Theorem: !𝑓!" #!"#  is an 𝜖, 𝛿  PAC prediction set



Examples on ImageNet



Examples on Object Detection
ground truth predicted

prediction set



Examples on Code Generation



Agenda

• Conformal prediction problem
• Conformal prediction algorithm
• Correctness proof



Proof Sketch

𝑝 𝑧
Goal: Choose �̂� so 𝑧 ≤ �̂� with probability ≥ 1 − 𝜖



Proof Sketch

𝑝 𝑧
Goal: Choose �̂� so 𝑧 ≤ �̂� with probability ≥ 1 − 𝜖

Intuition: 𝑧 = 𝑓& 𝑥, 𝑦  so 𝜏 is the confidence set threshold



Proof Sketch

𝑝 𝑧
Goal: Choose �̂� so 𝑧 ≤ �̂� with probability ≥ 1 − 𝜖

The optimal threshold is 𝜏∗ = 𝐹'( 𝜖



Proof Sketch

𝑝 𝑧
Goal: Choose �̂� so 𝑧 ≤ �̂� with probability ≥ 1 − 𝜖

The optimal threshold is 𝜏∗ = 𝐹'( 𝜖
Note: Assumes CDF 𝐹 is invertible



Proof Sketch

𝑧

𝑝 𝑧

𝜖
𝜏∗

Goal: Choose �̂� so 𝑧 ≤ �̂� with probability ≥ 1 − 𝜖
The optimal threshold is 𝜏∗ = 𝐹'( 𝜖



Proof Sketch

𝑧

𝑝 𝑧
Goal: Choose �̂� so 𝑧 ≤ �̂� with probability ≥ 1 − 𝜖

The optimal threshold is 𝜏∗ = 𝐹'( 𝜖

≤ 𝜖

�̂� 𝜏∗



Proof Sketch

𝑧

𝑝 𝑧
Goal: Choose �̂� so 𝑧 ≤ �̂� with probability ≥ 1 − 𝜖

�̂�
> 𝜖
𝜏∗

The optimal threshold is 𝜏∗ = 𝐹'( 𝜖



Proof Sketch

𝑧

𝑝 𝑧
Given 𝑛 examples 𝑧) ∼ 𝑝 𝑧

𝑧*𝑧( 𝑧+ 𝑧,
𝜖

𝜏∗



Proof Sketch

𝑧

𝑝 𝑧
Approach: Choose �̂� = min

)
𝑧)

𝑧*𝑧( 𝑧+ 𝑧,
𝜖

𝜏∗



Proof Sketch

𝑧

𝑝 𝑧
Approach: Choose �̂� = min

)
𝑧)

Intuition: Algorithm with 𝑘 = 0

𝑧*𝑧( 𝑧+ 𝑧,
𝜖

𝜏∗



Proof Sketch

𝑧

𝑝 𝑧
Approach: Choose �̂� = min

)
𝑧)

�̂�
𝑧*𝑧( 𝑧+ 𝑧,

𝜖
𝜏∗



Proof Sketch

𝑧

𝑝 𝑧

�̂�

Approach: Choose �̂� = min
)
𝑧)

𝑧*𝑧( 𝑧+ 𝑧,
𝜖

𝜏∗



Proof Sketch

𝑧

𝑝 𝑧
What is the probability of failure (i.e., �̂� ≥ 𝜏∗)?

�̂�
𝑧*𝑧( 𝑧+ 𝑧,

𝜖
𝜏∗



Proof Sketch

𝑧

𝑝 𝑧
What is the probability of failure (i.e., �̂� ≥ 𝜏∗)?

�̂�
𝑧*𝑧( 𝑧+ 𝑧,

𝜖
𝜏∗

Pr
* )

�̂� 𝑍 ≥ 𝜏∗ = Pr
* )

∀𝑖	. 𝑧. ≥ 𝜏∗ =B
.

Pr
* /%

𝑧. ≥ 𝜏∗ ≤B
.

1 − 𝜖 = 1 − 𝜖 0 ≤ 𝑒102
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Proof Sketch

𝑧

𝑝 𝑧
What is the probability of failure (i.e., �̂� ≥ 𝜏∗)?

�̂�
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Proof Sketch

𝑧

𝑝 𝑧
What is the probability of failure (i.e., �̂� ≥ 𝜏∗)?

�̂�
𝑧*𝑧( 𝑧+ 𝑧,

𝜖
𝜏∗

Pr
* )

�̂� 𝑍 ≥ 𝜏∗ = Pr
* )

∀𝑖	. 𝑧. ≥ 𝜏∗ =B
.

Pr
* /%

𝑧. ≥ 𝜏∗ ≤B
.

1 − 𝜖 = 1 − 𝜖 0 ≤ 𝑒102

𝑛 ≥
log ⁄1 𝛿

𝜖



Agenda

• Conformal prediction problem
• Conformal prediction algorithm
• Correctness proof


