Lecture 13: Conformal Prediction

CIS 7000: Trustworthy Machine Learning Spring 2024

Homework 2

- Covers distribution shift and uncertainty quantification
 - Written homework focused on theoretical understanding
- Due Monday, March 18

Agenda

- Conformal prediction under distribution shift
- Composing conformal prediction sets
- Conformal structured prediction
- Uniform conformal prediction

Distribution Shift

- Given calibration data from the source distribution p(x, y)
- Want to perform well on a shifted **target distribution** q(x, y):

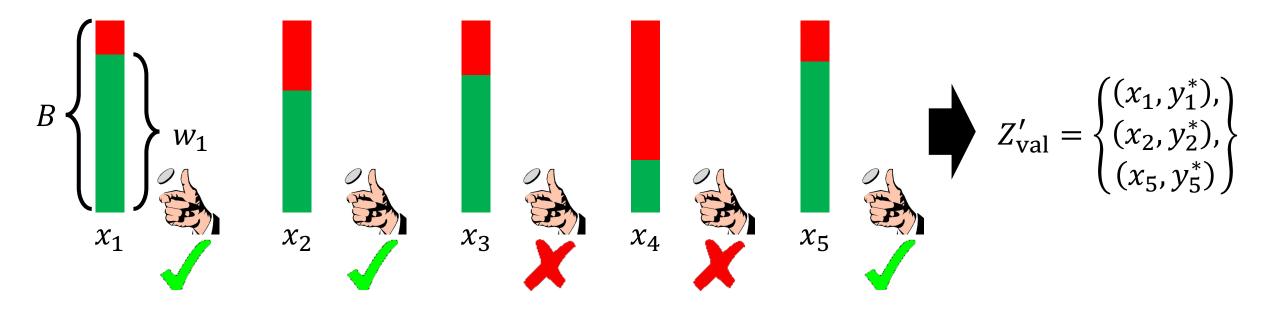
$$\Pr_{p(Z_{\text{cal}})}\left[\Pr_{q(x,y^*)}\left[y^* \in \tilde{f}_{\hat{\tau}(Z_{\text{val}})}(x)\right] \ge 1 - \epsilon\right] \ge 1 - \delta$$

Assumptions

- Given importance weight intervals $w_i \in [w_i^{\text{low}}, w_i^{\text{hi}}]$ for each $(x_i, y_i^*) \in Z_{\text{val}}$
- Can be derived in the unsupervised domain adaptation setting under covariate shift and label shift assumptions
- Importance weights are bounded: $w(x, y^*) \le B$ (can be relaxed)

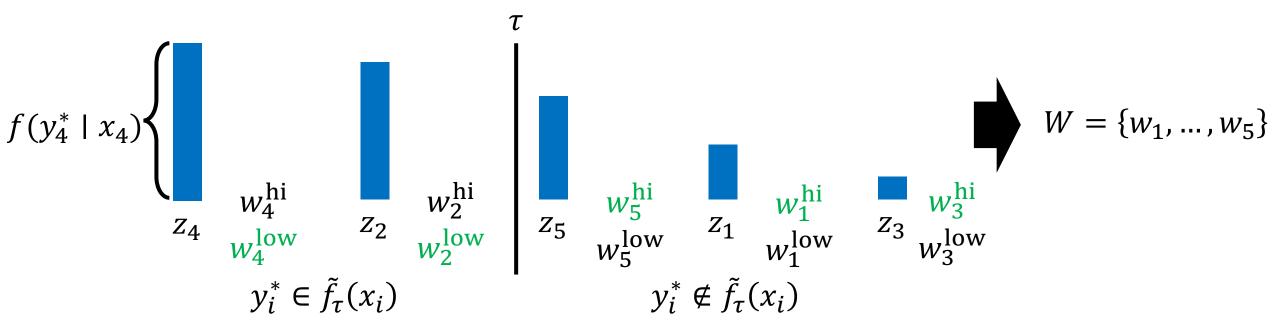
Case 1: Known Importance Weights

- Assume w_i is known for each $(x_i, y_i^*) \in Z_{val}$
- Algorithm
 - Step 1: Use rejection sampling to convert $Z_{val} \sim p$ to $Z'_{val} \sim q$
 - Step 2: Construct PAC prediction set using Z'_{val}



Case 2: Importance Weight Intervals

- Assume an interval $w_i \in [w_i^{\text{low}}, w_i^{\text{hi}}]$ is known for each $(x_i, y_i^*) \in Z_{\text{val}}$
- Algorithm
 - Step 1: Choose the most conservative importance weight $w_i \in [w_i^{\text{low}}, w_i^{\text{hi}}]$
 - Step 2: Construct PAC prediction set using Z_{val} and $\{w_i\}_i$

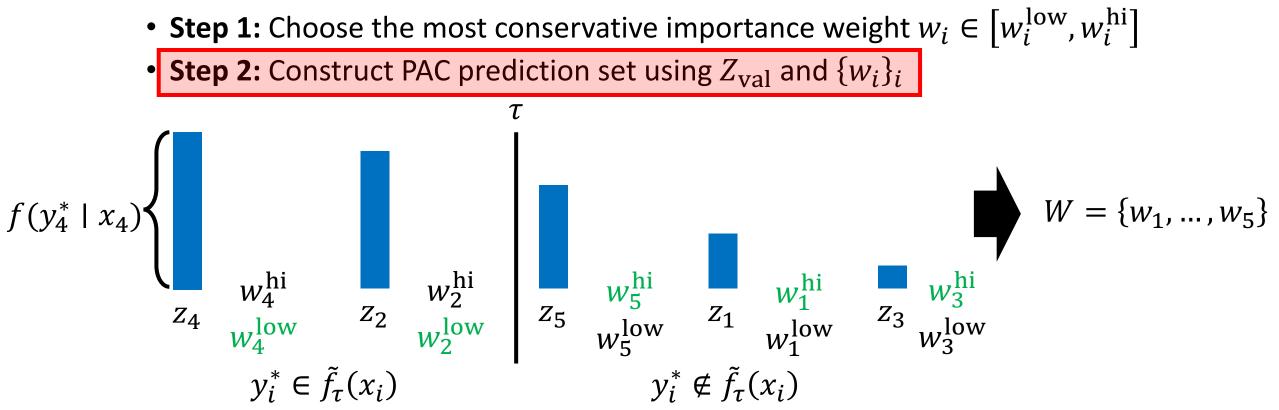


How to Compute au?

- We have an algorithm that can evaluate a given au
 - Idea: Do binary search on τ to find the best one
 - **Problem:** The algorithm is random!

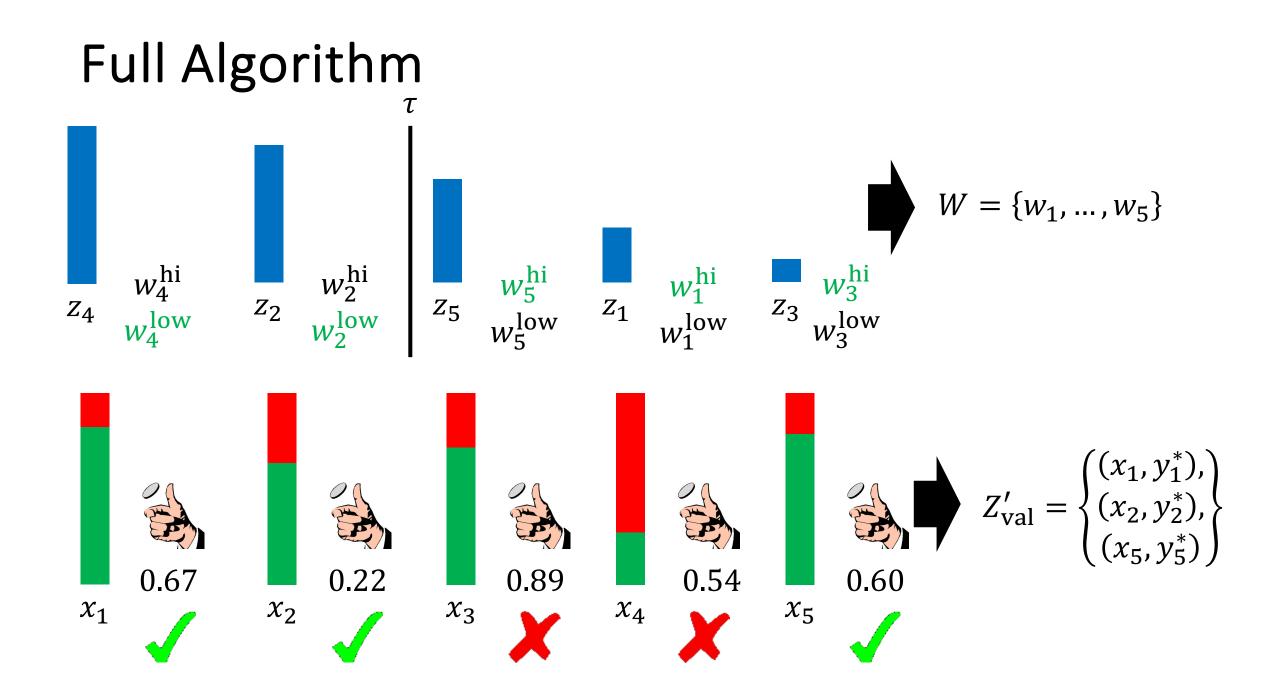
Case 2: Importance Weight Intervals

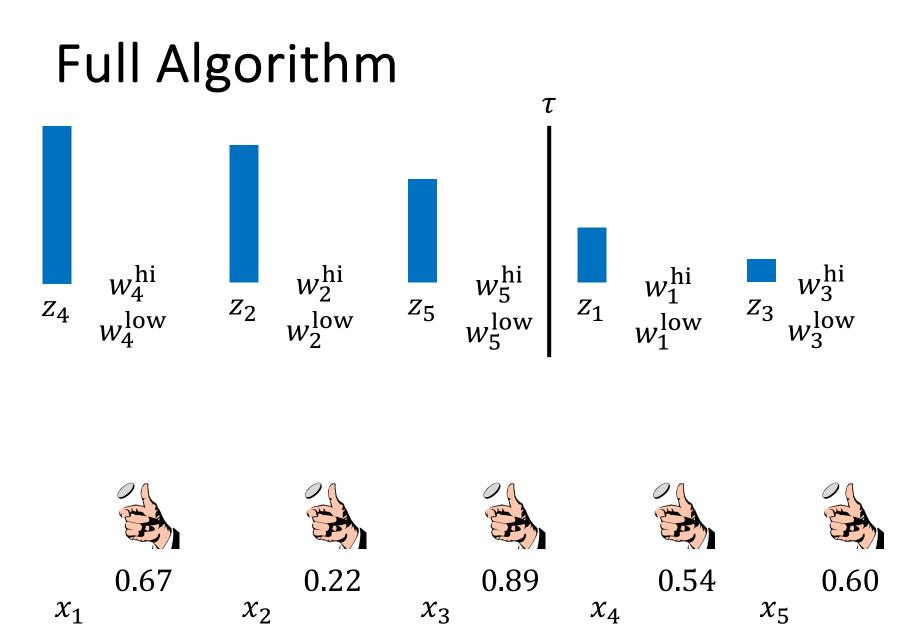
- Assume an interval $w_i \in [w_i^{\text{low}}, w_i^{\text{hi}}]$ is known for each $(x_i, y_i^*) \in Z_{\text{val}}$
- Algorithm

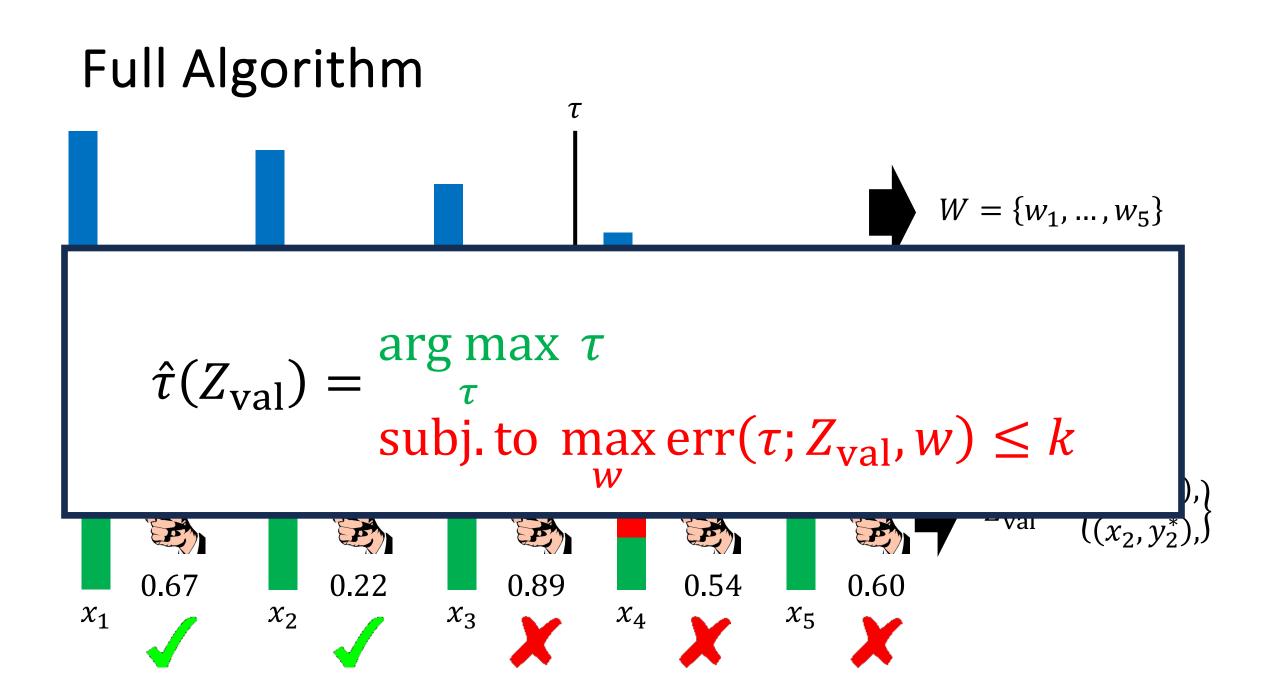


How to Compute au?

- We have an algorithm that can evaluate a given au
 - Idea: Do binary search on τ to find the best one
 - **Problem:** The algorithm is random!
- Solution: Sample randomness before running binary search





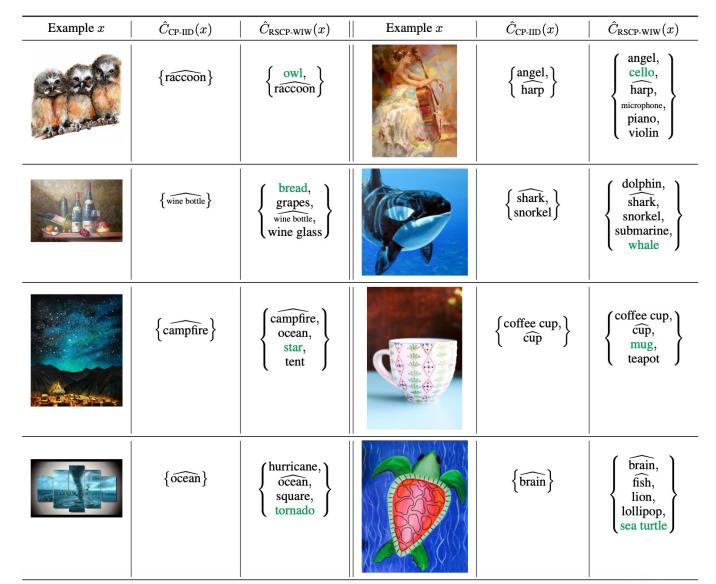


Theoretical Guarantees

• Theorem

- Assume $w(x_i) \in [w_i^{\text{low}}, w_i^{\text{hi}}]$ for all $i \in \{1, ..., n\}$
- Then, $f_{\hat{\tau}(Z_{\text{val}})}$ is an (ϵ, δ) -PAC prediction set with respect to q

Examples on DomainNet



Results

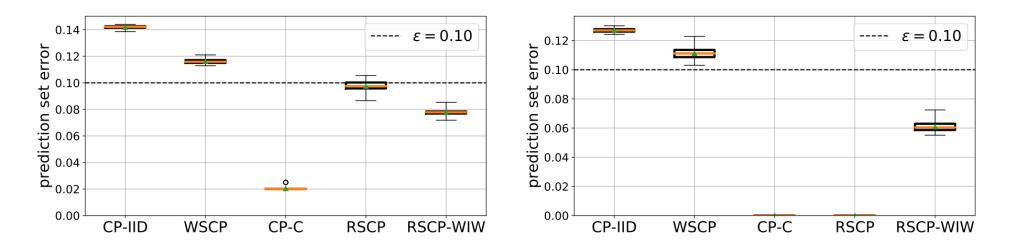


Figure 1: Error under natural rate shift by DomainNet for All \rightarrow Sketch (left), and ImageNet-C synthetic perturbations to ImageNet (right), over 100 random trials, with m = 50,000 (for DomainNet) and m = 20,000 (for ImageNet), $\varepsilon = 0.1$, and $\delta = 10^{-5}$.

Obtaining IW Intervals

- How do we get importance weight intervals $w_i \in [w_i^{\text{low}}, w_i^{\text{hi}}]$?
 - Covariate shift: Need to use heuristics
 - Label shift: Can get exact intervals

• Recall that $w = C^{-1}q$, where

$$C_{ij} = \mathbb{P}_P[f(x) = i, y = j]$$

• Recall that $w = C^{-1}q$, where

$$C_{ij} = \mathbb{P}_P[f(x) = i, y = j] \approx |Z|^{-1} \sum_{(x,y) \in Z} 1(f(x) = i, y = j) = \hat{C}_{ij}$$

$$q_i = \mathbb{P}_Q[f(x) = i]$$

• Recall that $w = C^{-1}q$, where

$$C_{ij} = \mathbb{P}_P[f(x) = i, y = j] \approx |Z|^{-1} \sum_{(x,y) \in Z} 1(f(x) = i, y = j) = \hat{C}_{ij}$$

$$q_i = \mathbb{P}_Q[f(x) = i] \approx |X|^{-1} \sum_{x \in X} \mathbb{1}(f(x) = i) = \hat{q}_i$$

Hoeffding's inequality

- Let $b_1, \ldots, b_n \sim_{i.i.d.} \text{Bernoulli}(\mu)$ be samples
- Let $\hat{\mu} = n^{-1} \sum_{k=1}^{n} b_k$ be the empirical mean
- Then, with probability at least $1-\delta$, we have

$$|\hat{\mu} - \mu| \le \sqrt{\frac{\log(2/\delta)}{2n}}$$

• With probability $\geq 1 - \delta$, the following hold individually:

$$\left|\hat{C}_{ij} - C_{ij}\right| \leq \sqrt{\frac{\log(2/\delta)}{2|Z|}}$$

• With probability $\geq 1 - \delta$, the following hold individually:

$$\left|\hat{C}_{ij} - C_{ij}\right| \le \sqrt{\frac{\log(2/\delta)}{2|Z|}} \quad \text{and} \quad \left|\hat{q}_i - q_i\right| \le \sqrt{\frac{\log(2/\delta)}{2|X|}}$$

- Union bound: If $\Pr[A_i] \ge 1 \delta_i$ for all i, then $\Pr[\Lambda_i A_i] \ge 1 \sum_i \delta_i$
- With probability $\geq 1 (d + d^2)\delta$, all of the following hold:

$$\left|\hat{C}_{ij} - C_{ij}\right| \le \sqrt{\frac{\log(2/\delta)}{2|Z|}}$$
 and $\left|\hat{q}_i - q_i\right| \le \sqrt{\frac{\log(2/\delta)}{2|X|}}$

• With probability $\geq 1 - \delta$, the following hold individually:

$$\left|\hat{C}_{ij} - C_{ij}\right| \le \sqrt{\frac{\log(2/\delta)}{2|Z|}} \quad \text{and} \quad \left|\hat{q}_i - q_i\right| \le \sqrt{\frac{\log(2/\delta)}{2|X|}}$$

- Union bound: If $\Pr[A_i] \ge 1 \delta_i$ for all *i*, then $\Pr[\Lambda_i A_i] \ge 1 \sum_i \delta_i$
- With probability $\geq 1 (d + d^2)\delta$, all of the following hold:

$$C_{ij} \in \left[\hat{C}_{ij} - \sqrt{\frac{\log(2/\delta)}{2|Z|}}, \hat{C}_{ij} + \sqrt{\frac{\log(2/\delta)}{2|Z|}}\right] \quad \text{and} \quad q_i \in \left[\hat{q}_i - \sqrt{\frac{\log(2/\delta)}{2|X|}}, \hat{q}_i + \sqrt{\frac{\log(2/\delta)}{2|X|}}\right]$$

• We need to bound $|\widehat{w}_i - w_i|$, where $w = C^{-1}q$ and $\widehat{w} = \widehat{C}^{-1}\widehat{q}$

- **Strategy:** Abstract interpretation!
 - If we have C and q, then we could compute w using Gaussian elimination
 - If we have intervals around the entries of *C* and *q*, then we can run Gaussian elimination on these intervals using abstract interpretation

• **Recall:** Given a function $f: \mathbb{R}^d \to \mathbb{R}$, its corresponding **abstract transformer** is a function $\hat{f}: \widehat{\mathbb{R}}^d \to \widehat{\mathbb{R}}$ such that if

$$x' = f(x_1, \dots, x_d)$$
 and $\bigwedge_{i=1}^d x_i \in \gamma(\hat{x}_i)$

then we have

$$x' \in \gamma\left(\hat{f}(\hat{x}_1, \dots, \hat{x}_d)\right)$$

- Let $\widehat{\mathbb{R}} = \mathbb{R} \times \mathbb{R}$ be the **interval domain**
 - $\alpha(\{r_1, \dots, r_k\}) = \left(\min_i r_i, \max_i r_i\right) \in \widehat{\mathbb{R}}$
 - $\gamma((a,b)) = [a,b] \subseteq \mathbb{R}$
- Then, we have:
 - (a,b) + (c,d) = (a + c, b + d)
 - $(a,b) \widehat{-} (c,d) = (a-d,b-c)$
 - $(a, b) \widehat{\times} (c, d) = (a \times c, b \times d)$ (assuming everything is non-negative)
 - $(a, b) \div (c, d) = (a \div d, b \div c)$ (assuming everything is non-negative)

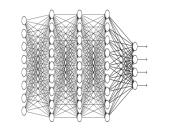
- Step 1: Compute \hat{C} and \hat{q}
- Step 2: Use Hoeffding to obtain intervals \hat{C}_{\min} , \hat{C}_{\max} , \hat{q}_{\min} , \hat{q}_{\max} such that $\hat{C}_{\min} \leq C \leq \hat{C}_{\max}$ and $\hat{q}_{\min} \leq q \leq \hat{q}_{\max}$ with high probability
 - Inequalities are interpreted elementwise
- Step 3: Run Gaussian elimination using abstract interpretation to obtain intervals \hat{w}_{\min} , \hat{w}_{\max}
 - By abstract interpretation guarantee, we have $\hat{w}_{\min} \leq w \leq \hat{w}_{\max}$
- Step 4: Run PAC conformal prediction with IW intervals

- Theorem: $f_{\hat{\tau}(Z_{val})}$ is an $(\epsilon, 2\delta)$ -PAC prediction set with respect to q
 - 2δ comes from IW intervals + PAC property (and union bound)

Agenda

- Conformal prediction under distribution shift
- Composing conformal prediction sets
- Conformal structured prediction
- Uniform conformal prediction

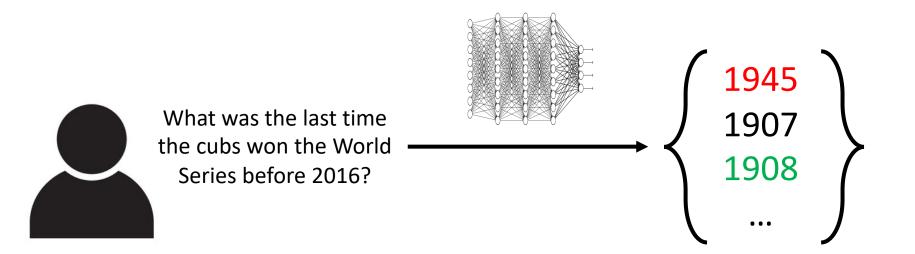
Prediction Sets for Question Answering



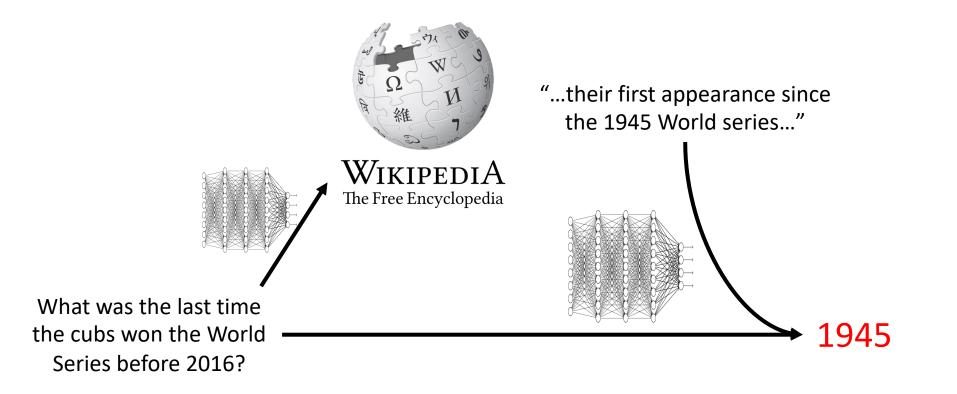
What was the last time the cubs won the World Series before 2016?

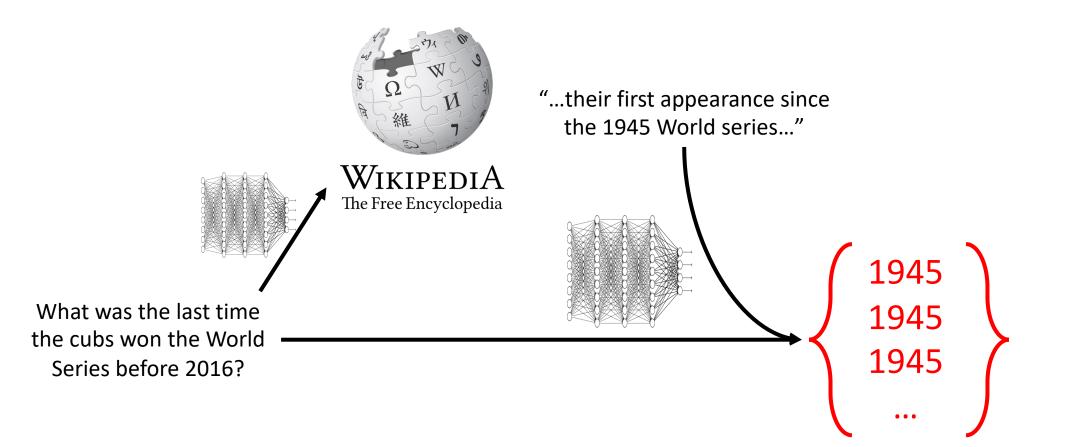
► 1945

Prediction Sets for Question Answering



- Many applications of large language models rely on specialized sources of knowledge that are not present in the training data
- Retrieval augmented question answering
 - Extract relevant knowledge from knowledge base (e.g., Wikipedia)
 - Incorporate knowledge into query to generative model





Minimizing Prediction Set Size

- Challenge: How to choose $\epsilon_{retrieval}$ and ϵ_{QA} ?
- Solution: Optimize them on a held-out optimization set Z_{opt}
 - Optimization variables are $\epsilon_{
 m retrieval}$ and $\epsilon_{
 m QA}$
 - Given a candidate, compute conformal prediction thresholds: $\hat{\tau}_{retrieval}(Z_{opt}; \epsilon_{retrieval})$ and $\hat{\tau}_{QA}(Z_{opt}; \epsilon_{QA})$
 - Objective is expected prediction set size:

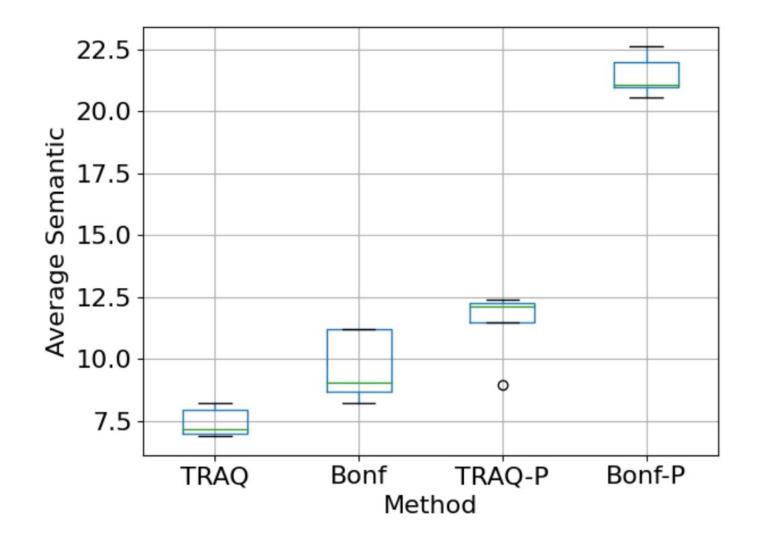
 $\sum_{(x,y^*)\in Z_{\text{opt}}} \left| C_{\hat{\tau}_{\text{retrieval}}(Z_{\text{opt}};\epsilon_{\text{retrieval}}),\hat{\tau}_{\text{QA}}(Z_{\text{opt}};\epsilon_{\text{QA}})}(x) \right|$

• We use Bayesian optimization to optimize $\epsilon_{
m retrieval}$ and $\epsilon_{
m QA}$

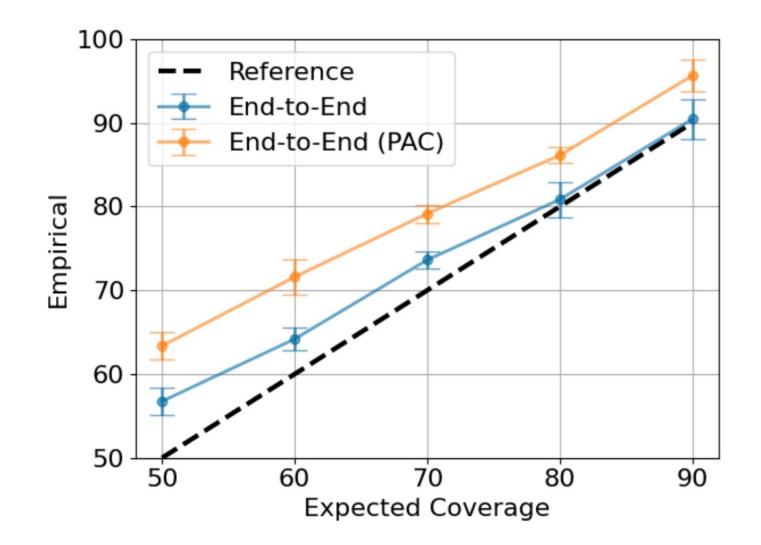
Experimental Results

- **Dataset:** SQuAD question answering dataset
 - Similar results on TriviaQA and Natural Questions
- Model: GPT-3.5-Turbo
 - Similar results on Llama 2 7B
- Consider both PAC prediction sets and traditional (marginal) conformal prediction
- Baseline: No Bayesian optimization

Prediction Set Size

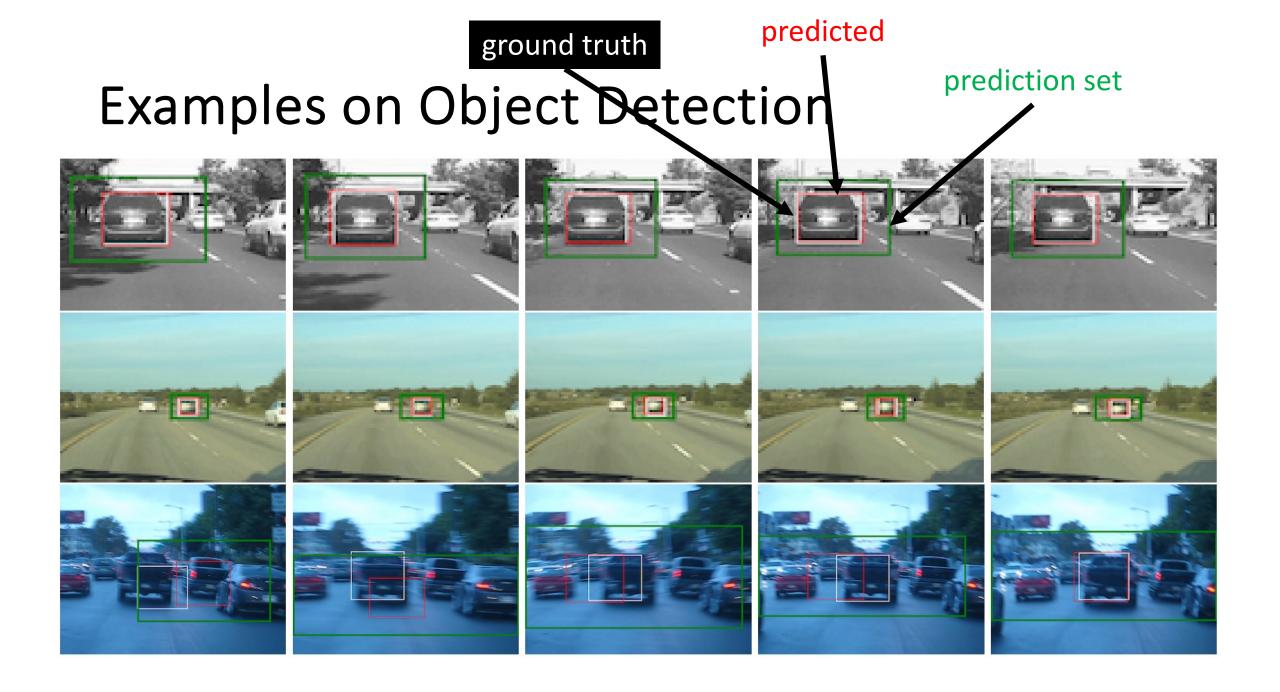


Coverage

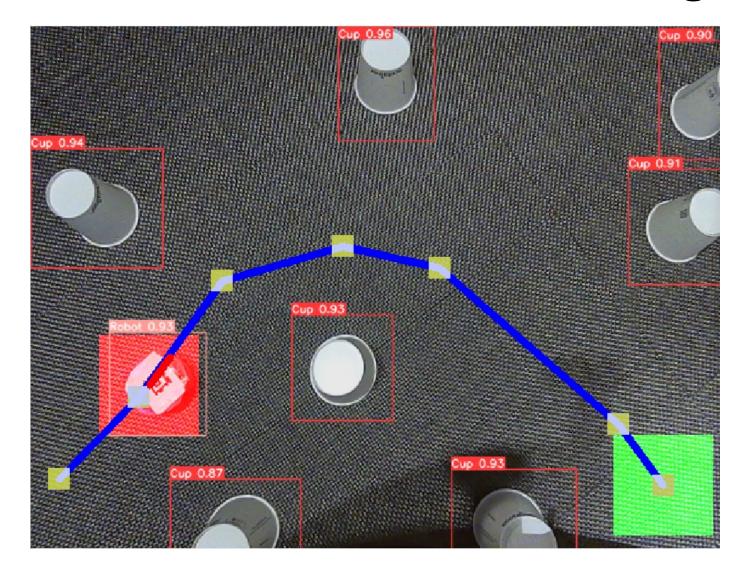


Compositional Conformal Prediction

- Approach generalizes to more complex model compositions
 - For more complex data types, can use abstract interpretation to compose
- Another example: Object detection
 - Output is obtained by composing region proposal network, bounding box regression network, object classification network
 - Can use combination of previous techniques to obtain prediction sets



Prediction Sets for Safe Visual Navigation



Agenda

- Conformal prediction under distribution shift
- Composing conformal prediction sets
- Conformal structured prediction
- Uniform conformal prediction

Conformal Prediction for Code Generation

• True program:

return fib(n-1) + fib(n-2)

• Generated program:

return fib(n-0) + fib(n-3)

Conformal Prediction for Code Generation

• True program:

return fib(n-1) + fib(n-2)

• Generated program:

return fib(n-0) + fib(n-3)

return fib(n-0) + fib(n-1)return fib(n-0) + fib(n-2)return fib(n-0) + fib(n-3)return fib(n-0) + fib(n-4)return fib(n-1) + fib(n-1)return fib(n-1) + fib(n-2)return fib(n-1) + fib(n-3)return fib(n-1) + fib(n-4)return fib(n-2) + fib(n-1)return fib(n-2) + fib(n-2)return fib(n-2) + fib(n-3)

Challenge for Code Generation

- Code generation produces a structured output
- Naïve prediction set might contain thousands of programs!
- Idea: Compact representation of set of programs
 - Implicitly represent prediction set as a partial program
 - Partial program represents set of all programs that can be obtained by completing it in some way

• True program:

return fib(n-1) + fib(n-2)

• Generated program:

return fib(n-0) + fib(n-3)

return fib(n-0) + fib(n-1)return fib(n-0) + fib(n-2)return fib(n-0) + fib(n-3)return fib(n-0) + fib(n-4)return fib(n-1) + fib(n-1)return fib(n-1) + fib(n-2)return fib(n-1) + fib(n-3)return fib(n-1) + fib(n-4)return fib(n-2) + fib(n-1)return fib(n-2) + fib(n-2)return fib(n-2) + fib(n-3)

• True program:

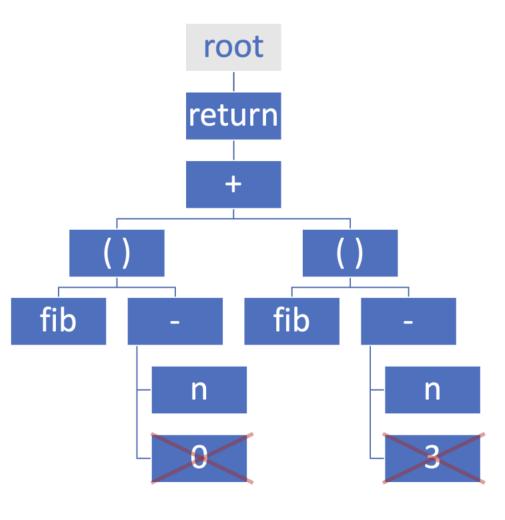
return fib(n-1) + fib(n-2)

Generated program:

return fib(n-??) + fib(n-??)

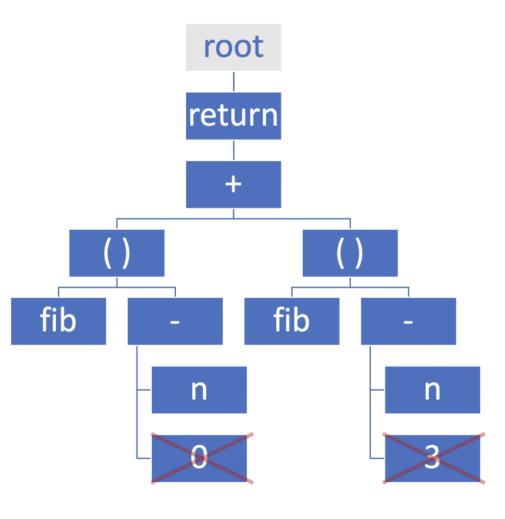
return fib(n-0) + fib(n-3)

• Strategy: Remove AST nodes until probability mass removed exceeds τ



return fib(n-0) + fib(n-3)

• Strategy: Remove AST nodes until probability mass removed exceeds τ



return fib(n-??) + fib(n-??)

Computing Prediction Sets

• Formulate as optimization problem:

$$\sum_{v \in V} \alpha_{i,v} \leq m \quad (\forall i \in [k])$$

$$\alpha_{i,v} \to \beta_{i,v} \quad (\forall v \in V, i \in [k])$$

$$\beta_{i,v} \to \beta_{i,v'} \quad (\forall (v,v') \in E)$$

$$\beta_{i,v} \to \alpha_{i,v} \lor \beta_{i,v'} \quad (\text{where } (v',v) \in E)$$

$$\beta_{i,v} \to \beta_{i+1,v} \quad (v \in V, \forall i \in \{2,...,k\})$$

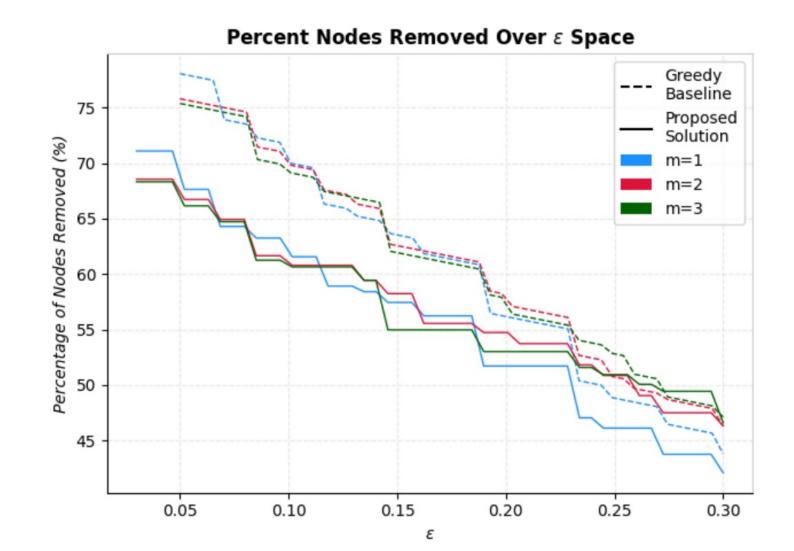
$$\sum_{v \in T} \ell_v \cdot (1 - \beta_{i,v}) \leq \tau_i \quad (\forall i \in [k])$$

• We additionally impose constraint that number of holes $\leq m$

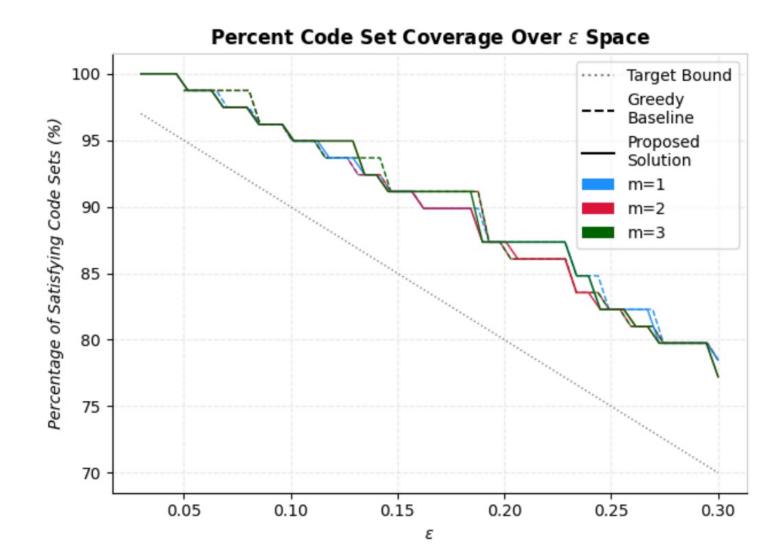
Evaluation

- **Dataset:** APPS program synthesis dataset
 - Similar results on text-to-SQL task
- Model: Codex
- **Baseline:** Greedy strategy for constructing prediction sets

Prediction Set Size



Coverage



Example on SQL Query

SELECT COUNT(*) FROM countries AS t1
JOIN car_makers as t2 on t1.countryid = t2.country
WHERE t1.countryname = "usa";

Conformal Structured Prediction

• Approach generalizes to any structured prediction problem

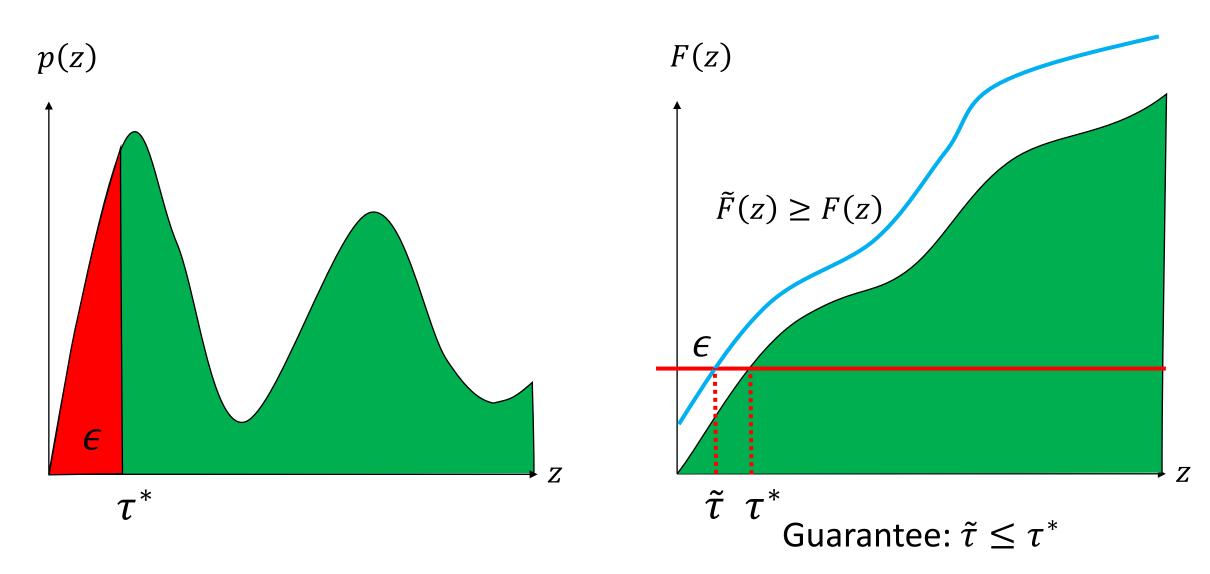
• Examples

- Hierarchical classification
- Open-ended question answering

Agenda

- Conformal prediction under distribution shift
- Composing conformal prediction sets
- Conformal structured prediction
- Uniform conformal prediction

Recall: Distribution of $z = f(y^* | x)$



• DKW Inequality (Massart 1990)

- Let P be a probability distribution and let F(x) be its CDF
- Given samples $z_1, \ldots, z_n \sim_{i.i.d.} P$, the **empirical CDF** is

$$\widehat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} 1(z_i \le x)$$

• **Theorem:** With probability $\geq 1 - \delta$, we have

$$\sup_{x \in \mathbb{R}} \left| \hat{F}(x) - F(x) \right| \le \sqrt{\frac{\log(2/\delta)}{2n}}$$

• Input

- Calibration dataset $Z_{val} = \{(x_i, y_i^*)\}_{i=1}^n$
- Error bound δ
- Step 1: Construct CDF upper bound

$$\tilde{F}(z) = \frac{1}{n} \sum_{i=1}^{n} 1(z_i \le z) + \sqrt{\frac{\log(2/\delta)}{2n}}$$

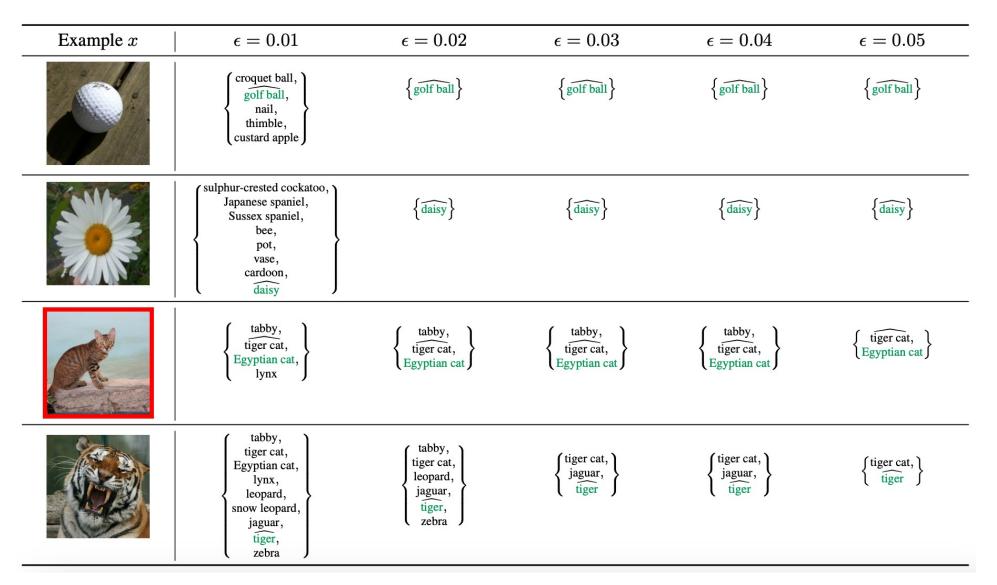
• Step 2: Return $\tilde{\tau} = \tilde{F}^{-1}(\epsilon)$ (caveat: need to use pseudoinverse here)

• Original guarantee: For all $\epsilon, \delta \in \mathbb{R}$, we have

$$\Pr_{Z_{\text{val}}}\left[\Pr_{(x,y^*)}\left[y^* \in \tilde{f}_{\tilde{\tau}(Z_{\text{val}})}(x)\right] \ge 1 - \epsilon\right] \ge 1 - \delta$$

• New guarantee: For all $\delta \in \mathbb{R}$, we have

$$\Pr_{Z_{\text{val}}} \left[\forall \epsilon \, . \, \Pr_{(x,y^*)} \left[y^* \in \tilde{f}_{\tilde{\tau}(Z_{\text{val}})}(x) \right] \ge 1 - \epsilon \right] \ge 1 - \delta$$



Agenda

- Conformal prediction under distribution shift
- Composing conformal prediction sets
- Conformal structured prediction
- Uniform conformal prediction