Lecture 13: Conformal Prediction

CIS 7000: Trustworthy Machine Learning
Spring 2024



Homework 2

e Covers distribution shift and uncertainty quantification
* Written homework focused on theoretical understanding

 Due Monday, March 18



Agenda

* Conformal prediction under distribution shift
* Composing conformal prediction sets
e Conformal structured prediction

* Uniform conformal prediction



Distribution Shift

* Given calibration data from the source distribution p(x, y)

* Want to perform well on a shifted target distribution q(x, y):
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* Assumptions

L )
* Can be derived in the unsupervised domain adaptation setting under covariate
shift and label shift assumptions

* Importance weights are bounded: w(x, y*) < B (can be relaxed)

* Given importance weight intervals w; € [WIOW Wl-hi] for each (x;,y;) € Zya



Case 1: Known Importance Weights

* Assume w; is known for each (x;, y;) € Zy,

* Algorithm
* Step 1: Use rejection sampling to convert Zy, ~ pto Z,4 ~ q
« Step 2: Construct PAC prediction set using Z .
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Case 2: Importance Weight Intervals

lo

* Assume an interval w; € [W v lh‘] is known for each (x;,y;) € Zy4

 Algorithm
low hi]

* Step 1: Choose the most conservative importance weight w; € [W , Wi
* Step 2: Construct PAC prediction set using Zy4 and {w; };
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How to Compute 77°

* We have an algorithm that can evaluate a given 7
* Idea: Do binary search on 7 to find the best one
* Problem: The algorithm is random!



Case 2: Importance Weight Intervals
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How to Compute 77°

* We have an algorithm that can evaluate a given 7
* Idea: Do binary search on 7 to find the best one
* Problem: The algorithm is random!

* Solution: Sample randomness before running binary search



Full Algorithm
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Full Algorithm
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Full Algorithm
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Theoretical Guarantees

* Theorem
e Assume w(x;) € [wj°%,wM]|foralli € {1, ...,n}
* Then, fz(z,.,) is an (€, 8)-PAC prediction set with respect to q



Examples on DomainNet
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Figure 1: Error under natural rate shift by DomainNet for All — Sketch (left), and ImageNet-C synthetic perturbations to
ImageNet (right), over 100 random trials, with m = 50, 000 (for DomainNet) and m = 20, 000 (for ImageNet), € = 0.1,
and § = 10~°.



Obtaining IW Intervals

* How do we get importance weight intervals w; € [W}OW, Wl-hi]?

* Covariate shift: Need to use heuristics
e Label shift: Can get exact intervals



IW Intervals for Label Shift

e Recall that w = C~1q, where

Cij = Pplf(x) =i,y =]



IW Intervals for Label Shift

e Recall that w = C~1q, where
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IW Intervals for Label Shift

e Recall that w = C~1q, where
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IW Intervals for Label Shift

* Hoeffding’s inequality

* Let by, ..., b, ~iiq Bernoulli(u) be samples
* Let i = n~1Y7_, by be the empirical mean
* Then, with probability at least 1 — 4, we have
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IW Intervals for Label Shift

* With probability = 1 — 9, the following hold individually:

A log(2/6)
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IW Intervals for Label Shift

* With probability = 1 — 9, the following hold individually:

A log(2/6) A~ log(2/6)
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* Union bound: If Pr[4;] = 1 — §; forall i, then Pr[A; 4;] = 1 = ); §;

* With probability > 1 — (d + d?)§, all of the following hold:
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IW Intervals for Label Shift

* With probability = 1 — 9, the following hold individually:
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* Union bound: If Pr[4;] = 1 — §; forall i, then Pr[A; 4;] = 1 = ); §;

* With probability > 1 — (d + d?)§, all of the following hold:
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IW Intervals for Label Shift

* We need to bound |W; — w;|, wherew = C"1gand w = €714

 Strategy: Abstract interpretation!
* If we have C and g, then we could compute w using Gaussian elimination

* If we have intervals around the entries of C and g, then we can run Gaussian
elimination on these intervals using abstract interpretation



IW Intervals for Label Shift

* Recall: Given a function f: R? — R, its corresponding abstract
transformer is a function f: R? - R such that if

x' = f(xl, ...,xd) and /\ld=1 X; € y(jc\l)

then we have

x' €y (f()?l, ...,fd))



IW Intervals for Label Shift

e Let R = RXR be the interval domain
e a({ry, .., 1)) = (m_in ri,maxri) eER
l l

. y((a, b)) = |a,b] E R

* Then, we have:
e (a,b)F(c,d) =(a+c,b+d)
* (a,b)=(c,d) =(a—4d,b—c)
* (a,b)X(c,d) = (axc,bxd) (assuming everything is non-negative)
* (a,b) = (c,d) = (a +d,b + c) (assuming everything is non-negative)



IW Intervals for Label Shift

* Step 1: Compute € and §

* Step 2: Use Hoeftding to obtain intervals Crnin, Crnaxs Gmins Omax SUCh
that Crpin < C < Crax aNd Gmin < g < Gmax With high probability
* Inequalities are interpreted elementwise

e Step 3: Run Gaussian elimination using abstract interpretation to
obtain intervals W in, Wiax
By abstract interpretation guarantee, we have Wyjn < W < Wiax

 Step 4: Run PAC conformal prediction with IW intervals



IW Intervals for Label Shift

* Theorem: ff(zval) is an (€, 26)-PAC prediction set with respect to g
e 20 comes from IW intervals + PAC property (and union bound)



Agenda

* Conformal prediction under distribution shift
* Composing conformal prediction sets
e Conformal structured prediction

* Uniform conformal prediction



Prediction Sets for Question Answering

What was the last time

’ the cubs won the World » 1945
Series before 20167




Prediction Sets for Question Answering
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Retrieval Augmented Question Answering

* Many applications of large language models rely on specialized
sources of knowledge that are not present in the training data

* Retrieval augmented question answering
» Extract relevant knowledge from knowledge base (e.g., Wikipedia)
* Incorporate knowledge into query to generative model



Retrieval Augmented Question Answering
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Retrieval Augmented Question Answering
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Retrieval Augmented Question Answering

What was the last time i

H

the cubs won the World -
Series before 20167

[ “...their first appearance since

1945

How to compose 107

ole 4 1908
probabilistic guarantees? 2014

O
R

\ during 2014...”

€retrieval €QA € = Eretrieval T €QA



Minimizing Prediction Set Size

* Challenge: How to choose € ¢trjeval aNd €ga?

* Solution: Optimize them on a held-out optimization set Z,,,;

* Optimization variables are €retrieval aNd €qa
* Given a candidate, compute conformal prediction thresholds:

Tretrieval (Z opt; € retrieval) and fQA (Z opt; € QA)
* Objective is expected prediction set size:

Z(x»y*)ezopt C%retrieval (Zoptieretrieval)»%QA (Zopt;EQA) (X) ‘

* We use Bayesian optimization to optimize € etrieval aNd €ga



Experimental Results

* Dataset: SQUAD question answering dataset
* Similar results on TriviaQA and Natural Questions

e Model: GPT-3.5-Turbo

e Similar results on Llama 2 7B

* Consider both PAC prediction sets and traditional (marginal)
conformal prediction

* Baseline: No Bayesian optimization
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Compositional Conformal Prediction

* Approach generalizes to more complex model compositions
* For more complex data types, can use abstract interpretation to compose

* Another example: Object detection

e Output is obtained by composing region proposal network, bounding box
regression network, object classification network

* Can use combination of previous techniques to obtain prediction sets



ground truth predicted

Examples on Object

prediction set




Prediction Sets for Safe Visual Navigation




Agenda

* Conformal prediction under distribution shift
* Composing conformal prediction sets
e Conformal structured prediction

* Uniform conformal prediction



Conformal Prediction for Code Generation

* True program:
return fib(n-1) + fib(n-2)
* Generated program:

return fib(n-0) + fib (n-3)



Conformal Prediction for Code Generation

* True program:

return fib(n-1)

» Generated program:

return fib (n-0)

+ fib (n-2)

+ fib(n-3)

( return
return
return
return
return
return
return
return
return
return
return

+ 4+ + + + + + + + + +




Challenge for Code Generation

* Code generation produces a structured output
* Naive prediction set might contain thousands of programs!

* ldea: Compact representation of set of programs
* Implicitly represent prediction set as a partial program

* Partial program represents set of all programs that can be obtained by
completing it in some way



Prediction Sets as Partial Programs

* True program:

return fib(n-1)

» Generated program:

return fib (n-0)

+ fib (n-2)

+ fib(n-3)

( return
return
return
return
return
return
return
return
return
return
return

+ 4+ + + + + + + + + +




Prediction Sets as Partial Programs

* True program:
return fib(n-1) + fib(n-2)
* Generated program: return fib(n-2??) + fib(n-2?)

return fib(n-0) + fib(n-3)



Prediction Sets as Partial Programs

root
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Prediction Sets as Partial Programs

root
|

return

|
|

 Strategy: Remove AST nodes until ' |
probability mass removed exceeds T ()

|

fib | -l I -I
=
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return fib(n-2?) + fib(n-27?)



Computing Prediction Sets

* Formulate as optimization problem:
Z Qiy <M (Vi € [K])

VeV

Qv — Biw (Vv eV, i€ k]

Biwv — Biw (V(v,2") € E)

Biv = iy V Biv (where (v',v) € E)
Biv = Bit1iw (veV,Vie{2, ..k}

 by-(1=Bi) <7 (Vie[k)])

veT

* We additionally impose constraint that number of holes < m



Evaluation

* Dataset: APPS program synthesis dataset
* Similar results on text-to-SQL task

e Model: Codex

* Baseline: Greedy strategy for constructing prediction sets
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Example on SQL Query

SELECT COUNT (x) FROM countries AS tl

JOIN |car_makers as t2

on

tl.countryid

t2.country

WHERE tl.countryname = "usa";




Conformal Structured Prediction

* Approach generalizes to any structured prediction problem

* Examples
* Hierarchical classification
* Open-ended question answering



Agenda

* Conformal prediction under distribution shift
* Composing conformal prediction sets
e Conformal structured prediction

* Uniform conformal prediction



Recall: Distributionof z = f(y* | x)

p(z) F(z)

F(z) = F(2)

Guarantee: T < 1°



Uniformly Valid Conformal Prediction

DKW Inequality (Massart 1990)
* Let P be a probability distribution and let F (x) be its CDF
* Given samples z4, ...,z ~iiq P, the empirical CDF is

F(x) = %z 1(z; < x)

* Theorem: With probability = 1 — 4, we have

sup‘ﬁ(x) — F(x)‘ < 10g§2/6)
xeR \ n




Uniformly Valid Conformal Prediction

* Input
* Calibration dataset Z,,; = {(x;, y;)}iz1
* Error bound 6

e Step 1: Construct CDF upper bound

F(z) = %z 1(z; < 2) + V log;i/‘s)

e Step 2: Return ¥ = F~1(¢) (caveat: need to use pseudoinverse here)



Uniformly Valid Conformal Prediction

* Original guarantee: For all €, € R, we have

= >1—€e|l>1-—
Pr| Prly” € fiz®] 21 6] >1-4

* New guarantee: For all 6 € R, we have

Zun [VE " € fraan (0] 2 1 E] =1-0



Uniformly Valid Conformal Prediction

Example x e =0.01 e =0.02 e =0.03 e =0.04 e =0.05
cr;%ett)\::ﬂl, {gml } { gml} { golf ball } {gml }
nail,
mi;lble,

custard apple

( sulphur-crested cockatoo, Y

Japanese spaniel,
Sussex spaniel,

(55}

()

(55}

()

\ zebra 5

bee,
pot,
vase,
cardoon,
daisy
tabby, tabby, tabby, tabby, o
tlgef cat, tiger cat, tiger cat, tiger cat, {Egyplian c,at}
Egyptian cat, Egyptian cat Egyptian cat Egyptian cat
lynx
( tabby, )
tiger cat, tabby, . .
Egyptian cat, tiger cat, LacE Aty tiger cat, tiger cat,
lynx, leopard, Jag}f ) Jaglif > tiger
{ leopard, jaguar, tiger tiger
snow leopard, tiger,
jaguar, zebra
figer,




Agenda

* Conformal prediction under distribution shift
* Composing conformal prediction sets
e Conformal structured prediction

* Uniform conformal prediction



