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Homework 2

• Logistics
• Due Monday, March 18
• Minor typo fix
• Algorithm descriptions can be high-level

• Office hours
• Alaia will have office hours from 12:30-1:30pm on Friday, March 15
• I will have office hours from 4-5pm on Friday, March 15



Agenda

• Aleatoric vs. epistemic uncertainty
• Linear regression example
• Bootstrapping ensembles for estimating epistemic uncertainty
• Application to active learning



Predictive Uncertainty

• Goal: What is the distribution of 𝑦 − 𝑓!" 𝑥 ?

• Useful for decision-making
• Uncertain à patient should be seen by a doctor
• Uncertain à robot should avoid potential obstacle

• However, aggregates multiple sources of uncertainty



Motivation: Active Learning

• Goal: Will obtaining additional 
information help make better 
decisions?

• Example
• Robot is not sure if an object is a 

fork or a spoon
• Is it worth moving closer to get a 

better look?

epistemic uncertainty
yes!

aleatoric uncertainty
no!



Aleatoric vs. Epistemic Uncertainty

• Epistemic uncertainty
• Uncertainty due to limitations in our knowledge about the world
• Can be eliminated by obtaining additional labels/information

• Aleatoric uncertainty
• “Intrinsic” uncertainty that can’t be avoided
• Not helpful to obtain additional labels/information



Another Example

• Scenario: Gave a loan to an individual, but they failed to repay; why?

• Case 1: They had bad credit score, but we didn’t bother checking
• Epistemic uncertainty
• Gathering additional information would have helped

• Case 2: They were robbed
• Aleatoric uncertainty
• Gather additional information would not have helped
• (What if they lived in a dangerous neighborhood?)



Aleatoric vs. Epistemic Uncertainty

• In general, the residual error decomposes as

𝑦 − 𝑓!" # 𝑥 = 𝑦 − 𝑓"∗ 𝑥 + 𝑓"∗ 𝑥 − 𝑓!" # 𝑥
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Aleatoric vs. Epistemic Uncertainty

• In general, the residual error decomposes as

𝑦 − 𝑓!" # 𝑥 = 𝑦 − 𝑓"∗ 𝑥 + 𝑓"∗ 𝑥 − 𝑓!" # 𝑥

• Aleatoric uncertainty: Error of best possible model 𝑓!∗
• Epistemic uncertainty: Error of our model 𝑓"! #  vs. 𝑓!∗

• How can we disentangle the two?

Aleatoric 
uncertainty

Epistemic 
uncertainty



Agenda

• Aleatoric vs. epistemic uncertainty
• Linear regression example
• Bootstrapping ensembles for estimating epistemic uncertainty
• Application to active learning



Linear Regression

• Model family: Linear functions 𝑓" 𝑥 = 𝛽$𝑥

• Loss function: Mean-squared error 𝐿 𝛽; 𝑍 = 𝑛%& ∑'(&) 𝑦' − 𝛽$𝑥' *

• Closed-form solution: Compute using matrix operations



Vectorizing Linear Regression
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Vectorizing Linear Regression
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Vectorizing Mean Squared Error
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Closed-Form Solution

• Recall that linear regression minimizes the loss
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*

• Minimum solution has gradient equal to zero:

∇"𝐿 7𝛽 𝑍 ; 𝑍 = 0
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Closed-Form SoluIon

• The gradient is
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• The gradient is
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Closed-Form Solution

• Thus, we have

−
2
𝑛
𝑋$𝑌 +

2
𝑛
𝑋$𝑋 7𝛽 = 0

• Solving for 7𝛽 gives

7𝛽 = 𝑋$𝑋 %&𝑋$𝑌



True Data GeneraIng Process

• Assume that the data is actually generated by some linear model:

𝑦' = 𝛽∗$𝑥' + 𝜖'

• Vectorized form: 𝑌 = 𝑋𝛽∗ + 𝐸, where 𝐸 = 𝜖& ⋯ 𝜖) $

• Then, we have

 7𝛽 − 𝛽∗ = 𝑋$𝑋 %&𝑋$𝑌 − 𝛽∗ = 𝑋$𝑋 %&𝑋$ 𝑋𝛽∗ + 𝐸 − 𝛽∗

 7𝛽 − 𝛽∗ = 𝑋$𝑋 %&𝑋$𝑌 − 𝛽∗ = 𝑋$𝑋 %&𝑋$𝐸
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Aleatoric vs. Epistemic Uncertainty

• The residual error decomposes as

𝑦 − 7𝛽$𝑥 = 𝑦 − 𝛽∗$𝑥 + 𝛽∗$𝑥 − 7𝛽$𝑥
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Aleatoric vs. Epistemic Uncertainty

• The residual error decomposes as

𝑦 − 7𝛽$𝑥 = 𝑦 − 𝛽∗$𝑥 + 𝛽∗$𝑥 − 7𝛽$𝑥

• Aleatoric uncertainty: 𝑦 − 𝛽∗$𝑥 = 𝜖

• Epistemic uncertainty: 𝛽∗$𝑥 − 7𝛽$𝑥 = 𝐸$𝑋 𝑋$𝑋 %&𝑥

Aleatoric 
uncertainty

Epistemic 
uncertainty



Epistemic Uncertainty

• Note that
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Epistemic Uncertainty

• The variance satisfies

 Var 𝑥$ 𝑋$𝑋 %& ∑'(&) 𝑥'𝜖'
 = 𝑥$ 𝑋$𝑋 %& ∑'(&) 𝑥' Var 𝜖' 𝑥'$ 𝑋$𝑋 %&𝑥
 = 𝑥$ 𝑋$𝑋 %& ∑'(&) 𝑥'𝜎*𝑥'$ 𝑋$𝑋 %&𝑥
 = 𝜎*𝑥$ 𝑋$𝑋 %&𝑥

 ≈ 2"3#43
)



Aleatoric vs. Epistemic Uncertainty

• Aleatoric uncertainty

Aleatoric 𝑥 = 𝑦 − 𝛽∗$𝑥 = 𝜖 ∼/./.1. 𝑁 0, 𝜎*

• Epistemic uncertainty:

Epistemic 𝑥 = 𝐸$𝑋 𝑋$𝑋 %&𝑥 ∼/./.1. 𝑁 0,
𝜎*𝑥$Σ𝑥

𝑛

• $
"%#&%
'

= 𝑂 (
'

, standard deviation is 𝑂 (
'



Agenda

• Aleatoric vs. epistemic uncertainty
• Linear regression example
• Bootstrapping ensembles for estimating epistemic uncertainty
• Application to active learning



Aleatoric vs. Epistemic Uncertainty

• In general, we have

𝑦 − 𝑓!" 𝑥 = 𝑦 − 𝑓"∗ 𝑥 + 𝑓"∗ 𝑥 − 𝑓!" # 𝑥

• Hard to disentangle
• We directly observe the predictive uncertainty 𝑦 − 𝑓"! 𝑥
• But we don’t know 𝛽∗

• General strategy (statistics): Pretend 7𝛽 = 𝛽∗, and disentangle
• Works in practice even if it feels circular



Aleatoric vs. Epistemic Uncertainty

• The epistemic uncertainty is

Epistemic 𝑥 = 𝑓"∗ 𝑥 − 𝑓!" # 𝑥

• Here, Epistemic 𝑥  is a random function of the random variable 𝑍 ∼ 𝑝'
• Thus, Epistemic 𝑥  is itself a random variable

• Goal: Estimate the distribution of Epistemic 𝑥

• Assumption: Our model is unbiased: 𝔼# 𝑓!" # 𝑥 = 𝑓"∗ 𝑥



What if we know 𝑝 𝑥 ?

𝑥

𝑝 𝑥 3𝑓( = train 𝑍(
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…



What if we know 𝑝 𝑥 ?

• By our unbiasedness assumption:

𝑓"∗ 𝑥 = 𝔼# 𝑓!" # 𝑥 ≈ 𝑘%&.
'(&

5

7𝑓' 𝑥 ≔ S𝜇 𝑥
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What if we know 𝑝 𝑥 ?

• 7𝑓' 𝑥 − 𝑓"∗ 𝑥 '(&
5

 are i.i.d. samples from Epistemic 𝑥

• By our unbiasedness assumption:

𝑓"∗ 𝑥 = 𝔼# 𝑓!" # 𝑥 ≈ 𝑘%&.
'(&

5

7𝑓' 𝑥 ≔ S𝜇 𝑥

• 7𝑓' 𝑥 − S𝜇 𝑥 '(&
5

 are approximately i.i.d. samples from Epistemic 𝑥
• Problem: We cannot take unlimited samples from 𝑃
• Only have a single training dataset 𝑍!



Bootstrap

• Idea: Given samples 𝑥&, … , 𝑥) ∼ 𝑃, we can “approximate” the 
probability distribution 𝑃 by

𝑃 𝑥 = Pr 𝑋 = 𝑥 ≈
1
𝑛
.
'(&

)

1 𝑥 = 𝑥' = X𝑃 𝑥

• This can be made to work for continuous distributions by using the probability 
density function: 𝑝 𝑥 ≈ �̂� 𝑥 = 𝑛,(∑-.(' 𝛿 𝑥 − 𝑥-
• For ℝ, uniform convergence of CDF by DKW inequality



Bootstrap

𝑥

𝑝 𝑥



Bootstrap

𝑥

�̂� 𝑥



Bootstrap

𝑥

�̂� 𝑥 3𝑓( = train 𝑍(



Bootstrap

𝑥

�̂� 𝑥 3𝑓( = train 𝑍(
3𝑓* = train 𝑍*



Bootstrap

𝑥

�̂� 𝑥 3𝑓( = train 𝑍(
3𝑓* = train 𝑍*
3𝑓+ = train 𝑍+

…



Bootstrap

• Subsample examples 𝑥, 𝑦  with replacement 

• How do the new samples 𝑍'  differ from the original sample 𝑍?
• They exclude ≈ 1 − (

'

'
 of the training examples

• As 𝑛 → ∞, excludes → (
/ ≈ 36.8% examples

• Produces valid confidence intervals in many settings



Estimating Epistemic Uncertainty

bootstrap 𝑍 = 𝑥' , 𝑦'∗ '(&
)

 �̂� ← 𝑛%& ∑'(&) 𝛿 𝑥 − 𝑥'
 for 𝑖 ∈ 1, … , 𝑘 :
  𝑍' ∼/./.1. �̂�)

  7𝑓' ← train 𝑍'
 return 𝑥 ↦ 7𝑓' 𝑥 − S𝜇 𝑥 '(&

5
, where S𝜇 𝑥 = 𝑘%& ∑'(&5 7𝑓' 𝑥



Application to Active Learning
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ApplicaIon to AcIve Learning

• Train bootstrapped ensemble of models 7𝑓' 𝑥 '(&
5

• Label example where the ensemble has the highest disagreement:

𝑥∗ = arg	max
3
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1 7𝑓' 𝑥 ≠ 7𝑓+ 𝑥 ≈ Pr
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𝑓!" # 𝑥 ≠ 𝑓!" #$ 𝑥

• Other metrics based on epistemic uncertainty can also be used
• Also commonly used for guiding exploration in reinforcement learning
• More generally, decision-making with opportunity to gather information



Agenda

• Aleatoric vs. epistemic uncertainty
• Linear regression example
• Bootstrapping ensembles for estimating epistemic uncertainty
• Application to active learning


