Lecture 14: Aleatoric vs. Epistemic
Uncertainty

CIS 7000: Trustworthy Machine Learning
Spring 2024



Homework 2

* Logistics
 Due Monday, March 18
* Minor typo fix
* Algorithm descriptions can be high-level

e Office hours
 Alaia will have office hours from 12:30-1:30pm on Friday, March 15
* | will have office hours from 4-5pm on Friday, March 15



Agenda

* Aleatoric vs. epistemic uncertainty

* Linear regression example

* Bootstrapping ensembles for estimating epistemic uncertainty
* Application to active learning



Predictive Uncertainty

* Goal: What is the distribution of y — f3 (x)?

e Useful for decision-making
e Uncertain = patient should be seen by a doctor
e Uncertain = robot should avoid potential obstacle

* However, aggregates multiple sources of uncertainty



Motivation: Active Learning

* Goal: Will obtaining additional
information help make better
decisions?

yes!
o Examp|e epistemic uncertainty

* Robot is not sure if an objectis a
fork or a spoon

* |s it worth moving closer to get a
better look?

no!
aleatoric uncertainty



Aleatoric vs. Epistemic Uncertainty

* Epistemic uncertainty
* Uncertainty due to limitations in our knowledge about the world
e Can be eliminated by obtaining additional labels/information

* Aleatoric uncertainty
* “Intrinsic” uncertainty that can’t be avoided
* Not helpful to obtain additional labels/information



Another Example

* Scenario: Gave a loan to an individual, but they failed to repay; why?

e Case 1: They had bad credit score, but we didn’t bother checking
* Epistemic uncertainty
e Gathering additional information would have helped

e Case 2: They were robbed
e Aleatoric uncertainty
e Gather additional information would not have helped
* (What if they lived in a dangerous neighborhood?)



Aleatoric vs. Epistemic Uncertainty
* In general, the residual error decomposes as

Yy — fﬁ(z) (X)



Aleatoric vs. Epistemic Uncertainty

* In general, the residual error decomposes as

y = fay® = (v — f5 @)



Aleatoric vs. Epistemic Uncertainty

* In general, the residual error decomposes as

Y = Faay @ = (¥ = f3 @) + (f3- () = f3 (@)

(N J U J
Y Y
Aleatoric Epistemic
uncertainty uncertainty

* Aleatoric uncertainty: Error of best possible model f-
* Epistemic uncertainty: Error of our model /7, vs. fp-

* How can we disentangle the two?



Agenda

* Aleatoric vs. epistemic uncertainty

* Linear regression example

* Bootstrapping ensembles for estimating epistemic uncertainty
* Application to active learning



Linear Regression
* Model family: Linear functions f5z(x) = B Tx

* Loss function: Mean-squared error L(B;Z) = n~t X1 (y; — BT x;)?

* Closed-form solution: Compute using matrix operations



Vectorizing Linear Regression



Vectorizing Linear Regression
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Vectorizing Linear Regression
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Vectorizing Linear Regression
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Vectorizing Linear Regression
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Vectorizing Linear Regression
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Vectorizing Mean Squared Error



Vectorizing Mean Squared Error

L(S;7)



Vectorizing Mean Squared Error

1 n
L(p;7) = EZ(%' — B x;)?
i=1



Vectorizing Mean Squared Error
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Closed-Form Solution
* Recall that linear regression minimizes the loss
1 2
L(B; 7) =~ IV = XBII3

* Minimum solution has gradient equal to zero:

VoL(B(2);Z2) =0




Closed-Form Solution
* Recall that linear regression minimizes the loss
1 2
L(B; 7) =~ IV = XBII3

* Minimum solution has gradient equal to zero:

VsL(B;Z) =0




Closed-Form Solution
* The gradient is

VeL(B;7)



Closed-Form Solution
* The gradient is

1
VgL(B;2) = Vg —|IV — XBII3



Closed-Form Solution
* The gradient is

VoL(B;7) = Vg~V = XBlI3 = Vs~ (¥ = XR)T(Y — XP)

= 2 [V (v = XB)T](V = XB)

= —2XT(Y = Xp)

n

= —2XTY +2XTXp

n



Closed-Form Solution

* Thus, we have

2 2
——XTY+=XTXB =0
n n

* Solving for ,@ gives

B=X"X)"1XTy



True Data Generating Process

e Assume that the data is actually generated by some linear model:
yi =B""x; + €

* Vectorized form: Y = XfB* + E, where E = [€1  ** €,]T

* Then, we have

p—p



True Data Generating Process

e Assume that the data is actually generated by some linear model:
yi =B""x; + €

* Vectorized form: Y = XfB* + E, where E = [€1  ** €,]T

* Then, we have
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True Data Generating Process

e Assume that the data is actually generated by some linear model:
yi =B""x; + €

* Vectorized form: Y = XfB* + E, where E = [€1  ** €,]T

* Then, we have

B=p =" X)Xy =" =XTX) ' XT(XB +E)—p
= (X"X)"'XTE



Aleatoric vs. Epistemic Uncertainty

* The residual error decomposes as

y—pB"x



Aleatoric vs. Epistemic Uncertainty

* The residual error decomposes as

y—BTx=(y—p"Tx)



Aleatoric vs. Epistemic Uncertainty

* The residual error decomposes as

y=BTx =@ —FTx)+(p Tx—[Tx)
N\ J . y

Y Y
Aleatoric Epistemic
uncertainty uncertainty

e Aleatoric uncertainty: y — f*'x = ¢

* Epistemic uncertainty: 5" 'x — fTx = ETX(X"X) 'x



Epistemic Uncertainty

 Note that
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Epistemic Uncertainty

 Note that
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* Suppose that € ~;; 4 N(0,0%2)
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Epistemic Uncertainty

 Note that
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Epistemic Uncertainty

 Note that
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Epistemic Uncertainty
* The variance satisfies

Var[x " (X" X)"* 3™, x;€]
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Aleatoric vs. Epistemic Uncertainty

* Aleatoric uncertainty

Aleatoric(x) =y — B*'x = € ~;;4 N(0,0%)

* Epistemic uncertainty:

| | g’x"Ix
Epistemic(x) = ETX(X"X) x ~;;4 N|{ O, -

. sznsz =0 (%), standard deviation is O (\/%)




Agenda

* Aleatoric vs. epistemic uncertainty

* Linear regression example

* Bootstrapping ensembles for estimating epistemic uncertainty
* Application to active learning



Aleatoric vs. Epistemic Uncertainty

* In general, we have
y = 30 = (y = f- () + (- () = f) @)
* Hard to disentangle

* We directly observe the predictive uncertainty y — fﬁ(x)
* But we don’t know

* General strategy (statistics): Pretend B = (7, and disentangle
* Works in practice even if it feels circular



Aleatoric vs. Epistemic Uncertainty

* The epistemic uncertainty is
Epistemic(x) = fz+(x) — faw (x)

* Here, Epistemic(x) is a random function of the random variable Z ~ p™
* Thus, Epistemic(x) is itself a random variable

* Goal: Estimate the distribution of Epistemic(x)

» Assumption: Our model is unbiased: [E, [fﬁ(z) (x)] = fp~(x)



What if we know p(x)?

fi = train(Z,)

p(x)
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What if we know p(x)?

fi = train(Z,)
f> = train(Z,)
f3 = train(Z3)

p(x)




What if we know p(x)?

* By our unbiasedness assumption:

f5=(x) = Ez|fp5 ()]



What if we know p(x)?

. {fi(x) — fﬁ*(x)}i{=1 are i.i.d. samples from Epistemic(x)

* By our unbiasedness assumption:

fﬁ(x) — Ez[fﬁ(z) (x)]



What if we know p(x)?

. {fi(x) — fﬁ*(x)}i{=1 are i.i.d. samples from Epistemic(x)

* By our unbiasedness assumption:

k
fir () = Bl 0] ~ k7 ) fila

=1



What if we know p(x)?

. {fi(x) — fﬁ*(x)}i{=1 are i.i.d. samples from Epistemic(x)

* By our unbiasedness assumption:

I
“:>

k
fi () = Eg[f30 (0] = Z filx

A A k : . . .

. {fi (x) — ,u(x)}i_1 are approximately i.i.d. samples from Epistemic(x)
* Problem: We cannot take unlimited samples from P
* Only have a single training dataset Z!



Bootstrap

* Idea: Given samples x4, ..., x,, ~ P, we can “approximate” the
probability distribution P by

P(x) = Pr[X = x] ~ %2 1(x = x;) = P(x)

* This can be made to work for continuous distributions by using the probability
density function: p(x) =~ p(x) = n 1 X%, 6(x — x;)
* For R, uniform convergence of CDF by DKW inequality



Bootstrap

p(x)
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Bootstrap
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Bootstrap

fi = train(Z,)
f, = train(Z,)
f3 = train(Z3)

p(x)




Bootstrap

* Subsample examples {(x, y)} with replacement

* How do the new samples Z; differ from the original sample Z?

n
* They exclude = (1 — %) of the training examples

1
* Asn — o0, excludes — o~ 36.8% examples

* Produces valid confidence intervals in many settings



Estimating Epistemic Uncertainty

bootstrap(Z = {(x;, )} -4)
p—nt Y160 —x;)
fori € {1, ..., k}:
Zi ~iid. D"
fl- « train(Z;)

return x — {f;(x) — ﬁ(x)}]::l, where i(x) = k71 Y% fi(x)



Application to Active Learning

A K
* Train bootstrapped ensemble of models {fi (x)}i=1

* Label example where the ensemble has the highest disagreement:

k

x* = arg maxkl2 z 1 (fi(x) + fj(x))

i,j=1



Application to Active Learning

A K
* Train bootstrapped ensemble of models {fi (x)}i=1

* Label example where the ensemble has the highest disagreement:

k

x* = arg max klz z 1 (fi(x) * fj(x)) ~ z[,)zr’ [fﬁ(z)(x) + fﬁ(zr)(x)]

[,j=1

* Other metrics based on epistemic uncertainty can also be used
* Also commonly used for guiding exploration in reinforcement learning
* More generally, decision-making with opportunity to gather information



Agenda

* Aleatoric vs. epistemic uncertainty

* Linear regression example

* Bootstrapping ensembles for estimating epistemic uncertainty
* Application to active learning



