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Agenda

• Fairness verification problem
• Symbolic fairness verification
• Statistical fairness verification



Fairness Verification

• Goal: Check if a given model satisfies a given fairness definition

• Ideally, the verification strategy should be flexible, and work on a broad 
family of fairness definitions
• Focus on group fairness

• Note: Fairness is a statistical property!
• Depends on data distribution 𝑝 𝑥, 𝑦
• Therefore, we also need to specify 𝑝 𝑥, 𝑦 , which we call the population model 



Fairness Verification
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Fairness

• Problem Setup
• Distribution 𝑃𝒱 over individuals 𝑣 = (𝑣, 𝑎 ∈ 𝒱 (called the population model)
• Sensitive attribute 𝑎 ∈ majority,minority
• Binary classifier 𝑓: 𝒱 → 0,1 , where 1 indicates a positive outcome

• Fairness Properties: Demographic parity, equality of opportunity, etc.



Demographic Parity

• Majority and minority members get positive outcomes at the same rate
• Let the acceptance probability for 𝑎 be

𝜇!∗ = Pr
#∼𝒱

𝑓(𝑣) = 1 𝐴 = 𝑎

• Then, 𝑓 satisfies demographic parity if 𝑌&'()*+∗ = 1, where

𝑌&'()*+∗ = 1
𝜇,)-.()*+∗

𝜇,'/.()*+∗ ≥ 𝑐

• The constant 𝑐 ∈ [0,1] is domain specific
• Question: Does 𝑌"#$%&'∗ = 1?



Fairness Verification Problem

Question: Does OfferJob satisfy demographic parity?



Agenda

• Fairness verification problem
• Symbolic fairness verification
• Statistical fairness verification



Fairness Verification

• Goal: Check if 𝑌&'()*+∗ = 1, where

𝑌&'()*+∗ = 1
𝜇,)-.()*+∗

𝜇,'/.()*+∗ ≥ 1

𝜇!∗ = Pr
#∼𝒱

𝑓(𝑣) = 1 𝐴 = 𝑎

• Step 1: Compute approximation 5𝜇! ≈ 𝜇!∗

• Step 2: Compute approximation 7𝑌&'()*+ ≈ 𝑌&'()*+∗



Fairness Verification Strategy

Question: Does OfferJob satisfy demographic parity?



Fairness Verification Strategy

Question: What is Pr OfferJob PopulationModel 	 ∣ IsMale = True ?



Fairness Verification Strategy

Question: What is Pr OfferJob ∣ IsMale = True ?



Fairness Verification Strategy

Question: What is Pr OfferJob ?



Fairness Verification Strategy
Pr OfferJob 	
= ∫OfferJob 𝑎, 𝑟, 𝑒 ⋅ 𝑝!"#$%& 𝑎 ⋅ 𝑝'(%)$*+ 𝑟 ⋅ 𝑝,&$-"./0 𝑒 ⋅ 𝑑𝑎 ⋅ 𝑑𝑟 ⋅ 𝑑𝑒 

OfferJob = ColRank ≤ 5 ∨ YearsExp > 5  
OfferJob = ColRank ≤ 5 ∨ ColRank > 5 ∧ IsMale ∧ YearsExpLarge > 5  

OfferJob =	 ∨ ColRank > 5 ∧ ¬IsMale ∧ YearsExpSmall > 5  

Pr OfferJob 	
= Pr ColRank ≤ 5 + Pr ColRank > 5 ∧ IsMale ∧ YearsExpLarge > 5 	
= +Pr ColRank > 5 ∧ ¬IsMale ∧ YearsExpSmall > 5 	
= Pr ColRank ≤ 5 + Pr ColRank ≤ 5 ⋅ Pr IsMale ⋅ Pr YearsExpLarge > 5 	
= +Pr ColRank ≤ 5 ⋅ Pr ¬IsMale ⋅ Pr YearsExpSmall > 5 	
= 𝑁 5; 25,10 + 1 − 𝑁 5; 25,10 ⋅ 0.5 ⋅ 1 − 𝑁 5; 15,5 	
= + 1 − 𝑁 5; 25,10 ⋅ 0.5 ⋅ 1 − 𝑁 5; 10,5 	
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Fairness Verification Strategy

• Alternative example
• OfferJob = ColRank + YearsExp ≤ 10
• Assume ColRank ∼ 𝑁 25,10  and 
YearsExp ∼ 𝑁 15,5
• Goal: Compute Pr OfferJob

• Idea: Break OfferJob into hyperrectangles
• 𝑅) = 0 ≤ ColRank ≤ 5 ∧ 0 ≤ YearsExp ≤ 5
• Pr 𝑅) = 𝑁 5; 25,10 − 𝑁 0; 25,10
• Pr 𝑅) =	 ⋅ 𝑁 5; 15,5 − 𝑁 0; 15,5



Fairness Verification Strategy

• Alternative example
• OfferJob = ColRank + YearsExp ≤ 10
• Assume ColRank ∼ 𝑁 25,10  and 
YearsExp ∼ 𝑁 15,5
• Goal: Compute Pr OfferJob

• Idea: Break OfferJob into hyperrectangles
• 𝑅* = 0 ≤ ColRank ≤ 2 ∧ 5 ≤ YearsExp ≤ 8
• Pr 𝑅* = (𝑁 2; 25,10 − 𝑁 0; 25,10
• Pr 𝑅) =	 ⋅ 𝑁 8; 15,5 − 𝑁 5; 15,5
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Fairness Verification Strategy

• Alternative example
• OfferJob = ColRank + YearsExp ≤ 10
• Assume ColRank ∼ 𝑁 25,10  and 
YearsExp ∼ 𝑁 15,5
• Goal: Compute Pr OfferJob

• Idea: Break OfferJob into hyperrectangles
• Pr OfferJob = Pr 𝑅) + Pr 𝑅* +⋯

ColRank

Ye
ar
sE
xp



Fairness Verification Algorithm

for 𝑡 ∈ 1,2, … :
 for 𝑖 ∈ 1, … , 𝑘
  compute rectangle 𝑅a,b  for 𝜙a
  compute estimate 5𝜇! ≈ 𝜇!∗  using 𝑅a,b
  compute estimate 7𝑌 ≈ 𝑌&'()*+∗  using 5𝜇!
  if converged: return 7𝑌



Fairness Verification Algorithm

for 𝑡 ∈ 1,2, … :
 for 𝑖 ∈ 1, … , 𝑘
  compute rectangle 𝑅a,b  for 𝜙a
  compute estimate 5𝜇! ≈ 𝜇!∗  using 𝑅a,b
  compute estimate 7𝑌 ≈ 𝑌&'()*+∗  using 5𝜇!
  if converged: return 7𝑌



Hyperrectangle Decomposition

• Compute the hyperrectangle 
with the largest probability:

arg	maxcRPr 𝑅

• We use a piecewise constant 
approximation of PDF to do so
• Then, computing the largest 

hyperrectangle can be expressed 
as an MaxSMT problem



Fairness Verification Algorithm

for 𝑡 ∈ 1,2, … :
 for 𝑖 ∈ 1, … , 𝑘
  compute rectangle 𝑅a,b  for 𝜙a
  compute estimate 5𝜇! ≈ 𝜇!∗  using 𝑅a,b
  compute estimate 7𝑌 ≈ 𝑌&'()*+∗  using 5𝜇!
  if converged: return 7𝑌



Fairness Verification Algorithm

for 𝑡 ∈ 1,2, … :
 for 𝑖 ∈ 1, … , 𝑘
  compute rectangle 𝑅a,b  for 𝜙a
  compute estimate 5𝜇! ≈ 𝜇!∗  using 𝑅a,b
  compute estimate 7𝑌 ≈ 𝑌&'()*+∗  using 5𝜇!
  if converged: return 7𝑌



Fairness Verification Algorithm

• Question: How to know when we 
can stop computing rectangles?
• Keep upper and lower bounds
• Stop computing rectangles once 

we accept or reject fairness

• Note: Assumes fairness does not 
“barely” hold:

𝜇,)-.()*+∗

𝜇,'/.()*+∗ ≠ 1 − 𝑐



Fairness Verification Algorithm

for 𝑡 ∈ 1,2, … :
 for 𝑖 ∈ 1, … , 𝑘
  compute rectangle 𝑅a,b  for 𝜙a  and 𝑅a,bd  for ¬𝜙a
  compute estimate 5𝜇! ≤ 𝜇!∗ ≤ 5𝜇!d  using 𝑅a,b , 𝑅a,bd

  compute estimate 7𝑌 ≈ 𝑌&'()*+∗  using 5𝜇! , 5𝜇!d

  if converged: return 7𝑌



Fairness Verification Algorithm

for 𝑡 ∈ 1,2, … :
 for 𝑖 ∈ 1, … , 𝑘
  compute rectangle 𝑅a,b  for 𝜙a  and 𝑅a,bd  for ¬𝜙a
  compute estimate 5𝜇! ≤ 𝜇!∗ ≤ 5𝜇!d  using 𝑅a,b , 𝑅a,bd

  compute estimate 7𝑌 ≈ 𝑌&'()*+∗  using 5𝜇! , 5𝜇!d

  if converged: return 7𝑌



Fairness Verification Algorithm

for 𝑡 ∈ 1,2, … :
 for 𝑖 ∈ 1, … , 𝑘
  compute rectangle 𝑅a,b  for 𝜙a  and 𝑅a,bd  for ¬𝜙a
  compute estimate 5𝜇! ≤ 𝜇!∗ ≤ 5𝜇!d  using 𝑅a,b , 𝑅a,bd

  compute estimate 7𝑌 ≈ 𝑌&'()*+∗  using 5𝜇! , 5𝜇!d

  if converged: return 7𝑌



Upper/Lower Bounds on Fairness

• We need to determine if 7𝑌 = 𝑌&'()*+∗ , where

𝑌&'()*+∗ = 1
e!"#$%"&'
∗

e!)*$%"&'
∗ ≥ 𝑐     and    7𝑌 = 1

fe!"#$%"&'
fe!)*$%"&'

≥ 𝑐

• Strategy: Abstract interpretation!
• We have bounds on �̂�+%,-$%&' − 𝜇+%,-$%&'∗  and �̂�+#.-$%&' − 𝜇+#.-$%&'∗

• Use abstract interpretation to obtain �̂�
• Problem: What are abstract semantics for Booleans and inequalities?



Upper/Lower Bounds on Fairness

• Abstract domain for Booleans: true, false, or uncertainty
• 𝛾 uncertain = true, false
• Called “three-valued logic”

• Abstract transformers: For 𝑓g 𝑧 = 1 𝑧 ≥ 𝑐 , we have

X𝑓g 𝑧,)-, 𝑧,'h = Y
true
false

uncertain
	
if	𝑧,)- ≥ 𝑐
if	𝑧,'h < 𝑐
otherwise



Upper/Lower Bounds on Fairness



Fairness Verification Algorithm

for 𝑡 ∈ 1,2, … :
 for 𝑖 ∈ 1, … , 𝑘
  compute rectangle 𝑅a,b  for 𝜙a  and 𝑅a,bd  for ¬𝜙a
  compute estimate 5𝜇! ≤ 𝜇!∗ ≤ 5𝜇!d  using 𝑅a,b , 𝑅a,bd

  compute estimate 𝑌&'()*+∗ ∈ 𝛾 7𝑌  using 5𝜇! , 5𝜇!d

  if 𝛾 7𝑌 = 1: return 7𝑌



Fairness Verification Algorithm

for 𝑡 ∈ 1,2, … :
 for 𝑖 ∈ 1, … , 𝑘
  compute rectangle 𝑅a,b  for 𝜙a  and 𝑅a,bd  for ¬𝜙a
  compute estimate 5𝜇! ≤ 𝜇!∗ ≤ 5𝜇!d  using 𝑅a,b , 𝑅a,bd

  compute estimate 𝑌&'()*+∗ ∈ 𝛾 7𝑌  using 5𝜇! , 5𝜇!d

  if 𝛾 7𝑌 = 1: return 7𝑌



Agenda

• Fairness verification problem
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Shortcomings of Symbolic Verification

• Scales poorly to large models
• Neural networks now have billions of parameters!

• Fairness is a statistical property

• Can we use a statistical approach to verify fairness?



Statistical Verification

• Use random sampling to check correctness, and use statistical tools to 
bound probability of false negatives

Pr
i + ,…,i , ∼k𝒳

𝑓	correct 𝒜 𝑓; 𝑋 l , … , 𝑋 m = correct ≥ 1 − 𝛿

• Guarantee of symbolic verification is equivalent to 𝛿 = 0

• For statistical verification, some chance of error is inevitable (𝛿 > 0), 
but we can make 𝛿 as small as desired with sufficiently many samples



Statistical Verification for Fairness

• Given samples 𝑣!
l , … , 𝑣!

m ∼ 𝑃𝒱 ∣ 𝐴 = 𝑎 (for each 𝑎)
• Obtained via rejection sampling

• The estimated acceptance probability is

5𝜇! =
1
𝑛
h
anl

m

1 𝑓 𝑣!
a = 1

• We can bound 5𝜇! − 𝜇!∗  using Hoeffding’s inequality



Hoeffding’s Inequality

• Let 𝑏l, … , 𝑏m ∼).).o. Bernoulli 𝜇  be samples

• Let 5𝜇 = 𝑛pl ∑qnlm 𝑏q  be the empirical mean

• Then, with probability at least 1 − 𝛿, we have

5𝜇 − 𝜇 ≤
log 2/𝛿
2𝑛



Hoeffding’s Inequality

• Apply Hoeffding’s inequality to 𝜇!∗ 	= Pr 𝑓 𝑉 = 1 ∣ 𝐴 = 𝑎

• Ensures that 5𝜇!  is “good estimate” of 𝜇!∗  with high probability:

Pr 5𝜇! − 𝜇!∗ ≤
log 2/𝛿
2𝑛

≥ 1 − 𝛿



Algorithm

for 𝑖 ∈ {1,2, … , 𝑛}:
 sample individual 𝑣!

a ∼ 𝑃𝒱 ∣ 𝐴 = 𝑎 (for each 𝑎)
obtain high-probability bound 5𝜇! ≤ 𝜇!∗ ≤ 5𝜇!d  using Hoeffding’s inequality
compute estimate 𝑌&'()*+∗ ∈ 𝛾 7𝑌  using 5𝜇! , 5𝜇!d

return 7𝑌



Adaptive Concentration Inequalities

• Key Shortcoming
• In Hoeffding’s inequality, number of samples 𝑛 must be chosen beforehand
• Algorithm may not converge (i.e., �̂� = uncertain)
• In practice, we often have a fixed test set!

• Idea: Try increasing values of 𝑛 until one works
• Problem: Need a union bound!

• Solution: Use a concentration inequality that allows us to iteratively 
take more samples



Statistical Verification

• Use an adaptive variant of Hoeffding’s, which lets us incrementally 
increase 𝑛 and still maintain the guarantee

• Adaptive Concentration: With probability ≥ 1 − 𝛿, we have

∀𝑛	. 	Pr 5𝜇!
m − 𝜇!∗ ≤ 𝜖 𝑛, 𝛿

• Here, 5𝜇!
m = 𝑛pl ∑anlm 1 𝑓 𝑣!

a = 1



Adaptive Concentration Inequalities



Algorithm

for 𝑖 ∈ {1,2, … }:
 sample individual 𝑣!

a ∼ 𝑃𝒱 ∣ 𝐴 = 𝑎 (for each 𝑎)
 obtain high-probability bound 5𝜇! ≤ 𝜇!∗ ≤ 5𝜇!d

 compute estimate 𝑌&'()*+∗ ∈ 𝛾 7𝑌  using 5𝜇! , 5𝜇!d

 if 𝛾 7𝑌 = 1: return 7𝑌



Theoretical Guarantees

• Probabilistic correctness

Pr
i + ,…,i , ∼k𝒳

𝑓	correct 𝒜 𝑓; 𝑋 l , … , 𝑋 m = correct ≥ 1 − 𝛿

Pr
i + ,…,i , ∼k𝒳

𝑓	incorrect 𝒜 𝑓; 𝑋 l , … , 𝑋 m = incorrect ≥ 1 − 𝛿

• Probabilistic termination
• Assume fairness does not “just barely” hold
• Then, with probability 1, terminates after finitely many steps



Value of Verification

• Concentration inequalities can give you provable guarantees for 
statistical properties

• What is the value of verification over directly using the estimate 
7𝑌&'()*+ = 1

fe!"#$%"&'
fe!)*$%"&'

≥ 𝑐 ?

• Verification quantifies uncertainty in our estimate of fairness
• Do not mis-report fair or unfair due to too few samples



Agenda

• Fairness verification problem
• Symbolic fairness verification
• Statistical fairness verification


