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Agenda

• Selective compliance
• Fairness in sequential decision-making



Fairness and Human-AI Systems



Selective Compliance

• Humans choose when to comply with algorithmic recommendations, 
with potentially problematic fairness consequences



Selective Compliance

• Humans choose when to comply with algorithmic recommendations, 
with potentially problematic fairness consequences

AI is fair final decision is unfair



Failures

• Virginia sentencing data
• No benefit in safety or incarceration; 

racial disparities increased in courts 
where algorithm was used more
• Conflicting objectives, e.g., judges are 

lenient towards younger defendants
• Judges were more likely to sentence 

leniently for white defendants with 
high risk scores than for black 
defendants with the same score

Stevenson and Doleac, 2022; Van Dam, 2019



Formalizing Selective Compliance

• Decision-making problem
• Finite number of types 𝑥 ∈ 𝑋 = 𝑘 = 1,… , 𝑘
• Binary indicator 𝑎 ∈ 𝐴 = 0, 1  of protected attribute
• Binary decision 𝑦 ∈ 0, 1  (e.g., should we treat the patient?)

• Policy: 𝜋: 𝑋×𝐴 → 0,1  maps 𝑥 to the prob of a decision of 𝑦 = 1:

-𝑦 ∼ Bernoulli 𝜋 𝑥, 𝑎



Formalizing Selective Compliance

• Human policy: 𝜋!  used by human in absence of AI

• AI policy: 𝜋" is the AI recommendation

• Compliance function: mapping 𝑐: 𝑋×𝐴 → 0,1 , indicating whether 
the human complies with the AI recommendation for 𝑥, 𝑎

• Human-AI collaborative policy:

𝜋# 𝑥, 𝑎 = 9𝜋" 𝑥, 𝑎 	 if	𝑐 𝑥, 𝑎 = 1
𝜋! 𝑥, 𝑎 	 otherwise



Equality of Opportunity

• Recall: Pr -𝑦 = 1 𝑦 = 1, 𝑎 = 0 = Pr -𝑦 = 1 𝑦 = 1, 𝑎 = 1

• Let the average score for subgroup 𝑎 be

-𝜋 𝑎 = /
!∈#

𝜋 𝑥, 𝑎 ⋅ 𝑃 𝑥 𝑎, 𝑦 = 1

• Policy 𝜋	is fair if and only if

𝛼 𝜋 ≔ C𝜋 1 − C𝜋 0 = 0

• WLOG assume C𝜋! 1 ≥ C𝜋! 0



Compliance-Robust Fairness

• Goal: An algorithmic policy 𝜋" that never reduces fairness regardless 
of how the end user chooses to comply
• Then, 𝜋$ is at least as fair as 𝜋% for any compliance fn 𝑐
• For any 𝑐, we have 𝛼 𝜋$ ≤ 𝛼 𝜋%

• Note:
• Cannot guarantee 𝜋$ is strictly fairer than 𝜋%, since human can choose 𝑐 = 0
• Assume knowledge of 𝜋% but nothing about 𝑐



Intuitive Example

• Suppose C𝜋" 𝑎 > C𝜋! 𝑎  for all 𝑎

• Fairness decreases if human 
selectively complies for members 
of the subgroup 𝑎 for which  
C𝜋! 𝑎 > C𝜋! 1 − 𝑎

• Similar if C𝜋" 𝑎 < C𝜋! 𝑎  for all 𝑎

𝛼(𝜋$)



Intuitive Example

• Modify 𝜋" to be “sandwiched” 
between levels of 𝜋!

• If C𝜋! 0 < C𝜋" 𝑎 < C𝜋! 1  for all 
𝑎 ∈ 𝐴, then 𝜋" is compliance-
robust!



Characterizing Compliance-Robustness

• Assumption: 𝑃 𝑥, 𝑎, 𝑦 > 0 for all 𝑥 ∈ 𝑋, 𝑎 ∈ 𝐴, 𝑦 ∈ 𝑌

• Theorem: A policy 𝜋 is compliance-robustly fair iff it satisfies:
1.  𝛼 𝜋 ≤ 𝛼 𝜋%
2.  𝜋% 𝑥, 0 ≤ 𝜋 𝑥, 0  for all 𝑥 ∈ 𝑋 
3.  𝜋% 𝑥, 1 ≥ 𝜋 𝑥, 1  for all 𝑥 ∈ 𝑋

• Intuitively, no matter how the human complies, they can only reduce 
C𝜋! 1  or increase C𝜋! 0  (without “crossing” them)



Characterizing Compliance-Robustness

• Corollary: If 𝛼 𝜋! = 0, then the only compliance-robustly fair 
algorithmic policy is 𝜋" = 𝜋!

• If the human is perfectly fair, then any nontrivial algorithm can reduce 
fairness



What About Performance?

• Consider a loss function ℓ: 0,1 ×𝑌 ↦ ℝ
• Policy loss 𝐿 𝜋 = 𝔼 ℓ 𝜋 𝑥, 𝑎 , 𝑦∗

• Optimal policy: 𝜋∗ = arg	min% 𝐿 𝜋
• May not be compliance robustly fair (or fair in the traditional sense)

• Assumption: If for all 𝑥 ∈ 𝑋 and 𝑎 ∈ 𝐴, 𝜋& 𝑥, 𝑎 ≤ 𝜋 𝑥, 𝑎 < 𝜋∗ 𝑥, 𝑎  
or 𝜋& 𝑥, 𝑎 > 𝜋 𝑥, 𝑎 ≥ 𝜋∗ 𝑥, 𝑎 , then, 𝐿 𝜋 < 𝐿 𝜋&
• Intuitively, if 𝜋' deviates further from 𝜋∗ than 𝜋 for all inputs, then 𝜋' has 

higher expected loss
• Satisfied by common loss functions (mean squared error, mean absolute 

error, cross entropy, etc.)



Optimizing for Performance

• Optimization problem to compute the performance-maximizing 
compliance-robustly fair policy:

• Question: Does a (nontrivial) solution always exist?



Existence of a Solution

• Consider the policy

𝜋' 𝑥, 𝑎 = 9max 𝜋∗ 𝑥, 𝑎 , 𝜋! 𝑥, 𝑎 	if	𝑎 = 0
min 𝜋∗ 𝑥, 𝑎 , 𝜋! 𝑥, 𝑎 	if	𝑎 = 1

• Intuition: Tries to satisfy the constraints in our theorem
2.  𝜋% 𝑥, 0 ≤ 𝜋 𝑥, 0  for all 𝑥 ∈ 𝑋 
3.  𝜋% 𝑥, 1 ≥ 𝜋 𝑥, 1  for all 𝑥 ∈ 𝑋 

• But may not satisfy the first constraint!
1.  𝛼 𝜋 ≤ 𝛼 𝜋%



Existence of a Solution

• Theorem: If 𝛼 𝜋' ≤ 𝛼 𝜋! , then 𝜋'  is compliance-robustly fair

• Why might 𝛼 𝜋' ≤ 𝛼 𝜋! 	fail to hold?

• Intuition: 𝜋'  may be unfair in the “opposite direction”

C𝜋! 1C𝜋! 0 C𝜋' 0C𝜋' 1

𝛼 𝜋'

𝛼 𝜋!
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Existence of a Solution

• Assumption: 𝛼 𝜋! ≠ 0 and 𝜋' ≠ 𝜋!

• Theorem: There exists a performance-improving compliance-robustly 
fair policy 𝜋( if and only if the above assumption holds

• Proof: Above argument + intermediate value theorem



Tension with Traditional Fairness

• May not always be able to achieve compliance-robust fairness, 
performance improvement, and traditional fairness

• Proposition: There are settings where no traditionally fair policy is 
compliance-robustly fair while improving performance
• Intuition: If 𝜋∗ is very unfair, and 𝜋% is close to 𝜋∗, then any traditionally fair 

policy cannot satisfy our constraints

• Theorem: If 𝛼 𝜋∗ = 0, then there exists a performance-improving 
policy that is both traditionally and compliance-robustly fair



Summary

• Fairness for human-AI collaboration looks very different from 
traditional fairness
• May need to forgo traditional fairness to improve end-to-end outcomes!

• New algorithms are needed to ensure fairness of final decisions



Agenda

• Selective compliance
• Fairness in sequential decision-making



Reinforcement Learning

AlphaGoRoboticsAtari



Real World Reinforcement Learning

Loan application
Repayment

…

Loan approval
Credit score update

…



Real World Reinforcement Learning

• Lots of systems involve sequential decisions
• Banking/financial decision-making
• Judicial decision-making
• Medical decision-making
• Education

• These systems should satisfy fairness for long-term outcomes



Markov Decision Processes (MDPs)
• States 𝑆

• Set of rooms

• Initial state 𝑠(
• Room A

• Actions 𝐴
• Direction to go

• Transitions 𝑃: 𝑆×𝐴 → 𝑆
• Room that the robot ends up in

• Rewards 𝑅: 𝑆×𝐴 → ℝ
• 1 for room F, 0 otherwise

• Time horizon 𝑇
• How many steps the robot can take
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Markov Decision Processes (MDPs)

• Policy 𝜋: 𝑆 → 𝐴
• Maps room to direction to take
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Markov Decision Processes (MDPs)

• Policy 𝜋: 𝑇 ×𝑆 → 𝐴
• Maps room to direction to take
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Reinforcement Learning

• Goal: Compute a policy 𝜋 with high cumulative reward:

𝑅 % =V
)*+

,

𝑅 𝑠) , 𝑎)

• 𝑠) = 𝑠( is the initial state
• 𝑎* = 𝜋 𝑡, 𝑠*  is the action taken
• 𝑠*+) = 𝑃 𝑠*, 𝑎*  is the state transition
• 𝑇 is the time horizon

• What about stochasticity?
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Reinforcement Learning

• Goal: Compute a policy 𝜋 with high cumulative reward:
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)*+
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Fairness in Reinforcement Learning

• Note that 𝑅 %  is the reward for the decision maker (e.g., the 
bank), not for the individual

• We assume that there is additionally an individual reward 𝜌 𝑠, 𝑎 , 
with corresponding individual cumulative reward

𝜌 % = 𝔼 V
)*+

,

𝜌 𝑠) , 𝑎)



Fairness in Reinforcement Learning

• We assume each individual is associated with a subgroup 𝑧 ∈ 0,1
• We assume 𝑧 does not change over time
• The reward for an individual in subgroup 𝑧 is

𝜌-
% = 𝔼 V

)*+

,

𝜌 𝑠) , 𝑎) ∣ 𝑠( = 𝑠̃(, 𝑧

• 𝜋 satisfies demographic parity if for all 𝑧, 𝑧& ∈ 0,1 , we have

𝜌-
% = 𝜌-!

%



Imposing Fairness

• Note: Focus on planning, not learning

• Adding constraints to dynamic programming is hard!

• Typically, constrained MDPs are solved by formulating the 
cumulative reward objective as a linear program

• Then, we can impose fairness as a constraint in the linear 
programming



Linear Programming Formulation

• The state-action distribution of an MDP is

𝜆),/,0
% = Pr in	state	𝑠 ∧ take	action	𝑎 on	time	step	𝑡	

• Defined recursively by

𝜆+,/,0
% = 𝑃( 𝑠 ⋅ 𝜋 𝑎 1, 𝑠

𝜆)1+,/!,0!
% =V

/∈3

V
0∈"

𝜆),/,0
% ⋅ 𝑃 𝑠& 𝑠, 𝑎 ⋅ 𝜋 𝑎& 𝑡, 𝑠&



Linear Programming Formulation

• Idea: Instead of computing 𝜋, compute the optimal 𝜆),/,0

• Then, we have 𝜋 𝑎 𝑡, 𝑠 = 4",$,%
∑%!∈' 4",$,%!

• Given 𝜆),/,0, the cumulative reward is

𝑅 =V
)*+

,

V
/∈3

V
0∈"

𝜆),/,0 ⋅ 𝑅 𝑠, 𝑎



Linear Programming Formulation

• How to make sure 𝜆 represents an actual state-action distribution?

• For a given 𝜋, we have

𝜆+,/,0 = 𝑃( 𝑠 ⋅ 𝜋 𝑎 1, 𝑠

𝜆)1+,/!,0! =V
/∈3

V
0∈"

𝜆),/,0	 ⋅ 𝑃 𝑠& 𝑠, 𝑎 ⋅ 𝜋 𝑎& 𝑡, 𝑠&

• Remember, 𝜋 can be arbitrary here
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Linear Programming Formulation

• How to make sure 𝜆 represents an actual state-action distribution?

• For a given 𝜋, we have

V
0∈"

𝜆+,/,0 = 𝑃( 𝑠

V
0!∈"

𝜆)1+,/!,0! =V
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V
0∈"

𝜆),/,0	 ⋅ 𝑃 𝑠& 𝑠, 𝑎

• Implicitly, also constrain 𝜆),/,0 ∈ 0,1



Linear Programming Formulation

• Solve the following linear program:

  arg	max4 ∑)*+, ∑/∈3∑0∈" 𝜆),/,0 ⋅ 𝑅 𝑠, 𝑎
  subj. to	 ∑0∈" 𝜆+,/,0 = 𝑃( 𝑠
  subj. to	 ∑0!∈" 𝜆)1+,/!,0! = ∑/∈3∑0∈" 𝜆),/,0	 ⋅ 𝑃 𝑠& 𝑠, 𝑎

• Note: Dual of the more typical LP formulation



Imposing Fairness as a Constraint

• To impose fairness, add the constraint

𝑝-7+V
)*+

,

V
/̃,- ∈3

V
0∈"

𝜆),/,0 ⋅ 𝜌 𝑠, 𝑎 = 𝑝-!
7+V

)*+

,

V
/̃,-! ∈3

V
0∈"

𝜆),/,0 ⋅ 𝜌 𝑠, 𝑎

• Here, we have

𝑝- = V
/̃,- ∈3

𝑃( 𝑠̃, 𝑧



Summary

• Algorithm for solving MDP by formulating it as a linear program

• Focus on computing the optimal state-action distribution

• Fairness is imposed as a constraint in the linear program



Agenda

• Selective compliance
• Fairness in sequential decision-making


