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Agenda

* Selective compliance
* Fairness in sequential decision-making



Fairness and Human-Al Systems

BUSINESS

Algorithms were supposed to make
Virginia judges fairer. What happened was
far more complicated.

Analysis by Andrew Van Dam
Staff writer | + Follow

November 19, 2019 at 7:00 a.m. EST

The Accomack County Courthouse in February of this year. (Timothy C. Wright for the Washington Post)
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We tend to assume the near-term future of automation will be built on
man-machine partnerships. Our robot sidekicks will compensate for the
squishy inefficiencies of the human brain, while human judgment will

sand down their cold, mechanical edges.



Selective Compliance

* Humans choose when to comply with algorithmic recommendations,
with potentially problematic fairness consequences
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* Humans choose when to comply with algorithmic recommendations,
with potentially problematic fairness consequences

Al is fair final decision is unfair



Failures

* Virginia sentencing data

* No benefit in safety or incarceration;
racial disparities increased in courts
where algorithm was used more

* Conflicting objectives, e.g., judges are
lenient towards younger defendants

* Judges were more likely to sentence
leniently for white defendants with
high risk scores than for black
defendants with the same score

Stevenson and Doleac, 2022; Van Dam, 2019

Algorithms were supposed to make
Virginia judges fairer. What happened was
far more complicated.




Formalizing Selective Compliance

* Decision-making problem
* Finite number of typesx € X = [k] = {1, ..., k}
* Binary indicator a € A = {0, 1} of protected attribute
* Binary decision y € {0, 1} (e.g., should we treat the patient?)

* Policy: m: XXA — [0,1] maps x to the prob of a decision of y = 1:

§ ~ Bernoulli(ﬂ(x» a))



Formalizing Selective Compliance

* Human policy: 5 used by human in absence of Al

* Al policy: 7, is the Al recommendation

* Compliance function: mapping c: XxXA — {0,1}, indicating whether
the human complies with the Al recommendation for (x, a)

* Human-Al collaborative policy:

ma(x,a) ifc(x,a) =1
my(x,a) otherwise

ne(x,a) = {



Equality of Opportunity

Recall: Pr(y=1|y=1,a=0)=Pr(y=1]ly=1a=1)
* Let the average score for subgroup a be

m(a) = En(x,a)-P(x la,y=1)

xeX

* Policy m is fair if and only if

a(r) = |m(1) —w(0)| =0

* WLOG assume Ty (1) = 74(0)



Compliance-Robust Fairness

* Goal: An algorithmic policy 4 that never reduces fairness regardless
of how the end user chooses to comply

* Then, . is at least as fair as Ty for any compliance fn ¢
* Forany c, we have a(r;) < a(my)

* Note:
* Cannot guarantee 7 is strictly fairer than g, since human can choose ¢ = 0
* Assume knowledge of my but nothing about ¢



Intuitive Example

* Suppose T, (a) > Ty (a) forall a

e Fairness decreases if human
selectively complies for members

of the subgroup a for which
fy(a) > Ty (1—a)

 Similarif T4(a) < Ty (a) forall a

TH

>a(mc)




Intuitive Example

* Modify i, to be “sandwiched”
between levels of Ty

e If T4 (0) < y(a) < Ty (1) for all
a € A, then 1, is compliance-
robust!

m(a)




Characterizing Compliance-Robustness

* Assumption: P(x,a,y) >0forallx e X,a€ A, y€EY

* Theorem: A policy i is compliance-robustly fair iff it satisfies:
1. a(m) < a(ny)
2. mwy(x,0) <m(x,0)forallx € X
3. my(x,1)=>mn(x,1)forallx € X

* Intuitively, no matter how the human complies, they can only reduce
Ty (1) orincrease 4 (0) (without “crossing” them)



Characterizing Compliance-Robustness

* Corollary: If a(mry) = 0, then the only compliance-robustly fair
algorithmic policy is T, = my

* If the human is perfectly fair, then any nontrivial algorithm can reduce
fairness



What About Performance?

 Consider a loss function £:[0,1]xY » R
* Policy loss L(m) = E[£(mt(x,a),y™)]

* Optimal policy: m, = arg min,; L(m)
* May not be compliance robustly fair (or fair in the traditional sense)

* Assumption: Ifforallx € Xanda € A, t'(x,a) < m(x,a) < n*(x,a)
ormt'(x,a) >mn(x,a) = n*(x,a), then, L(w) < L(xt")
* Intuitively, if ' deviates further from * than m for all inputs, then " has
higher expected loss

 Satisfied by common loss functions (mean squared error, mean absolute
error, cross entropy, etc.)



Optimizing for Performance

e Optimization problem to compute the performance-maximizing
compliance-robustly fair policy:

7y =argmin L()
/A

subj. to a(r) < a(ry)
e (x,0) < 7m(x,0) (Vx € X)
m(x,1) < my(x,0) (Vx € X)

* Question: Does a (nontrivial) solution always exist?



Existence of a Solution

* Consider the policy

max{m,(x,a), my(x,a)} ifa =0
min{m,(x,a), ny(x,a)} ifa =1

mg(x,a) = {

* Intuition: Tries to satisfy the constraints in our theorem
2. my(x,0) <m(x,0)forallx € X
3. my(x,1)=>n(x,1)forallx € X

* But may not satisfy the first constraint!
1. a(m) < a(ny)



Existence of a Solution
* Theorem: If a(mgz) < a(my), then my is compliance-robustly fair
* Why might a(mg) < a(my) fail to hold?

* Intuition: Tz may be unfair in the “opposite direction”

a(my)
<< f A \ >
(1) Ty (0) mp(0) my(1)
g Y,

e
a(mp)
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Existence of a Solution

* Assumption: a(ry) # 0 and Tz # my

* Theorem: There exists a performance-improving compliance-robustly
fair policy Ty if and only if the above assumption holds

* Proof: Above argument + intermediate value theorem



Tension with Traditional Fairness

* May not always be able to achieve compliance-robust fairness,
performance improvement, and traditional fairness

* Proposition: There are settings where no traditionally fair policy is
compliance-robustly fair while improving performance

* Intuition: If T, is very unfair, and Ty is close to m,, then any traditionally fair
policy cannot satisfy our constraints

* Theorem: If a(m,) = 0, then there exists a performance-improving
policy that is both traditionally and compliance-robustly fair



Summary

* Fairness for human-Al collaboration looks very different from
traditional fairness

* May need to forgo traditional fairness to improve end-to-end outcomes!

* New algorithms are needed to ensure fairness of final decisions



Agenda

* Selective compliance
* Fairness in sequential decision-making



Reinforcement Learning

Atari Robotics AlphaGo



Real World Reinforcement Learning

Loan application
Repayment

N

Loan approval
Credit score update




Real World Reinforcement Learning

* Lots of systems involve sequential decisions
* Banking/financial decision-making
* Judicial decision-making
* Medical decision-making
* Education

* These systems should satisfy fairness for long-term outcomes



Markov Decision Processes (MDPs)

e States S
* Set of rooms

* Initial state s
* RoomA

* Actions A
* Direction to go

* Transitions P: SXA4A —» §
* Room that the robot ends up in

e Rewards R: SX4A - R

* 1forroom F, O otherwise

* Time horizon T
 How many steps the robot can take




Markov Decision Processes (MDPs)
"
AN

* Policy m:S - A /g

* Maps room to direction to take
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* Policy m: [T]xS - A
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Markov Decision Processes (MDPs)
i L

* Policy m: [T]xS - A —

) ) R A R B R C
« Maps room to direction to take oom | | Oolm | | oom

Room D Room E I_l Room F




Reinforcement Learning

* Goal: Compute a policy m with high cumulative reward:

T
R™ = > R(s, )
t=1

S1 = Sg is the initial state

a; = n(t,s;) is the action taken

St+q1 = P(sg, ag) is the state transition
T is the time horizon

 What about stochasticity?
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Reinforcement Learning

* Goal: Compute a policy m with high cumulative reward:

- T -
R(TC) = E ZR(St, at)
t=1 i

s; ~ Py(+) is the initial state

a; ~ (-] t,s;) is the action taken

Sey1 ~ P(:] s¢, a;) is the state transition
T is the time horizon

 What about stochasticity?



Fairness in Reinforcement Learning

* Note that R is the reward for the decision maker (e.g., the
bank), not for the individual

* We assume that there is additionally an individual reward p(s, a),
with corresponding individual cumulative reward

- T -
p(n) =L z p(St' at)
L t=1 i



Fairness in Reinforcement Learning

* We assume each individual is associated with a subgroup z € {0,1}
 We assume z does not change over time
* The reward for an individual in subgroup z is

_ T -
Pén) =E ZP(St» a.) | so = (8o, 2)
L t=1 i

* 77 satisfies demographic parity if for all z, z' € {0,1}, we have

p” = pp



Imposing Fairness

* Note: Focus on planning, not learning
* Adding constraints to dynamic programming is hard!

* Typically, constrained MDPs are solved by formulating the
cumulative reward objective as a linear program

* Then, we can impose fairness as a constraint in the linear
programming



Linear Programming Formulation
* The state-action distribution of an MDP is

Agga = Pr|in state s A take action a | on time step t ]

* Defined recursively by

A(ﬂ)

1,5,a

/lg)ljslja, = z z Az(:?a -P(s'|s,a) mw(a' |t s")

SES a€EA

= Py(s)-m(all,s)



Linear Programming Formulation

* Idea: Instead of computing r, compute the optimal 4, ,

Atsa

* Then,we havern(alt,s) =
aleaMsal

* Given A; g 4, the cumulative reward is

R = izzltsa R(s,a)

t=1 SeS a€A




Linear Programming Formulation

* How to make sure A represents an actual state-action distribution?

* For a given 1, we have

Msa = Py(s) -m(all,s)

Aiyis'a! = z th,sya -P(s"Is,a) -n(a'lts")

SES a€EA

* Remember, T can be arbitrary here
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Linear Programming Formulation

* How to make sure A represents an actual state-action distribution?

* For a given 1, we have

Z Al,s,a = Py(s)

a€cA

z t+1,s’,a’ _zz/ltsa -P(s" |s,a)

a'eA SES a€EA

* Implicitly, also constrain 4; 5 , € [0,1]



Linear Programming Formulation

* Solve the following linear program:

arg max; Y=y Yses Xaea Arsa - R(s, @)
subj.to Xaea 15,0 = Po(S)

a’eA At+1,s’,a' — ZSES ZaEA At,s,a -P(s" |s,a)

* Note: Dual of the more typical LP formulation



Imposing Fairness as a Constraint

* To impose fairness, add the constraint

T T
pz_l Z Z z At,s,a ' ,D(S, a) = pz_’l z z z /‘tt,s,a ' ,O(S, a)

t=1 (5,z)ES a€A t=1 (5,z')eS a€A

* Here, we have

Pz = z PO((§:Z))

(§,z)eS



Summary

 Algorithm for solving MDP by formulating it as a linear program
* Focus on computing the optimal state-action distribution

* Fairness is imposed as a constraint in the linear program



Agenda

* Selective compliance
* Fairness in sequential decision-making



