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Malignant 

Why did the model make this prediction?

“… the algorithm appeared more likely to label images with rulers as malignant … “

Beyond Accuracy



Goals of Explainable ML

▪ Explain why the model made a particular prediction on a specific input

▪ Explain how the model makes predictions across all inputs

▪ Explain how the training data affects model predictions

▪ Explain what changes to the input can cause the model make a different decision
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Agenda

▪ Today: 

o Introduction

o Feature attribution problem 

o LIME (Local Interpretable Model-agnostic Explanations) algorithm

▪ Resources: 

o Tutorial lectures on “Interpreting ML Models” by Hima Lakkaraju (Harvard)

o “Why should I trust you?” Explaining the predictions of any classifier

  Ribeiro et al, KDD 2016 (LIME paper)
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ML is everywhere, but is “explainable ML” needed everywhere?
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When and Why “Explainable ML” ?
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Explainability and Emerging AI Policy

EU General Data Protection Regulation (2018)

Right to explanation

…

In any case, such processing should be subject to suitable safeguards, which should 
include specific information to the data subject and the right to obtain human 
intervention, to express his or her point of view, to obtain an explanation of the decision 
reached after such assessment and to challenge the decision.
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Motivating Example
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Predictive
Model

Input

Prediction = Siberian Husky

Feature Attribution

This model is 
relying on incorrect 

features to make 
this prediction!! Let 

me fix the model

Explaining predictions facilitates debugging



Motivating Example
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Predictive 
Model

Defendant Details

Prediction = Risky to Release

Feature Attribution

Race

Crimes

Gender

This prediction is 
biased. Race and 
gender are being 
used to make the 

prediction!!

Explaining predictions facilitates bias detection



Motivating Example
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Predictive 
Model

Loan Applicant Details

Prediction = Denied Loan

Counterfactual

Increase salary by 
50K + pay credit 
card bills on time 
for next 3 months 
to get a loan

I have some means 
for recourse. Let me 
go and work on my 
promotion and pay 

my bills on time.
Explanation helps provide recourse to individuals who are 

adversely affected by model predictions 



Motivating Example
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Predictive 
Model

Patient Data 
Rule Synthesis This model is using 

irrelevant features when 
predicting on female 

subpopulation. I should 
not trust its predictions 

for that group.

Predictions

25, Female, Cold
32, Male, No
31, Male, Cough

.

.

.

.

Healthy
Sick
Sick

.

.

Healthy
Healthy
Sick 

If gender = female, 

   if ID_num > 200, then sick

If gender = male,

   if cold = true and cough = true, then sick Explanation helps assess if and when to trust model 
predictions when making decisions 



Achieving Explainability: Inherently Interpretable Models
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Interpretable Models are Trustworthy and Widely Deployed!
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Gail model for 
breast cancer risk 
assessment



Achieving Explainability: Post-hoc Explanations
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Explainer



Interpretability vs Accuracy Trade-offs
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If you can build an interpretable model which is also adequately 
accurate for your setting, DO IT!  

Otherwise, post hoc explanations come to the rescue!



What is an Explanation ?
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Ideally, interpretable description of the model behavior

Classifier User

ExplanationFaithful Understandable



What is an Explanation ?
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Summarize with a program/rule/tree

Classifier

Ideally, interpretable description of the model behavior

UserSend all the model parameters θ?

Send many example predictions?

Select most important features/points

Describe how to flip the model prediction

...



Local vs. Global Explanations
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Explain individual predictions Explain complete behavior of the model

Help unearth biases in the local 
neighborhood of a given instance

Help shed light on big picture biases 
affecting larger subgroups 

Help vet if individual predictions are 
being made for the right reasons 

Help vet if the model, at a high level, is 
suitable for deployment



Feature Attribution Methods

▪ Goal: Explain why the model made a particular prediction on a specific input

▪ Solution: Select/rank a subset of input features that contributed the most to model 
prediction

▪ Today:

o  How to formalize the problem

o  LIME algorithm: “Why should I trust you?” Explaining the predictions of any   
classifier (Ribeiro et al, KDD 2016)
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LIME use-case illustrated
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LIME Explanation for Image Classification
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"Macaw"

Classifier:  Vision Transformer (Dosovitskiy, 2020)

Dataset:  ImageNet

LIME



Formalizing Feature Attribution Problem

▪ Given an input x and model f, select a subset (of specified size) of features of x that 
contribute the most to the prediction f(x)

▪ First attempt: if               output should be d-dim vector over {0,1} specifying for each 
feature whether it is selected or not x

▪ Problem: Features in representation of x may not be interpretable to humans 

 e.g. an input image is a tensor with three color channels per pixel
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Formalizing Feature Attribution Problem

▪ If input x is d-dimensional, first define a simpler d’-dimensional  “interpretable” 
representation

▪ Output of explanation method g, for given input x and model f, is d’-dim vector over 
{0,1} that selects a subset of interpretable features (possibly with weights)

▪ Desired properties
oModel agnostic: Method works for any model f
o Interpretability: Minimize complexity of g (e.g. select at most 25% features)
o Local fidelity: g approximates f well in the vicinity of x

Note: to formalize local fidelity, need a way to map x and g to d-dim vectors
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Interpretable Features: From Pixels to Superpixels

▪ Superpixel is a technique to segment an image into regions by considering similarity 
according to perceptual features

▪ Segmentation is dependent on specific input

▪ Well-known algorithms based on graph partitioning and clustering
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Interpretable Features: From Pixels to Superpixels
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LIME: Local Interpretable Model-agnostic Explanations
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1. Sample points around x



LIME Algorithm
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1. Sample points around x

2. Use model to predict labels for each sample



LIME Algorithm
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1. Sample points around x

2. Use model to predict labels for each sample

3. Weigh samples according to distance to x



LIME Algorithm
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1. Sample points around x

2. Use model to predict labels for each sample

3. Weigh samples according to distance to x

4. Learn simple linear model on weighted 
samples



LIME Algorithm
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1. Sample points around x

2. Use model to predict labels for each sample

3. Weigh samples according to distance to x

4. Learn simple linear model on weighted 
samples

5. Use simple linear model to explain



LIME in more detail
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▪  Consider a (black-box) classifier that labels an input sentence as good (label 1) or bad 
(label 0)

▪  Suppose it labels “You are a very nice person” as 1

▪  We want as an explanation which 3 words contributed the most to this prediction



Interpretable Data Representation
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Sampling
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▪  N: number of samples, say, 5

▪  K: length of explanation, say, 3

▪  Sample instances around x’ by drawing nonzero elements uniformly at random, say, 
~U(2,4)



Sampling
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▪  N: number of samples, 5

▪  K: length of explanation, 3

▪  Sample instances around x’ uniformly at random ~ U(2,4)

Sampling



Analyzing Samples
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▪  For each z’, z is the corresponding input

          z’= 111100 maps to word vector of “You are a very”

▪  For each z, compute f(z)

▪  x(z): Proximity measure between an instance z to x

Sampling



Analyzing Samples
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▪  For each z’, z is the corresponding input

▪  For each z, compute f(z)

▪  x(z): Proximity of z to x

Sampling



Finding Explanable Model
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Finding Explanable Model



LIME Algorithm
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Image Classifier: Wolf vs Husky
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Only 1 mistake!



Check Explanations with LIME
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We’ve built a great snow detector… 



Explanations with LIME
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LIME Explanations can help choose between models
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Agenda

▪ Today’s recap: 
o Introduction

o Feature attribution problem 

o LIME (Local Interpretable Model-agnostic Explanations) algorithm

▪ Coming up: 

oNext lecture: SHAP methods based on cooperative game theory

oReview of other feature attribution methods (Saliency Maps)

o Formal guarantees for feature attribution methods

oCounterfactuals

oRule synthesis

oData attribution methods: Influence functions, Datamodels
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