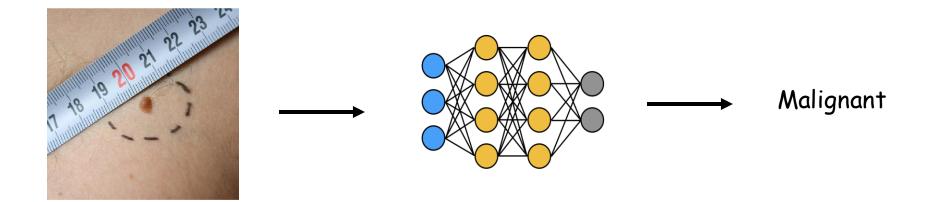
Lecture 18: Explainability

Trustworthy Machine Learning Spring 2024

Beyond Accuracy



Why did the model make this prediction?

"... the algorithm appeared more likely to label images with rulers as malignant ... "

Goals of Explainable ML

- Explain why the model made a particular prediction on a specific input
- Explain how the model makes predictions across all inputs
- Explain how the training data affects model predictions
- Explain what changes to the input can cause the model make a different decision

Agenda

Today:

 \odot Introduction

 $\,\circ\,$ Feature attribution problem

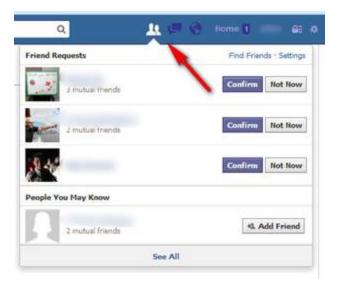
 $\,\circ\,$ LIME (Local Interpretable Model-agnostic Explanations) algorithm

Resources:

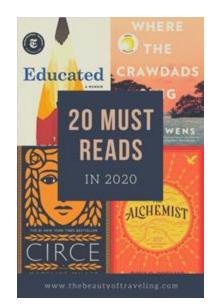
• Tutorial lectures on "Interpreting ML Models" by Hima Lakkaraju (Harvard)

 "Why should I trust you?" Explaining the predictions of any classifier Ribeiro et al, KDD 2016 (LIME paper)

ML is everywhere, but is "explainable ML" needed everywhere?



Amazon.com: Bestselling Canon Cameras Neutlement 13



When and Why "Explainable ML" ?

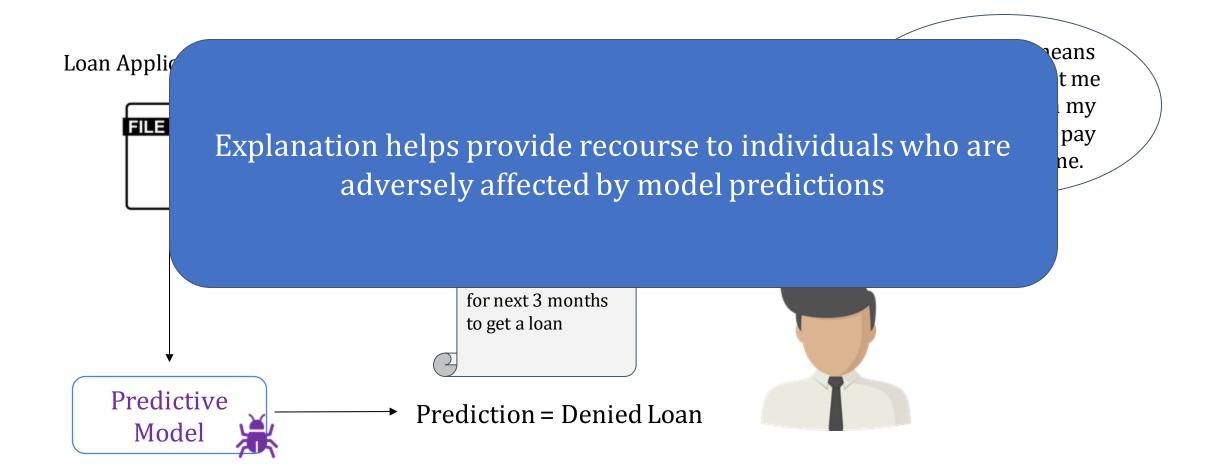
Explainability and Emerging AI Policy

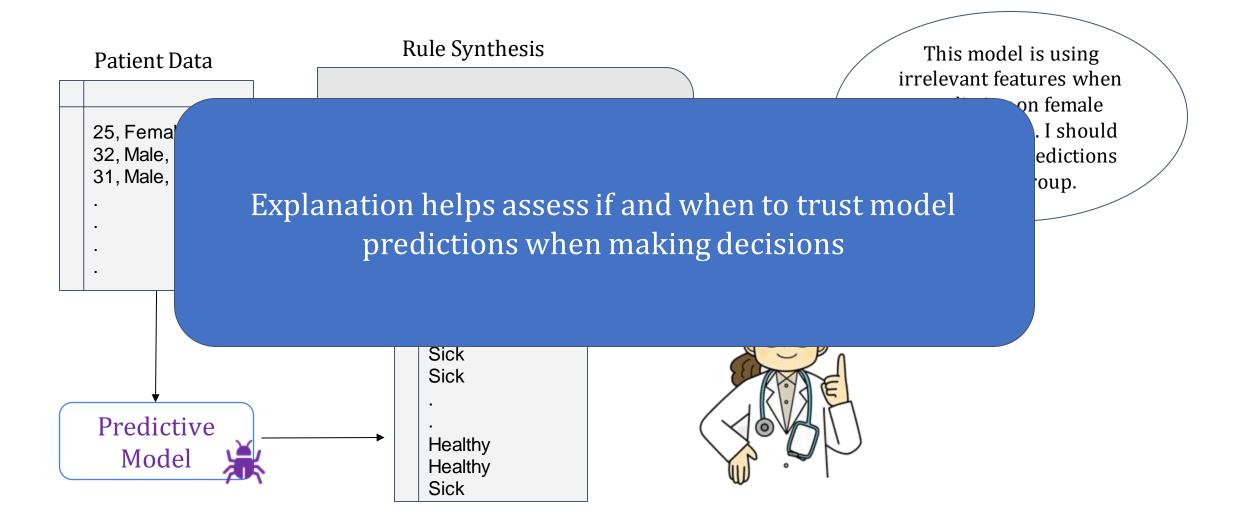
EU General Data Protection Regulation (2018)

Right to explanation

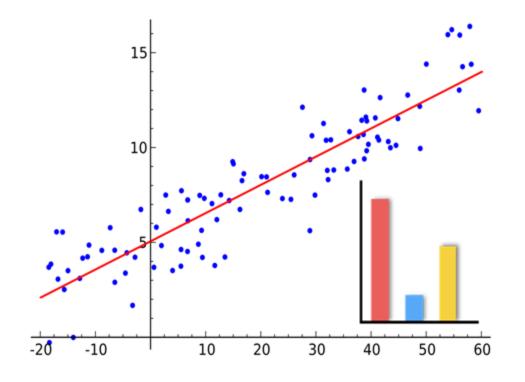
•••

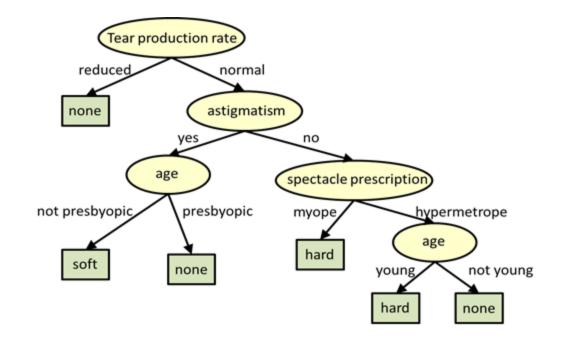
In any case, such processing should be subject to suitable safeguards, which should include specific information to the data subject and the right to obtain human intervention, to express his or her point of view, to obtain an explanation of the decision reached after such assessment and to challenge the decision.





Achieving Explainability: Inherently Interpretable Models





if (age = 18 - 20) and (sex = male) then predict yes else if (age = 21 - 23) and (priors = 2 - 3) then predict yes else if (priors > 3) then predict yes else predict no

Interpretable Models are Trustworthy and Widely Deployed!

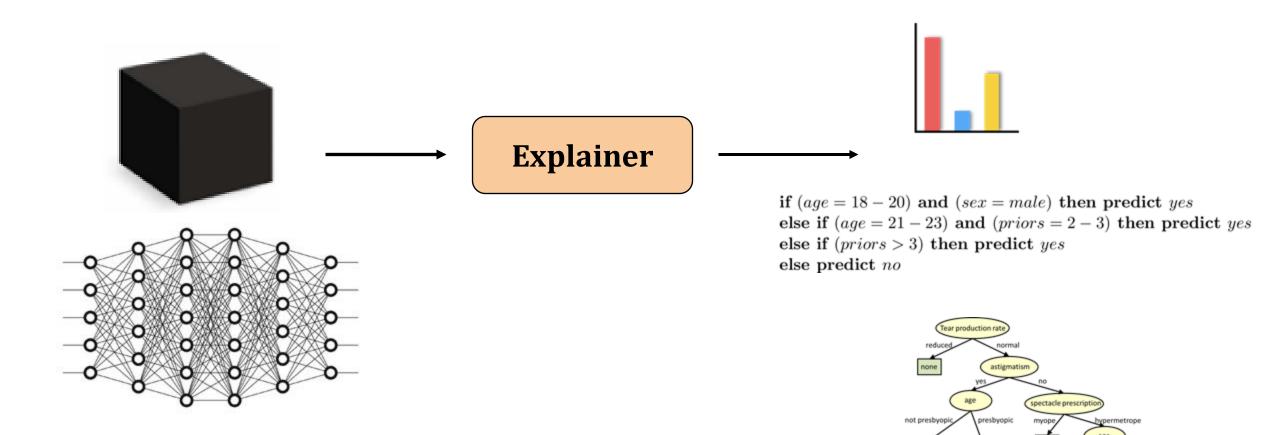
reast Cancer Risk Assessment Tool Patient Eligibility Patient & Family History 1 2 5 Demographics Patient Eligibility Does the woman have a medical history of any breast cancer or of ductal carcinoma in situ (DCIS) or lobular carcinoma in situ (LCIS) or has she received previous radiation therapy to the chest for treatment of Hodgkin lymphoma? O Yes O No Gail model for Does the woman have a mutation in either the BRCA1 or BRCA2 gene, or a diagnosis of a genetic syndrome that may be breast cancer risk associated with elevated risk of breast cancer? O Yes assessment O No O Unknown Demographics

What is the patient's age?

This tool calculates risk for women between the ages of 35 and 85.

Select age

Achieving Explainability: Post-hoc Explanations



hard

soft

Interpretability vs Accuracy Trade-offs

If you *can build* an *interpretable model* which is also adequately accurate for your setting, DO IT!

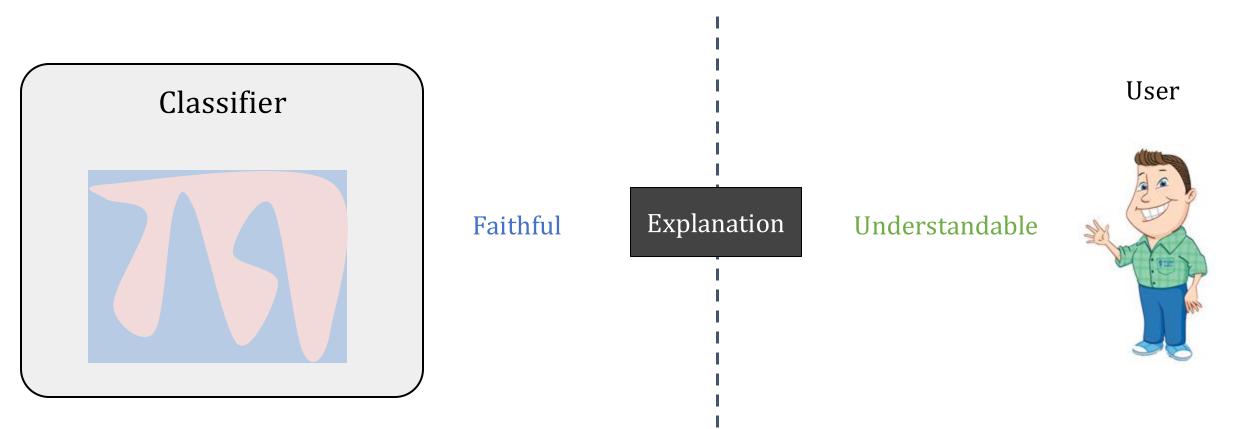
Inter abil

Otherwise, *post hoc explanations* come to the rescue!

Accuracy

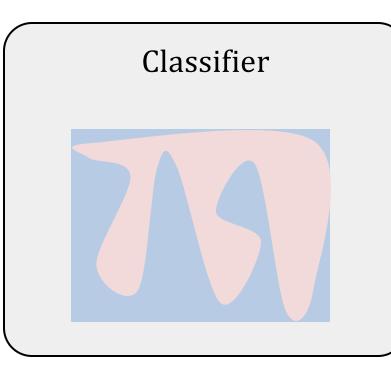
What is an Explanation ?

Ideally, interpretable description of the model behavior



What is an Explanation ?

Ideally, interpretable description of the model behavior



Send all the model parameters θ ?

Send many example predictions?

Summarize with a program/rule/tree

Select most important features/points

Describe how to *flip* the model prediction

....

User

Local vs. Global Explanations

Explain individual predictions

Help unearth biases in the *local neighborhood* of a given instance

Help vet if individual predictions are being made for the right reasons Explain complete behavior of the model

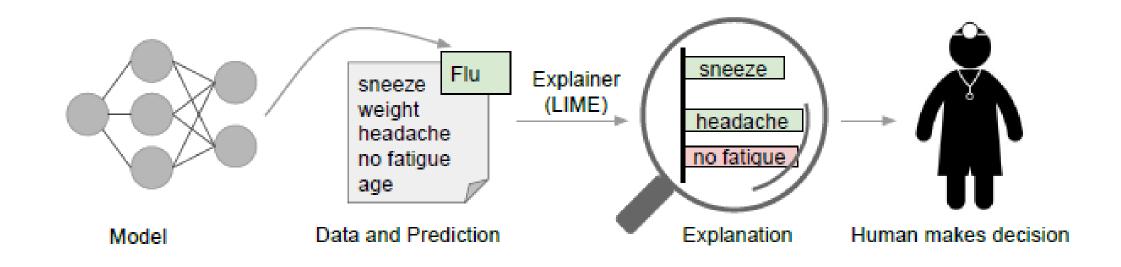
Help shed light on *big picture biases* affecting larger subgroups

Help vet if the model, at a high level, is suitable for deployment

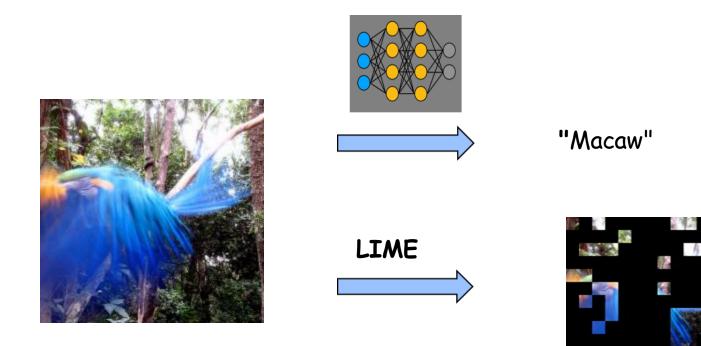
Feature Attribution Methods

- Goal: Explain why the model made a particular prediction on a specific input
- Solution: Select/rank a subset of input features that contributed the most to model prediction
- Today:
 - $\,\circ\,$ How to formalize the problem
 - LIME algorithm: "Why should I trust you?" Explaining the predictions of any classifier (Ribeiro et al, KDD 2016)

LIME use-case illustrated



LIME Explanation for Image Classification



Classifier: Vision Transformer (Dosovitskiy, 2020) Dataset: ImageNet

Formalizing Feature Attribution Problem

- Given an input x and model f, select a subset (of specified size) of features of x that contribute the most to the prediction f(x)
- First attempt: if x ∈ R^d output should be d-dim vector over {0,1} specifying for each feature whether it is selected or not x
- Problem: Features in representation of x may not be interpretable to humans
 e.g. an input image is a tensor with three color channels per pixel

Formalizing Feature Attribution Problem

- If input x is d-dimensional, first define a simpler d'-dimensional "interpretable" representation
- Output of explanation method g, for given input x and model f, is d'-dim vector over {0,1} that selects a subset of interpretable features (possibly with weights)

Desired properties

Model agnostic: Method works for any model f
 Interpretability: Minimize complexity of g (e.g. select at most 25% features)
 Local fidelity: g approximates f well in the vicinity of x

Note: to formalize local fidelity, need a way to map x and g to d-dim vectors

Interpretable Features: From Pixels to Superpixels

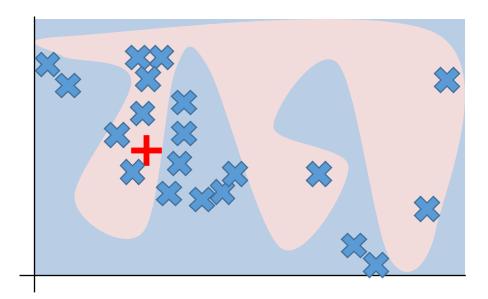
- Superpixel is a technique to segment an image into regions by considering similarity according to perceptual features
- Segmentation is dependent on specific input
- Well-known algorithms based on graph partitioning and clustering

Interpretable Features: From Pixels to Superpixels

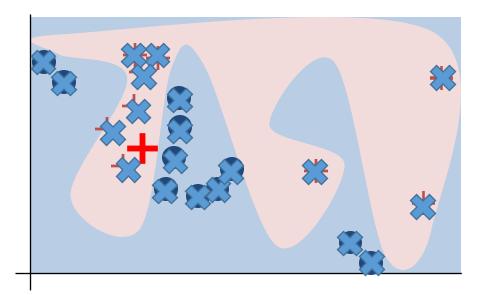
Original image

LIME: Local Interpretable Model-agnostic Explanations

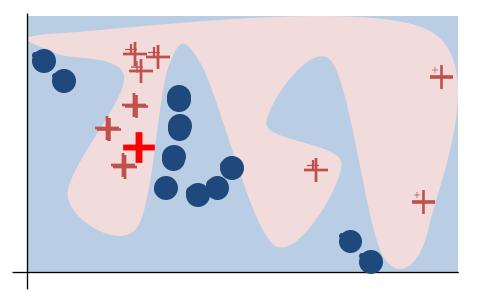
1. Sample points around x



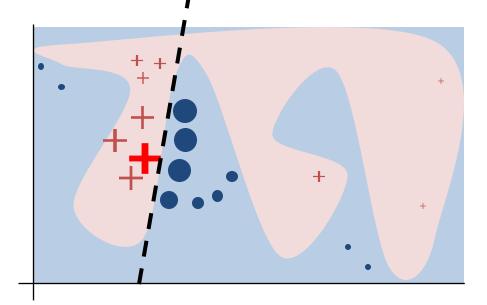
- 1. Sample points around x
- 2. Use model to predict labels for each sample



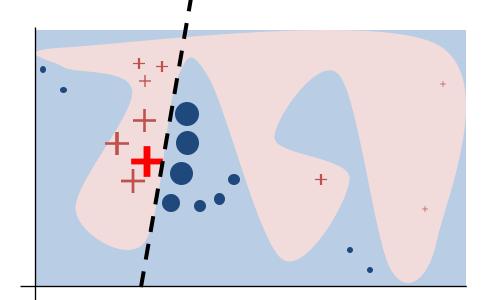
- 1. Sample points around x
- 2. Use model to predict labels for each sample
- 3. Weigh samples according to distance to x



- 1. Sample points around x
- 2. Use model to predict labels for each sample
- 3. Weigh samples according to distance to x
- 4. Learn simple linear model on weighted samples



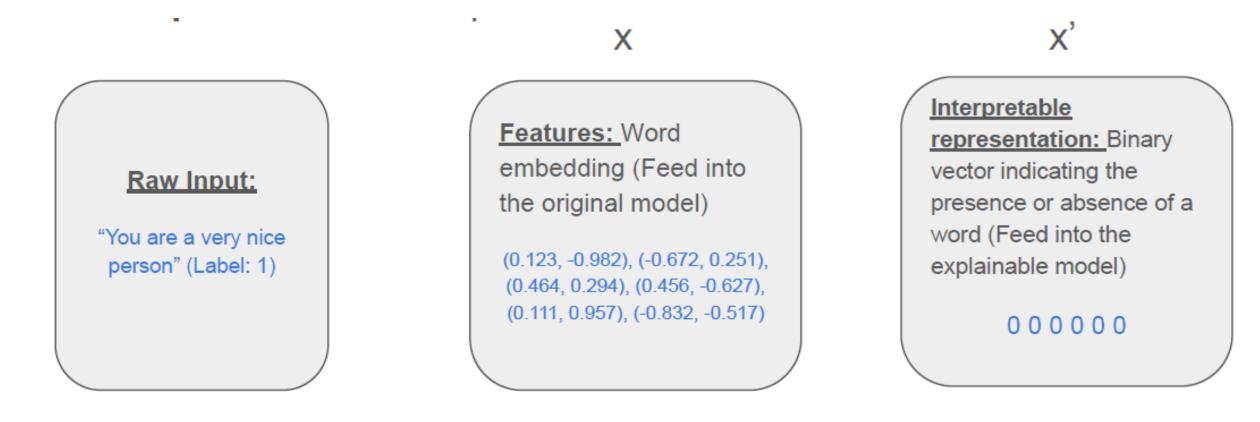
- 1. Sample points around x
- 2. Use model to predict labels for each sample
- 3. Weigh samples according to distance to x
- 4. Learn simple linear model on weighted samples
- 5. Use simple linear model to explain



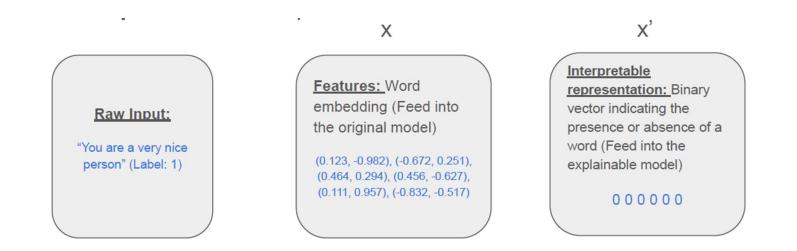
LIME in more detail

- Consider a (black-box) classifier that labels an input sentence as good (label 1) or bad (label 0)
- Suppose it labels "You are a very nice person" as 1
- We want as an explanation which 3 words contributed the most to this prediction

Interpretable Data Representation



Sampling



- N: number of samples, say, 5
- K: length of explanation, say, 3
- Sample instances around x' by drawing nonzero elements uniformly at random, say, ~U(2,4)

Sampling

Interpretable representation: Binary vector indicating the presence or absence of a word

000000

- N: number of samples, 5
- K: length of explanation, 3
- Sample instances around x' uniformly at random ~ U(2,4)

Perturbed sample: Interpretable binary vector indicating the presence or absence of a word (Feed into the explainable model) z1':011000 z2':001110 z3': 100100 z4': 111100

z5': 0 1 0 1 1 0

Analyzing Samples

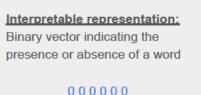
Raw Input:

"You are a very nice person" (Label: 1) Interpretable representation: Binary vector indicating the presence or absence of a word

- For each z', z is the corresponding input
 - z'= 111100 maps to word vector of "You are a very"
- For each z, compute f(z)
- $\pi_x(z)$: Proximity measure between an instance z to x

Perturbed sample: Interpretable binary vector indicating the presence or absence of a word (Feed into the explainable model) z1':011000 z2': 0 0 1 1 1 0 z3': 100100 z4': 111100 z5': 010110

Analyzing Samples



- For each z', z is the corresponding input
- For each z, compute f(z)
- $\pi_x(z)$: Proximity of z to x

Perturbed sample: Interpretable binary vector indicating the presence or absence of a word (Feed into the explainable	
model)	Z ← {}
z1': 0 1 1 0 0 0	$\textbf{Z} \leftarrow \textbf{Z} ~\textbf{U} ~(\textbf{z1'}, \textbf{f}(\textbf{z1}), \textbf{\pix}(\textbf{z1})).$
z2': 0 0 1 1 1 0	$\textbf{Z} \leftarrow \textbf{Z} ~\textbf{U} ~(\textbf{z2'}, \textbf{f(z2)}, \textbf{\pix(z2)}).$
z3': 1 0 0 1 0 0	$\textbf{Z} \leftarrow \textbf{Z} ~\textbf{U} ~\textbf{(z3', f(z3), \pi x(z3))}.$
z4': 1 1 1 1 0 0	$Z \leftarrow Z U$ (z4', f(z4), $\pi x(z4)$).
z5': 0 1 0 1 1 0	$Z \leftarrow Z U$ (z5', f(z5), $\pi x(z5)$).

Finding Explanable Model

Explainable model g:

Choose linear models here

Dataset:

Z (contains data & label & additional distance metric)

Objective function:

 $\Omega(g)$: A measure of complexity (as opposed to interpretability)

$$\mathcal{L}(f,g,\pi_x) = \sum_{z,z'\in\mathcal{Z}} \pi_x(z) \left(f(z) - g(z')
ight)^2$$

Explanation:

 $\xi(x) = \underset{g \in G}{\operatorname{argmin}} \quad \mathcal{L}(f, g, \pi_x) + \Omega(g)$ (Corresponding weight for each feature)

Raw Input: "You are a very nice person"	Perturbed sample: Interpretable binary vector indicating the presence or absence of a word (Feed into the explainable model)	Z ← {}
(Label: 1)	z1': 0 1 1 0 0 0	$Z \leftarrow Z \cup (z1', f(z1), \pi x(z1)).$
	z2': 0 0 1 1 1 0	$Z \leftarrow Z \cup (z2', f(z2), \pi x(z2)).$
	z3: 1 0 0 1 0 0	$Z \leftarrow Z \cup (z3', f(z3), \pi x(z3)).$
	z4': 1 1 1 1 0 0	$Z \leftarrow Z \cup (z4', f(z4), \pi x(z4)).$
	≥5': 0 1 0 1 1 0	Z ← Z U (z5', f(z5), πx(z5)).

Finding Explanable Model

Explainable model q:

Choose linear models here

Dataset:

Z (contains data & label & additional distance metric)

Objective function:

Local fidelity Interpretability min $\mathcal{L}(f, g, \pi_x) + \Omega(g)$

 $\Omega(g)$: A measure of complexity (as opposed to interpretability)

$$\mathcal{L}(f,g,\pi_x) = \sum_{z,z'\in\mathcal{Z}} \pi_x(z) \left(f(z) - g(z')
ight)^2$$

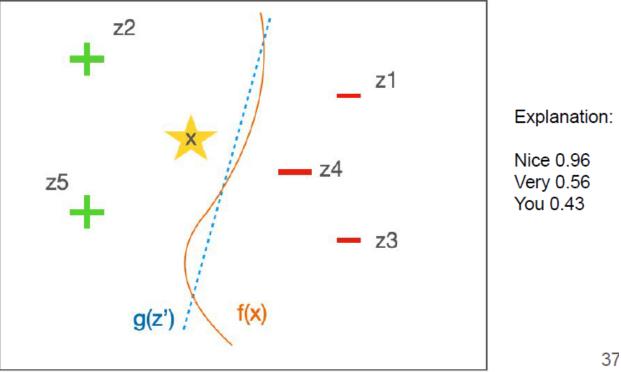
Explanation:

$\xi(x) = \operatorname{argmin} \ \mathcal{L}(f, g, \pi_x) + \Omega(g)$ (Corresponding weight for each feature)

For the toy example:

Choose K-Lasso to limit # of explanations (K=3), i.e. we can only choose up to 3 words here for explanation

Explainable model g vs original model f



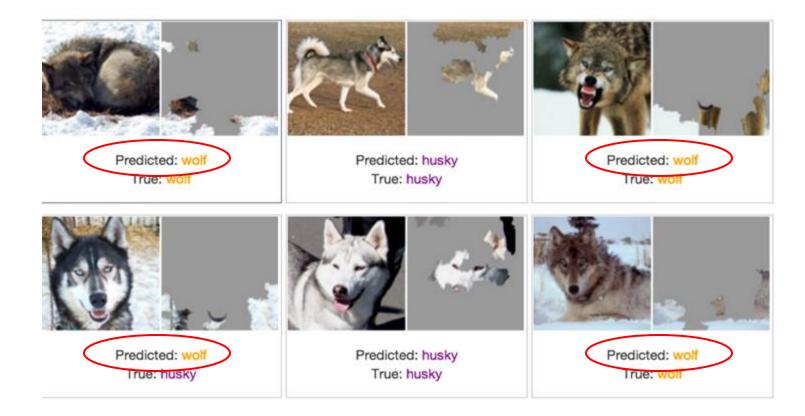
Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f, Number of samples N **Require:** Instance x, and its interpretable version x' **Require:** Similarity kernel π_x , Length of explanation K $\mathcal{Z} \leftarrow \{\}$ for $i \in \{1, 2, 3, ..., N\}$ do $z'_i \leftarrow sample_around(x')$ $\mathcal{Z} \leftarrow \mathcal{Z} \cup \langle z'_i, f(z_i), \pi_x(z_i) \rangle$ end for $w \leftarrow \text{K-Lasso}(\mathcal{Z}, K) \triangleright \text{ with } z'_i \text{ as features, } f(z) \text{ as target}$ return w

Image Classifier: Wolf vs Husky

Only 1 mistake!

Check Explanations with LIME



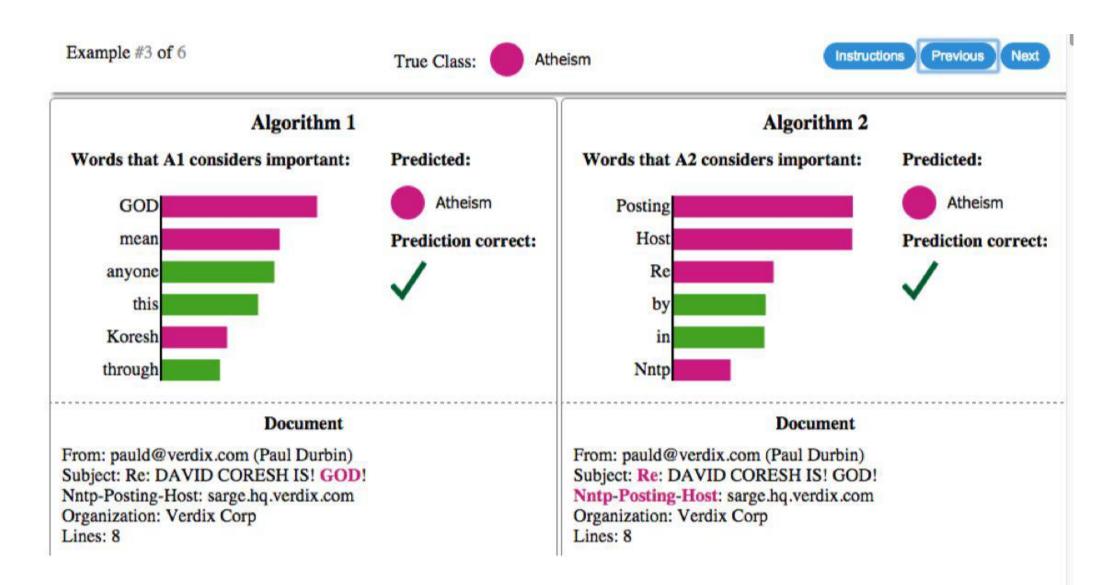
We've built a great snow detector...

Explanations with LIME

(a) Original Image (b) Explaining *Electric guitar* (c) Explaining *Acoustic guitar* (d) Explaining *Labrador*

Figure 4: Explaining an image classification prediction made by Google's Inception neural network. The top 3 classes predicted are "Electric Guitar" (p = 0.32), "Acoustic guitar" (p = 0.24) and "Labrador" (p = 0.21)

LIME Explanations can help choose between models



Agenda

Today's recap:

- \circ Introduction
- $\,\circ\,$ Feature attribution problem
- $\,\circ\,$ LIME (Local Interpretable Model-agnostic Explanations) algorithm

• Coming up:

- \odot Next lecture: SHAP methods based on cooperative game theory
- Review of other feature attribution methods (Saliency Maps)
- \odot Formal guarantees for feature attribution methods
- \circ Counterfactuals
- \circ Rule synthesis
- Data attribution methods: Influence functions, Datamodels