Lecture 19: Explainability: SHAP

Trustworthy Machine Learning Spring 2024

1

Explainability

Recap:

- $\,\circ\,$ Introduction to explainable ML
- $\,\circ\,$ Feature attribution problem
- \circ LIME (Local Interpretable Model-agnostic Explanations) algorithm
- Today: SHAP methods based on cooperative game theory
- Coming up:
 - \circ Saliency maps
 - \odot Formal guarantees for feature attribution methods
 - Counterfactuals
 - \circ Rule synthesis
 - \odot Data attribution methods: Influence functions, Datamodels

Today's Agenda

- Feature Attribution Problem: Given an input x and model f, find a subset of (interpretable) features of x that contribute the most to prediction f(x)
- Today: Explanation method SHAP
 - $\,\circ\,$ Cooperative game theory and Shapley values
 - $\,\circ\,$ Application to feature attribution problem
 - $\odot\,$ Efficient algorithm to approximate computation
- Resources:
 - o Talk slides by Su-In Lee (U. Washington)
 - A unified approach to interpreting model predictions
 - Lundberg and Lee; NeurIPS 2017

Cooperative game notation

- Set of *players* $D = \{1, \dots, d\}$
- A *game* is given by specifying a value for every coalition $S \subseteq D$
- Mathematically represented by a characteristic function:

 $v: 2^D \mapsto \mathbb{R}$

• Grand coalition value v(D), null coalition $v(\emptyset)$, arbitrary coalition v(S)

Employees

Company

Key game theory questions

- Which players will participate vs. break off on their own?
- How to allocate credit among players?

Shapley value

- A technique for allocating credit to players in a cooperative game
- Famously derived from a set of *fairness axioms*

Lloyd Shapley

Won 2012 Nobel Memorial Prize in economics

Shapley value setup

- Let *G* denote the set of games on *d* players
- The Shapley value assigns a vector of credits to each game (in R^d, one credit per player)
- Mathematically, a function of the form

$$\phi : G \mapsto \mathbb{R}^d$$

• For a game v, Shapley values are $\phi_1(v), \dots, \phi_d(v)$

Shapley Value Example

- Players: owner o and n symmetric employees
- Coalition values:

v(S) = 0 if S doesn't include owner o and = (|S|-1)p if S includes owner o

- Grand coalition value: np
- Game theory question: How should profit np be shared ?

Shapley Value Example

- Players: owner o and n symmetric employees
- Coalition values:

v(S) = 0 if S doesn't include owner o and = (|S|-1)p if S includes owner o

- Grand coalition value: np
- Game theory question: How should profit np be shared ?
- Answer: Shapley values of each player give contribution of that player to total profit
- Owner's value = np/2, each employee's value = p/2

Another Example

- Players: owner o and n symmetric employees
- Coalition values:

v(S) = 0 if S doesn't include owner o and at least one employee, = p otherwise (i.e. the owner and at least one employee shows up)

- Grand coalition value: p
- Game theory question: How should profit p be shared ?

Fairness axioms

Consider a game v and credit allocations $\phi(v) = [\phi_1(v), \dots, \phi_d(v)]$. We want to satisfy the following properties:

- (Efficiency) The credits sum to the grand coalition's value, or $\sum_{i \in D} \phi_i(v) = v(D) v(\emptyset)$
- (Symmetry) If two players (i, j) are interchangeable, or $v(S \cup \{i\}) = v(S \cup \{j\})$ for all $S \subseteq D$, then $\phi_i(v) = \phi_j(v)$
- (Null player) If a player contributes no value, or $v(S \cup \{i\}) = v(S)$ for all $S \subseteq D$, then $\phi_i(v) = 0$
- (Linearity) The credits for linear combinations of games behave linearly, or $\phi(c_1v_1 + c_2v_2) = c_1\phi(v_1) + c_2\phi(v_2)$, where $c_1, c_2 \in \mathbb{R}$

Lloyd Shapley, "A value for n-person games" (1953)

©2022 Su-In Lee

Axiomatic uniqueness

- The Shapley value (SV) is the only function $\phi: G \mapsto \mathbb{R}^d$ to satisfy these properties
- Given by the following equation:

Interpretation

Intuitive meaning in terms of player orderings

- Given an ordering π, each player contributes when added to the preceding ones
- SV is the average contribution across all orderings

Example Shapley Value Calculation

- Players: owner o and n symmetric employees
- Coalition values:

v(S) = 0 if S doesn't include owner o and at least one employee,

= p otherwise (i.e. the owner and at least one employee shows up)

- Number of permutations = (n+1)!
- Permutations where owner's marginal contribution is 0
- Permutations where owner's marginal contribution is p = (n+1)! n!
- Owner's Shapley value = [(n+1)!-n!]p/(n+1)! = [n/(n+1)] p
- Each employee's Shapley value = [1/n(n+1)] p

Application to ML

- Consider features as players
- Consider model behavior as profit
 - E.g., the prediction, the loss, etc.
- Then, use Shapley values to quantify each feature's impact

- SHAP = Shapley Additive exPlanations
- Popularized use of Shapley values in ML
 - Also used in earlier work by Lipovetsky & Conklin (2001), Strumbelj et al. (2009), Datta et al. (2016)
- SHAP uses Shapley values to explain individual predictions

Lundberg & Lee, "A unified approach to interpreting model predictions" (2017)

SHAP as a removal-based explanation

Recall the three choices for removal-based explanations:

- **1. Feature removal:** $F(x_S) = \mathbb{E}_{x_{\overline{S}}|x_S}[f(x_S, x_{\overline{S}})]$
- **2.** Model behavior: $v(S) = F_y(x_S)$
- **3.** Summary: $a_i = \phi_i(v)$

Consider this more closely in the next slide

Notation clarification

- What is $\mathbb{E}_{x_{\overline{S}}|x_S}[f(x_S, x_{\overline{S}})]$?
- The expected value of the model output when conditioned on the feature values x_s

$$F(x_{S}) = \mathbb{E}_{x_{\overline{S}}|x_{S}}[f(x_{S}, x_{\overline{S}})]$$

$$= \mathbb{E}[f(x_{S}, x_{\overline{S}}) \mid x_{S}]$$

$$= \sum_{x_{\overline{S}}} f(x_{S}, x_{\overline{S}}) \cdot p(x_{\overline{S}} \mid x_{S})$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Summation over all Model output probability of $x_{\overline{S}}$ conditioned on x_{S}

Notation clarification (cont.)

Recall Bayes rule for conditional probability:

$$p(x_{\overline{S}} | x_{S}) = \frac{p(x_{S}, x_{\overline{S}})}{p(x_{S})} \qquad \qquad Probability of x_{\overline{S}} and x_{S} occurring together$$

$$probability of x_{S}$$
occurring on its own

Notation clarification (cont.)

- Intuition: in SHAP, we want to evaluate the model given a subset of features as follows
 - Fix the example to be explained x and the set of available features x_s
 - Withhold the remaining feature values $x_{\bar{S}}$
 - To do so, consider *all possible values* for $x_{\bar{s}}$, and make the corresponding predictions $f(x_s, x_{\bar{s}})$
 - Then average these predictions, weighting them according to the conditional probability $p(x_{\bar{s}} | x_s)$

SHAP summary

 SHAP analyzes individual predictions by setting up the following cooperative game:

$$v(S) = F_y(x_S) = \mathbb{E}_{x_{\overline{S}}|x_S}[f(x_S, x_{\overline{S}})]$$

 Then determines feature attributions using the Shapley value:

$$a_i = \phi_i(v)$$

Practical alternative

- The conditional distribution is hard to estimate
- Instead, we can marginalize out features using their marginal distribution

$$\mathbb{E}_{x_{\overline{S}}|x_{S}}[f(x_{S}, x_{\overline{S}})] \approx \mathbb{E}_{x_{\overline{S}}}[f(x_{S}, x_{\overline{S}})]$$

$$\uparrow$$
Drop conditioning

Remark

 In general, the conditional and marginal distributions are not equal

 $\mathrm{p}(x_{\bar{S}} \mid x_S) \neq \mathrm{p}(x_{\bar{S}})$

- Assuming they're identical = assuming feature independence
- Can result in unlikely, *off-manifold* feature combinations

Marginal distribution

- Easy to implement with Monte Carlo estimation
- Choose *m* datapoints $x^1, ..., x^m$ from dataset
- Approximate as follows:

$$\mathbb{E}_{x_{\overline{S}}}[f(x_S, x_{\overline{S}})] = \sum_{x_{\overline{S}}} p(x_{\overline{S}})f(x_S, x_{\overline{S}}) \approx \frac{1}{m} \sum_{i=1}^m f(x_S, x_{\overline{S}}^i)$$

Remark: permutation tests do this, but using a single sample

Setup

- Assume we have a game $v: 2^D \mapsto \mathbb{R}$
- We want to calculate Shapley values
- How straightforward is this?

Computational complexity

The equation for Shapley values is:

$$\phi_i(v) = \sum_{S \subseteq D \setminus i} \frac{|S|! (d - 1 - |S|)!}{d!} [v(S \cup i) - v(S)]$$

Summation across 2^{d-1} subsets

- Exponential running time $O(2^d)$
- Intractable for even moderate d (e.g., d > 20)

What can we do?

- We cannot calculate Shapley values exactly when d is large
- Instead, we can approximate them
- We'll discuss the following approaches:
 - Permutation-based estimation
 - Regression-based estimation
 - Others (briefly)

Permutation view

- Recall the Shapley value's ordering interpretation
- The value $\phi_i(v)$ is player *i*'s average contribution across all player orderings

- 1. Enumerate all orderings
- 2. Find player contribution
- 3. Average

$$\begin{array}{c} \bullet & A & B & C \\ \bullet & A & C & B \\ \bullet & B & A & C \\ \bullet & B & \bullet & A \\ \bullet & B & \bullet & A \\ \bullet & \bullet & \bullet & A \\ \bullet & \bullet & \bullet & A \\ \bullet & \bullet & \bullet & A \end{array}$$
 Mean = $\phi_A(v)$

Permutation-based estimation

- Problem: d! orderings is too many for large values of d
- **Idea:** sample a moderate number of orderings
 - Calculate average contributions across those orderings

Permutation-based estimation (cont.)

Algorithm 1: Permutation estimation **Input:** Game v, iterations m > 0**Output:** Shapley value estimates $\hat{\phi}_1(v), \ldots, \hat{\phi}_d(v)$ initialize $\hat{\phi}_i(v) = 0$ for $i = 1, \dots, d$ for j = 1 to m do sample permutation $\pi \in \Pi$ uniformly at random $S = \emptyset$ $prev = v(\emptyset)$ for k = 1 to d do $i=\pi(k)$ // Get next player in ordering $S = S \cup \{i\}$ $\mathtt{curr} = v(S)$ $\hat{\phi}_i(v) = \hat{\phi}_i(v) + \left(ext{curr} - ext{prev}
ight)$ // Update estimate prev = currend end set $\hat{\phi}_i(v) = rac{\hat{\phi}_i(v)}{m}$ for $i=1,\ldots,d$ // Normalize return $\hat{\phi}_1(v),\ldots,\hat{\phi}_d(v)$

Regression view

- An alternative Shapley value characterization
- Perhaps surprisingly, SVs are the solution to a weighted least squares problem

Regression view (cont.)

- Consider a game $v: 2^D \mapsto \mathbb{R}$
- Consider a weighting function $\mu(S)$:

$$\mu(S) = \frac{d-1}{\binom{d}{|S|}|S|(d-|S|)}$$

Shapley values minimize the following objective:

$$\min_{\beta_0,\dots,\beta_d} \sum_{S \subseteq D} \mu(S) \left(\beta_0 + \sum_{i \in S} \beta_i - \nu(S) \right)^2 \leftarrow \text{Squared error}$$

$$\bigcap_{i \in S} \mu(S) \left(\beta_0 + \sum_{i \in S} \beta_i - \nu(S) \right)^2 \leftarrow \text{Squared error}$$

$$\bigoplus_{i \in S} \beta_i - \nu(S) = 0$$

Regression-based estimation

- Problem: WLS problems are easy to solve, but 2^d terms is too many
- Idea: approximate WLS problem by sampling subsets according to $\mu(S)$
 - Incorporate weights $\mu(\emptyset) = \mu(D) = \infty$ as constraints, $\beta_0 = v(\emptyset)$ and $\sum_{i \in D} \beta_i = v(D) - v(\emptyset)$
 - Solve the constrained least squares problem

Regression-based estimation (cont.)

- Omitting a detailed algorithm here
 - Constraints make things a bit complicated
 - Method known as KernelSHAP, introduced by Lundberg & Lee (2017)
 - See paper below for relatively simple exposition

Covert & Lee, "Improving KernelSHAP: Practical Shapley value estimation via linear regression" (2021)

Conclusion

- Shapley values are an elegant idea from game theory
- Now used by multiple XAI methods, most famously by SHAP for individual predictions
- Leads to computational challenges, so we use approximations in practice
 - Simulate feature removal
 - Approximate Shapley values

Explainability

Last lecture:

- $\,\circ\,$ Introduction to explainable ML
- $\,\circ\,$ Feature attribution problem
- \circ LIME (Local Interpretable Model-agnostic Explanations) algorithm
- Today: SHAP methods based on cooperative game theory
- Coming up:
 - \circ Saliency maps
 - \odot Formal guarantees for feature attribution methods
 - \circ Counterfactuals
 - \circ Rule synthesis
 - \odot Data attribution methods: Influence functions, Datamodels