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Explainability

 Recap: 
o Introduction to explainable ML
o Feature attribution problem 
o LIME (Local Interpretable Model-agnostic Explanations) algorithm

 Today: SHAP methods based on cooperative game theory
 Coming up: 

o Saliency maps
o Formal guarantees for feature attribution methods
oCounterfactuals
oRule synthesis
oData attribution methods: Influence functions, Datamodels
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Today’s Agenda

 Feature Attribution Problem: Given an input x and model f, find a subset of 
(interpretable) features of x that contribute the most to prediction f(x)

 Today: Explanation method SHAP
o Cooperative game theory and Shapley values
o Application to feature attribution problem 
o Efficient algorithm to approximate computation

 Resources: 
o Talk slides  by Su-In Lee (U. Washington)
o A unified approach to interpreting model predictions
  Lundberg and Lee; NeurIPS 2017
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Cooperative game notation

§ Set of players 𝐷 = 1,… , 𝑑
§ A game is given by specifying a value for every 

coalition 𝑆 ⊆ 𝐷
§ Mathematically represented by a characteristic 

function:

𝑣: 2! ↦ ℝ

§ Grand coalition value 𝑣 𝐷 , null coalition 𝑣 ∅ , 
arbitrary coalition 𝑣 𝑆
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Company example
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Company example
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Players 𝑆 ⊆ 𝐷 Value 𝑣 𝑆
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Key game theory questions

§ Which players will participate vs. break off on 
their own?

§ How to allocate credit among players?
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Shapley value

§ A technique for allocating credit to players in a 
cooperative game

§ Famously derived from a set of fairness axioms
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Lloyd Shapley

§ Won 2012 Nobel Memorial Prize in economics

16



©2022 Su-In Lee

Shapley value setup

§ Let 𝐺 denote the set of games on 𝑑 players
§ The Shapley value assigns a vector of credits to 

each game (in ℝ", one credit per player)
§ Mathematically, a function of the form

𝜙: 𝐺 ↦ ℝ"

§ For a game 𝑣, Shapley values are 𝜙# 𝑣 ,… , 𝜙" 𝑣
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Shapley Value Example

 Players: owner o and n symmetric employees

 Coalition values: 
 v(S) = 0 if S doesn’t include owner o and = (|S|-1)p if S includes owner o

 Grand coalition value: np

 Game theory question: How should profit np be shared ?
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Shapley Value Example

 Players: owner o and n symmetric employees
 Coalition values: 
 v(S) = 0 if S doesn’t include owner o and = (|S|-1)p if S includes owner o
 Grand coalition value: np
 Game theory question: How should profit np be shared ?

 Answer: Shapley values of each player give contribution of that player to total profit
 Owner’s value = np/2, each employee’s value = p/2
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Another Example

 Players: owner o and n symmetric employees

 Coalition values: 
 v(S) = 0 if S doesn’t include owner o and at least one employee,
         = p otherwise (i.e. the owner and at least one employee shows up)

 Grand coalition value: p

 Game theory question: How should profit p be shared ?
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Fairness axioms

Consider a game 𝑣 and credit allocations 𝜙 𝑣 = 𝜙! 𝑣 ,… , 𝜙" 𝑣 . We 
want to satisfy the following properties:

§ (Efficiency) The credits sum to the grand coalition’s value, or 
∑#∈% 𝜙# 𝑣 = 𝑣 𝐷 − 𝑣 ∅

§ (Symmetry) If two players 𝑖, 𝑗 are interchangeable, or 𝑣 𝑆 ∪ 𝑖 =
𝑣 𝑆 ∪ 𝑗 for all 𝑆 ⊆ 𝐷, then 𝜙# 𝑣 = 𝜙& 𝑣

§ (Null player) If a player contributes no value, or 𝑣 𝑆 ∪ 𝑖 = 𝑣 𝑆 for all 
𝑆 ⊆ 𝐷, then 𝜙# 𝑣 = 0

§ (Linearity) The credits for linear combinations of games behave linearly, 
or 𝜙 𝑐!𝑣! + 𝑐'𝑣' = 𝑐!𝜙 𝑣! + 𝑐'𝜙 𝑣' , where 𝑐!, 𝑐' ∈ ℝ

18

Lloyd Shapley, “A value for n-person games” (1953)
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Axiomatic uniqueness

§ The Shapley value (SV) is the only function 
𝜙: 𝐺 ↦ ℝ" to satisfy these properties

§ Given by the following equation:

𝜙% 𝑣 = $
&⊆'\)

𝑆 ! 𝑑 − 1 − 𝑆 !
𝑑!

𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆

19

Contribution from 
adding player 𝑖Weighted 

average across 
𝑆 ⊆ 𝐷 ∖ 𝑖
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Interpretation

§ Intuitive meaning in terms of player orderings
§ Given an ordering 𝜋, each player contributes when 

added to the preceding ones
§ SV is the average contribution across all orderings

𝜙# 𝑣 =
1
𝑑!7

(∈)

𝑣 𝑗 𝜋*! 𝑗 ≤ 𝜋*! 𝑖 − 𝑣 𝑗 𝜋*! 𝑗 < 𝜋*! 𝑖

20

Players up to and 
including 𝑖

Players preceding 𝑖
Average across all orderings



Example Shapley Value Calculation

 Players: owner o and n symmetric employees
 Coalition values: 
 v(S) = 0 if S doesn’t include owner o and at least one employee,
         = p otherwise (i.e. the owner and at least one employee shows up)

 Number of permutations = (n+1)!
 Permutations where owner’s marginal contribution is 0
 Permutations where owner’s marginal contribution is p = (n+1)! – n!
 Owner’s Shapley value = [(n+1)!-n!]p/(n+1)! = [n/(n+1)] p
 Each employee’s Shapley value = [1/n(n+1)] p
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Application to ML

§ Consider features as players
§ Consider model behavior as profit

§ E.g., the prediction, the loss, etc.

§ Then, use Shapley values to quantify each 
feature’s impact
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SHAP

§ SHAP = SHapley Additive exPlanations

§ Popularized use of Shapley values in ML
§ Also used in earlier work by Lipovetsky & Conklin 

(2001), Strumbelj et al. (2009), Datta et al. (2016)

§ SHAP uses Shapley values to explain individual 
predictions

23

Lundberg & Lee, “A unified approach to interpreting model predictions” (2017)
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ML model
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SHAP as a removal-based 
explanation

Recall the three choices for removal-based 
explanations:

1. Feature removal: 𝐹 𝑥$ = 𝔼%$%∣%% 𝑓 𝑥$, 𝑥$̅
2. Model behavior: 𝑣 𝑆 = 𝐹( 𝑥$
3. Summary: 𝑎) = 𝜙) 𝑣

25

Shapley value

Consider this more closely 
in the next slide
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Notation clarification

§ What is 𝔼%$%∣%% 𝑓 𝑥$, 𝑥$̅ ?
§ The expected value of the model output when 

conditioned on the feature values 𝑥$

𝐹 𝑥$ = 𝔼%$%∣%% 𝑓 𝑥$, 𝑥$̅
= 𝔼[𝑓 𝑥$, 𝑥$̅ ∣ 𝑥*]
= ∑%$% 𝑓 𝑥$, 𝑥$̅ ⋅ p(𝑥$̅ ∣ 𝑥$)
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Probability of 𝑥 ̅"
conditioned on 𝑥"

Model output 
given 𝑥 ̅"

Summation over all 
possible 𝑥 ̅" values
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Notation clarification (cont.)

§ Recall Bayes rule for conditional probability:

p 𝑥$̅ 𝑥$ = + %% , %$%
+ %%

27

Probability of 𝑥 ̅" and 
𝑥" occurring together

Probability of 𝑥"
occurring on its own
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Notation clarification (cont.)

§ Intuition: in SHAP, we want to evaluate the 
model given a subset of features as follows
§ Fix the example to be explained 𝑥 and the set of 

available features 𝑥&
§ Withhold the remaining feature values 𝑥 ̅&

§ To do so, consider all possible values for 𝑥 ̅&, and make 
the corresponding predictions 𝑓 𝑥&, 𝑥 ̅&

§ Then average these predictions, weighting them 
according to the conditional probability p 𝑥 ̅& 𝑥&
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SHAP summary

§ SHAP analyzes individual predictions by setting 
up the following cooperative game:

𝑣 𝑆 = 𝐹( 𝑥$ = 𝔼%$%∣%% 𝑓 𝑥$, 𝑥$̅

§ Then determines feature attributions using the 
Shapley value:

𝑎) = 𝜙) 𝑣
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Practical alternative

§ The conditional distribution is hard to estimate
§ Instead, we can marginalize out features using 

their marginal distribution

𝔼%$%∣%% 𝑓 𝑥$, 𝑥$̅ ≈ 𝔼%$% 𝑓 𝑥$, 𝑥$̅

36

Drop conditioning
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Remark

§ In general, the conditional and marginal 
distributions are not equal

p(𝑥$̅ ∣ 𝑥$) ≠ p 𝑥$̅

§ Assuming they’re identical = assuming feature 
independence

§ Can result in unlikely, off-manifold feature 
combinations
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Marginal distribution

§ Easy to implement with Monte Carlo estimation
§ Choose 𝑚 datapoints 𝑥#, … , 𝑥- from dataset
§ Approximate as follows:

𝔼(#$ 𝑓 𝑥&, 𝑥 ̅& =(
(#$

p 𝑥 ̅& 𝑓(𝑥&, 𝑥 ̅&) ≈
1
𝑚(

)*+

,

𝑓(𝑥&, 𝑥 ̅&
))

42

Remark: permutation tests do this, 
but using a single sample
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Setup

§ Assume we have a game 𝑣: 2! ↦ ℝ
§ We want to calculate Shapley values
§ How straightforward is this?
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Computational complexity

§ The equation for Shapley values is:

𝜙% 𝑣 = $
&⊆'\)

𝑆 ! 𝑑 − 1 − 𝑆 !
𝑑!

𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆

§ Exponential running time 𝒪 2"

§ Intractable for even moderate 𝑑 (e.g., 𝑑 > 20)

48

Summation across 2%&' subsets
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What can we do?

§ We cannot calculate Shapley values exactly 
when 𝑑 is large

§ Instead, we can approximate them
§ We’ll discuss the following approaches:

§ Permutation-based estimation
§ Regression-based estimation
§ Others (briefly)
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Permutation view

§ Recall the Shapley value’s ordering 
interpretation

§ The value 𝜙) 𝑣 is player 𝑖’s average 
contribution across all player orderings

50

A B C
A    B    C
A    C    B
B    A    C
B    C    A
C    A    B
C    B    A

1. Enumerate all orderings
2. Find player contribution
3. Average

Mean = 𝜙+(𝑣)
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Permutation-based 
estimation

§ Problem: 𝑑! orderings is too many for large 
values of 𝑑

§ Idea: sample a moderate number of orderings
§ Calculate average contributions across those 

orderings
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Permutation-based 
estimation (cont.)
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Regression view

§ An alternative Shapley value characterization
§ Perhaps surprisingly, SVs are the solution to a 

weighted least squares problem
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Regression view (cont.)

§ Consider a game 𝑣: 2! ↦ ℝ
§ Consider a weighting function 𝜇 𝑆 :

𝜇 𝑆 =
𝑑 − 1

4
& 𝑆 𝑑 − 𝑆

§ Shapley values minimize the following objective:

min
5#,…5$

$
&⊆'

𝜇 𝑆 𝛽8 +$
%∈&

𝛽% − 𝑣 𝑆

:

54Additive approximation

Squared error

Weighted summation
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Regression-based estimation

§ Problem: WLS problems are easy to solve, but 
2" terms is too many

§ Idea: approximate WLS problem by sampling 
subsets according to 𝜇 𝑆
§ Incorporate weights 𝜇 ∅ = 𝜇 𝐷 = ∞ as constraints, 
𝛽- = 𝑣 ∅ and ∑)∈/ 𝛽) = 𝑣 𝐷 − 𝑣 ∅

§ Solve the constrained least squares problem
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Regression-based estimation 
(cont.)

§ Omitting a detailed algorithm here
§ Constraints make things a bit complicated
§ Method known as KernelSHAP, introduced by 

Lundberg & Lee (2017)
§ See paper below for relatively simple exposition

56

Covert & Lee, “Improving KernelSHAP: Practical Shapley value estimation via linear 
regression” (2021)
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Conclusion

§ Shapley values are an elegant idea from game 
theory

§ Now used by multiple XAI methods, most 
famously by SHAP for individual predictions

§ Leads to computational challenges, so we use 
approximations in practice
§ Simulate feature removal
§ Approximate Shapley values
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Explainability

 Last lecture: 
o Introduction to explainable ML
o Feature attribution problem 
o LIME (Local Interpretable Model-agnostic Explanations) algorithm

 Today: SHAP methods based on cooperative game theory
 Coming up: 

o Saliency maps
o Formal guarantees for feature attribution methods
oCounterfactuals
oRule synthesis
oData attribution methods: Influence functions, Datamodels
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