Lecture 2: Introduction

CIS 7000: Trustworthy Machine Learning
Spring 2024
Agenda

• **Neural networks**
 • PyTorch
 • CNNs, RNNs, and transformers
Pytorch

• Open source packages have helped democratize deep learning
Pytorch

Common parent class: nn.Module

Constructor: Defining layers of the network

```
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms

class Net(nn.Module):
    def __init__(self, in_features=10, num_classes=2, hidden_features=20):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.fc2 = nn.Linear(hidden_features, num_classes)

    def forward(self, x):
        x1 = self.fc1(x)
        x2 = F.relu(x1)
        x3 = self.fc2(x2)
        log_prob = F.log_softmax(x3, dim=1)
        return log_prob
```
Pytorch

• Open source packages have helped democratize deep learning

• Backpropagation implemented for all neural network architectures
 • Most modern libraries, including Tensorflow, Mxnet, Caffe, Pytorch, and Jax
 • Only need gradients of new layers

• **Basic Idea:** Provide model family as sequence of functions \([f_1, \ldots, f_m]\)
 • What about more general compositions?
 • **Solution:** Composition of functions can be represented as graphs!
Computation Graphs

• The tensor datatype represents a computation graph
 • Not just a numpy array!
 • Instead, performing the computation produces a numpy array

• Example:
 • Suppose x is tensor that evaluates to $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 • Suppose y is a tensor evaluates to $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$
 • Then, $x + y$ is a tensor that evaluates to $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$
Toy Implementation of Computation Graphs

class Constant(tensor):
 def __init__(self, val):
 self.val = val
 def backpropagate(self):
 ...

class Add(tensor):
 def __init__(self, t1, t2):
 self.t1 = t1
 self.t2 = t2
 self.val = self.t1.val + self.t2.val
 def backpropagate(self):
 ...

x = Constant(np.array([[[1, 0], [0, 1]]]))
y = Constant(np.array([[[1, 1], [1, 0]]]))
z = x + y # z has type Add
Toy Implementation of Computation Graphs

```python
class Constant(tensor):
    def __init__(self, val):
        self.val = val
    def backpropagate(self):
        ...

class Add(tensor):
    def __init__(self, t1, t2):
        self.t1 = t1
        self.t2 = t2
        self.val = self.t1.val + self.t2.val
    def backpropagate(self):
        ...

x = Constant(np.array([[1, 0], [0, 1]]))
y = Constant(np.array([[1, 1], [1, 0]]))
z = x + x + y  # Z has type Add
```

![Diagram](image)
Computation Graphs

• Layers are implemented as tensors
 • **Examples**: addition, multiplication, ReLU, sigmoid, softmax, matrix multiplication/linear layers, MSE, logistic NLL, concatenation, etc.
 • You can also implement your own by providing forward pass and derivatives

• Tensors can be composed together to form neural networks
Computation Graphs

• **Forward propagation:** Values are evaluated as they are constructed

• **Backpropagation:** Automatically compute derivative of scalar with respect to all parameters based on derivatives of layers
 - x.backwards()
 - Does not perform any gradient updates!
Computation Graphs

```python
def forward(self, x):
    x1 = self.fc1(x)
    x2 = F.relu(x1)
    x3 = self.fc2(x2)
    log_prob = F.log_softmax(x3, dim=1)
    return log_prob
```
Pytorch Training Loop

```python
def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, ((data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({}:0f)%]
                  tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
```

- **Looping over mini-batches**
- **Zero out all old gradients**
- **Runs forward pass model.forward(data)**
- **Loss computation**
- **Backpropagation**
- **Gradient step**
Pytorch Training Loop

```python
def main():
    torch.manual_seed(1)
    device = torch.device("cuda")
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('..\data', train=True, download=True,
        transform=transforms.Compose([transforms.ToTensor(),
                                      transforms.Normalize((0.1307,), (0.3081,))])
    ),
    batch_size=64, shuffle=True)

    model = Net().to(device)
    optimizer = optim.Adam(model.parameters(), lr=1e-4)
    scheduler = StepLR(optimizer, step_size=1, gamma=0.9)
    for epoch in range(1, 15):
        train(model, device, train_loader, optimizer, epoch)
        scheduler.step()
```

- **Load dataset**
- **Loop over epochs (full passes over data)**
- **Minibatch SGD for one epoch**
- **Update base learning rate**
Pytorch Model

• To use your model (once it has been trained):

\[
\text{label} = \text{model}(\text{input})
\]
Agenda

• Neural networks
 • PyTorch
 • CNNs, RNNs, and transformers
Images as 2D Arrays

• Grayscale image is a 2D array of pixel values

• Color images are 3D array
 • 3rd dimension is color (e.g., RGB)
 • Called “channels”

Source: S. Narasimhan, S. Lazebnik
Structure in Images

• Use layers that capture structure

Convolution layers
(Capture equivariance)

Pooling layers
(Capture invariance)

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png
Convolution Filters

graphic credit: S. Lazebnik
Convolution Filters

\[
\text{output}[0,0] = \sum_{\tau=0}^{k-1} \sum_{\gamma=0}^{k-1} \text{filter}[au, \gamma] \cdot \text{image}[0 + \tau, 0 + \gamma]
\]
Convolution Filters

output\[0,1\] = \sum_{\tau=0}^{k-1} \sum_{\gamma=0}^{k-1} \text{filter}[\tau, \gamma] \cdot \text{image}[0 + \tau, 1 + \gamma]

graphic credit: S. Lazebnik
Convolution Filters

\[
\text{output}[0,2] = \sum_{\tau=0}^{k-1} \sum_{\gamma=0}^{k-1} \text{filter}[\tau, \gamma] \cdot \text{image}[0 + \tau, 2 + \gamma]
\]

graphic credit: S. Lazebnik
Convolution Filters

output\[i, j\] = \sum_{\tau=0}^{k-1} \sum_{\gamma=0}^{k-1} \text{filter}[\tau, \gamma] \cdot \text{image}[i + \tau, j + \gamma]
Convolution Filters

\[
\text{output}[i, j] = \sum_{\tau=0}^{k-1} \sum_{\gamma=0}^{k-1} \text{filter}[\tau, \gamma] \cdot \text{image}[i + \tau, j + \gamma]
\]
Convolution Filters

\[
output[i,j] = \sum_{\tau=0}^{k-1} \sum_{\gamma=0}^{k-1} \text{filter}[\tau, \gamma] \cdot \text{image}[i + \tau, j + \gamma]
\]
2D Convolution Filters

• **Given:**
 • A 2D input x
 • A 2D $h \times w$ kernel k

• The 2D convolution is:

$$y[s, t] = \sum_{\tau=0}^{h-1} \sum_{\gamma=0}^{w-1} k[\tau, \gamma] \cdot x[s + \tau, t + \gamma]$$
2D Convolution Filters

![Convolution Filters Diagram]
2D Convolution Filters

Example Edge Detection Kernels

Result of Convolution with Horizontal Kernel

https://aishack.in/tutorials/image-convolution-examples/
Convolution Layer Parameters

- **Stride**: How many pixels to skip (if any)
 - **Default**: Stride of 1 (no skipping)

![Diagram showing convolution process with filter, input, and output dimensions](https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7)
Convolution Layer Parameters

- **Padding**: Add zeros to edges of image to capture ends
 - **Default**: No padding

<table>
<thead>
<tr>
<th>Image</th>
<th>Kernel</th>
<th>Feature map</th>
<th>5x5 Image</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Stride = 1, zero-padding = 1**
- **Stride = 2, zero-padding = 1**

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7
Convolution Layer Parameters

• **Summary**: Hyperparameters
 • Kernel size
 • Stride
 • Amount of zero-padding
 • Output channels

• Together, these determine the relationship between the input tensor shape and the output tensor shape

• Typically, also use a single bias term for each convolution filter
Convolution Layers

- Filter size,
- Stride

- # input channels
- # filters = #output (activation) maps

Image credit: A. Karpathy Slide credit: Jia-Bin Huang
Example

• Kernel size 3, stride 2, padding 1

• 3 input channels
 • Hence kernel size $3 \times 3 \times 3$

• 2 output channels
 • Hence 2 kernels

• Total # of parameters:
 • $(3 \times 3 \times 3 + 1) \times 2 = 56$

http://cs231n.github.io/convolutional-networks/
Pooling Layers
Pooling Layers

\[
\text{output}[0,0] = \max_{0 \leq \tau < k} \max_{0 \leq \gamma < k} \text{image}[0 + \tau, 0 + \gamma]
\]
Pooling Layers

\[
\text{output}[0,1] = \max_{0 \leq \tau < k} \max_{0 \leq \gamma < k} \text{image}[0 + \tau, 1 + \gamma]
\]
Pooling Layers

\[
\text{output}[0,2] = \max_{0 \leq \tau < k} \max_{0 \leq \gamma < k} \text{image}[0 + \tau, 2 + \gamma]
\]
Pooling Layers

\[
\text{output}[i,j] = \max_{0 \leq \tau < k} \max_{0 \leq \gamma < k} \text{image}[i + \tau, j + \gamma]
\]
Pooling Layers

• **Summary**: Hyperparameters
 • Kernel size
 • Stride (usually >1)
 • Amount of zero-padding
 • Pooling function (almost always “max”)

• Together, these determine the relationship between the input tensor shape and the output tensor shape

• **Note**: Unlike convolution, pooling operates on channels separately
 • Thus, n input channels $\rightarrow n$ output channels
Example Architecture: AlexNet

- **ImageNet dataset**
 - 1000 class image classification problem (e.g., grey fox, tabby cat, barber chair)
 - >1M image-label pairs gathered from internet and crowdsourced labels

- **AlexNet Architecture (Krizhevsky 2012)**
 - Historically important architecture
 - Image classification network (~60M parameters)
 - Trained using GPUs on ImageNet dataset
 - Huge improvement in performance compared to prior state-of-the-art
Example Architecture: AlexNet

Fully connected (i.e., linear) layers

- fc, 1000
- fc, 4096
- fc, 4096

Convolution (kernel size 11, stride 4, 96 output channels, no padding)

ReLU Activation

Pooling (kernel size 3, stride 2, no padding)

Local Response Normalization

Convolution (kernel size 5x5, stride 2, 256 output channels, no padding)

input

Output
Example Architecture: AlexNet
Evolution of Neural Networks

![Graph showing the evolution of neural networks with ImageNet Classification top-5 error (%).](Image)

- **ILSVRC'15**: ResNet, 3.57 layers
- **ILSVRC'14**: GoogleNet, 6.7 layers; VGG, 7.3 layers
- **ILSVRC'13**: 8 layers
- **ILSVRC'12**: AlexNet, 16.4 layers
- **ILSVRC'11**: Shallow
- **ILSVRC'10**: 28.2 layers

Source: MSRA slides at ILSVRC15
Evolution of Neural Networks

AlexNet, 8 layers
(ILSVRC 2012)
~60M params

VGG, 19 layers
(ILSVRC 2014)
~140M params

ResNet, 152 layers
(ILSVRC 2015)
Less computation in forward pass than VGGNet!
Back to 60M params

GoogleNet, 22 layers
(ILSVRC 2014)
~5M params

Source: MSRA slides at ILSVRC15
Agenda

• **Neural networks**
 • PyTorch
 • CNNs, RNNs, and transformers

• **Distribution shift robustness**
 • Basic examples and definitions
Recurrent Neural Networks

• Handle inputs/outputs that are **sequences**

• **Naïve strategy**
 • Pad inputs to fixed length and use feedforward network
 • **Ignores temporal structure**

• **Recurrent neural networks (RNNs):** Process input sequentially
Feedforward Neural Networks

\[x \xrightarrow{f_{w_1}} z^{(1)} \xrightarrow{g} z^{(2)} \xrightarrow{f_{w_2}} z^{(3)} \xrightarrow{g} z^{(4)} \xrightarrow{f_{\beta}} \hat{y} \]
Recurrent Neural Networks

\[z^{(1)} \xrightarrow{f_{W_2}} z^{(2)} \xrightarrow{f_{W_4}} z^{(3)} \xrightarrow{f_{W_6}} z^{(4)} \xrightarrow{f_{W_8}} z^{(5)} \xrightarrow{f_{\beta}} \hat{y} \]

\[x_1 \xrightarrow{f_{W_1}} x_2 \xrightarrow{f_{W_3}} x_3 \xrightarrow{f_{W_5}} x_4 \xrightarrow{f_{W_7}} x_5 \xrightarrow{f_{W_9}} \]

\[f(x) = f_{\beta}(z^{(5)}) \]
Recurrent Neural Networks

\[f_U(z^{(1)}) \]

\[f_U(z^{(2)}) \]

\[f_U(z^{(3)}) \]

\[f_U(z^{(4)}) \]

\[f_U(z^{(5)}) \]

\[f_\beta \]

\[\hat{y} \]
Recurrent Neural Networks

• Initialize $z^{(0)} = \vec{0}$

• Iteratively compute (for $t \in \{1, \ldots, T\}$):

 $$z^{(t)} = g(Wx_t + Uz^{(t-1)})$$

• Compute output:

 $$y = \beta^\top z^{(T)}$$
Sentiment Classification

$z^{(1)} \xrightarrow{f_U} z^{(2)} \xrightarrow{f_U} z^{(3)} \xrightarrow{f_U} z^{(4)} \xrightarrow{f_U} z^{(5)} \xrightarrow{f_\beta} 1$

f_w,

The Matrix will always delight.
Sentiment Classification

\[z^{(1)} \xrightarrow{f_U} z^{(2)} \xrightarrow{f_U} z^{(3)} \xrightarrow{f_U} z^{(4)} \xrightarrow{f_U} z^{(5)} \xrightarrow{f_\beta} 1 \]

- Embed (The)
- Embed (Matrix)
- Embed (will)
- Embed (always)
- Embed (delight)
Recurrent Neural Networks

• Initialize \(z^{(0)} = \vec{0}\)

• Iteratively compute (for \(t \in \{1, \ldots, T\}\)):

\[
z^{(t)} = g(W \text{ Embed}(x_t) + Uz^{(t-1)})
\]

• Compute output:

\[
y = \beta^T z^{(T)}
\]
Recurrent Neural Networks

- one to many: Image captioning
- many to one: Sentiment prediction
- many to many: Machine translation
- many to many: Video captioning

Fei-Fei Li, Justin Johnson, Serena Yeung
Example: Parts of Speech

- $f_v(Z^{(1)})$
- $f_v(Z^{(2)})$
- $f_v(Z^{(3)})$
- $f_v(Z^{(4)})$
- $f_v(Z^{(5)})$

Linear, softmax, or logistic

- f_w (The)
- f_w (Matrix)
- f_w (will)
- f_w (always)
- f_w (delight)
Training RNNs

• Backpropagation works as before
 • For shared parameters, we can show that the overall gradient is sum of gradient at each usage

• LSTM (“long short-term memory”) and GRU (“gated recurrent unit”) do clever things to better maintain hidden state
Training RNNs

\[
\begin{align*}
 z_1 &= g(Wx_1 + Uz_0) \\
 z_2 &= g(Wx_2 + Uz_1) \\
 z_3 &= g(Wx_3 + Uz_2)
\end{align*}
\]

\[
\frac{\partial L}{\partial U} = \frac{\partial L}{\partial z_3} \frac{\partial z_3}{\partial U} + \frac{\partial L}{\partial z_2} \frac{\partial z_2}{\partial z_1} \frac{\partial z_1}{\partial U}
\]

Local Contribution Historical Contribution
Stacked RNN
Bidirectional RNN
Stacked + Bidirectional RNN
Long Short Term Memory

- **Goal**: Replace some multiplicative relationships in hidden state with additive relationships
Agenda

• Neural networks
 • PyTorch
 • CNNs, RNNs, and transformers
Attention

• RNNs have trouble propagating information forwards

• **Solution:** Let RNN “pay attention” to small part of past sequence
Example: Machine Translation

Source sentence (input)

Encoder RNN

Target sentence (output)

Decoder RNN

les pauvres sont démunis

<START> the poor don’t have any money <END>

the poor don’t have any money
Example: Machine Translation

Encoding of the source sentence. This needs to capture all information about the source sentence. Information bottleneck!

Source sentence (input): les pauvres sont démunis

Target sentence (output): <START> the poor don’t have any money <END>
Attention

Encoder RNN → Attention scores → dot product

les pauvres sont démunis → <START>

Source sentence (input)
Attention

Encoder RNN

Attention scores

dot product

Decoder RNN

Source sentence (input)

les pauvres sont démunis <START>
Attention

Use the attention distribution to take a weighted sum of the encoder hidden states.

The attention output mostly contains information the hidden states that received high attention.
Attention

- Attention output
- Concatenate attention output with decoder hidden state, then use to compute \hat{y}_1 as before

Encoder RNN

Source sentence (input)

les pauvres sont démunis

$<\text{START}>$

Decoder RNN
Attention

Encoder RNN

Source sentence (input)

Decoder RNN

Attention scores

Attention distribution

Attention output
Attention

Encoder RNN

Source sentence (input)

les pauvres sont démunis

<START> the poor don’t have any

Decoder RNN

money

\(\hat{y}_6 \)
Attention

- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the attention scores e^t for this step:
 $$e^t = [s^T_t h_1, \ldots, s^T_t h_N] \in \mathbb{R}^N$$
- We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)
 $$\alpha^t = \text{softmax}(e^t) \in \mathbb{R}^N$$
- We use α^t to take a weighted sum of the encoder hidden states to get the attention output a_t
 $$a_t = \sum_{i=1}^{N} \alpha^t_i h_i \in \mathbb{R}^h$$
- Finally we concatenate the attention output a_t with the decoder hidden state s_t and proceed as in the non-attention seq2seq model
 $$[a_t; s_t] \in \mathbb{R}^{2h}$$
Transformers

• Composition of **self-attention layers**

• **Intuition**
 • Want sparse connection structure of CNNs, but with different structure
 • Can we **learn** the connection structure?
Self-Attention Layer

• Self-attention layer:

\[y[t] = \sum_{s=1}^{T} \text{attention}(x[s], x[t]) \cdot f(x[s]) \]

• Input first processed by local layer \(f \)
• All inputs can affect \(y[t] \)
• But weighted by \(\text{attention}(x[s], x[t]) \)

• Resembles convolution but connection is learned instead of hardcoded

Figure credit to d2l.ai
Self-Attention Layer

• Self-attention layer:

\[y[t] = \sum_{s=1}^{T} \text{softmax}(\{\text{query}(x[t])^T \text{key}(x[s])\}) \cdot \text{value}(x[s]) \]

• Here, we have (learnable parameters are \(W_Q, W_K, \) and \(W_V \)):

\[
\begin{align*}
\text{query}(x[s]) &= W_Q x[s] \\
\text{key}(x[s]) &= W_K x[s] \\
\text{value}(x[s]) &= W_V x[s]
\end{align*}
\]
Self-Attention Layer

sequence of input vectors $x[1]$, \vdots, $x[T]$

- Query vectors: W_Q
- Key vectors: W_K
- Value vectors: W_V

$T \times T$ matrix

$T \times T$ matrix attention $\text{attention}_{ij} = \text{softmax}(\text{matrix}_{ij})$

row-wise softmax

$y[1]$, \ldots, $y[T]$
Self-Attention Layer
Self-Attention Layer

Layer p

- Q
- K
- V

Nobel committee awards Strickland who advanced optics
Self-Attention Layer

A → Q → K → V

Layer p:
- Nobel
- committee
- awards
- Strickland
- who
- advanced
- optics
Self-Attention Layer

Layer p

- M
- A
- Q
- K
- V

Words:
- optics
- advanced
- who
- Strickland
- awards
- committee
- Nobel
- Nobel committee awards Strickland who advanced optics
Multi-Head Self-Attention

Layer p

Nobel committee awards Strickland who advanced optics

A M_H

Q K V

optics advanced who Strickland awards committee Nobel
Multi-Head Self-Attention

Layer p

Nobel committee awards Strickland who advanced optics

optics advanced who Strickland awards committee Nobel
Transformers

• Stack self-attention layers to form a neural network architecture

• Examples:
 • BERT: Bidirectional transformer similar to ELMo, useful for prediction
 • GPT: Unidirectional model suited to text generation

• Aside: Self-attention layers subsume convolutional layers
 • Use “positional encodings” as auxiliary input so each input knows its position
 • https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html#
 • Then, the attention mechanism can learn convolutional connection structure