# Lecture 2: Introduction

CIS 7000: Trustworthy Machine Learning Spring 2024

# Agenda

#### Neural networks

- PyTorch
- CNNs, RNNs, and transformers

# Pytorch

• Open source packages have helped democratize deep learning

# Pytorch

- 1 import torch
- 2 import torch.nn as nn
- 3 import torch.nn.functional as F
- 4 import torch.optim as optim
- 5 from torchvision import <u>datasets</u>, transforms

#### Common parent class: nn.Module

```
Constructor: Defining layers of the network
 8 class Net(nn.Module):
       def __init__(self, in_features=10, num_classes=2, hidden_features=20):
 9
           super(Net, self).__init__()
10
           self.fc1 = nn.Linear(in_features, hidden_features)
11
           self.fc2 = nn.Linear(hidden_features, num_classes)
12
13
      def forward(self, x): Forward propagation
14
15
           x1 = self.fc1(x)
16
           x^2 = F.relu(x^1)
                             What about backward propagation?
17
           x3 = self.fc2(x2)
18
           log_prob = F.log_softmax(x3, dim=1)
19
20
           return log_prob
```

# Pytorch

- Open source packages have helped democratize deep learning
- Backpropagation implemented for all neural network architectures
  - Most modern libraries, including Tensorflow, Mxnet, Caffe, Pytorch, and Jax
  - Only need gradients of new layers
- Basic Idea: Provide model family as sequence of functions  $[f_1, ..., f_m]$ 
  - What about more general compositions?
  - **Solution:** Composition of functions can be represented as graphs!

# **Computation Graphs**

- The tensor datatype represents a computation graph
  - Not just a numpy array!
  - Instead, performing the computation produces a numpy array
- Example:
  - Suppose x is tensor that evaluates to  $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
  - Suppose y is a tensor evaluates to  $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$
  - Then, x + y is a tensor that evaluates to  $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$



# Toy Implementation of Computation Graphs

**class** Constant (tensor) :

def \_\_init\_\_(self, val):
 self.val = val
def backpropagate(self):

. . .

. . .

x = Constant(np.array([[1, 0], [0, 1]]))

y = Constant(np.array([[1, 1], [1, 0]]))

```
z = x + y \# z has type Add
```

```
class Add(tensor):
    def __init__(self, t1, t2):
        self.t1 = t1
        self.t2 = t2
        self.val = self.t1.val + self.t2.val
        def backpropagate(self):
```



# Toy Implementation of Computation Graphs

**class** Constant (tensor) :

def \_\_init\_\_(self, val):
 self.val = val
def backpropagate(self):

. . .

. . .

x = Constant(np.array([[1, 0], [0, 1]]))

y = Constant(np.array([[1, 1], [1, 0]]))

z = x + x + y # Z has type Add

class Add(tensor): def \_\_init\_\_(self, t1, t2): self.t1 = t1 self.t2 = t2 self.val = self.t1.val + self.t2.val def backpropagate(self):



# **Computation Graphs**

- Layers are implemented as tensors
  - **Examples:** addition, multiplication, ReLU, sigmoid, softmax, matrix multiplication/linear layers, MSE, logistic NLL, concatenation, etc.
  - You can also implement your own by providing forward pass and derivatives
- Tensors can be composed together to form neural networks

# **Computation Graphs**

- Forward propagation: Values are evaluated as they are constructed
- Backpropagation: Automatically compute derivative of scalar with respect to all parameters based on derivatives of layers
  - x.backwards()
  - Does not perform any gradient updates!



# Pytorch Training Loop

| 22 | <pre>def train(args, model, device, train_loader, optimizerenoch):</pre> |
|----|--------------------------------------------------------------------------|
| 23 | <pre>model.train()</pre> Looping over mini-batches                       |
| 24 | for batch_idx, (data, target) in enumerate(train_loader):                |
| 25 | <pre>data, target = data.te(device) target te(device)</pre>              |
| 26 | optimizer.zero_grad() Zero out all old gradients                         |
| 27 | <pre>output = model(data) Runs forward pass model.forward(data)</pre>    |
| 28 | $loss = F.nll_loss(output target)$ Loss computation                      |
| 29 | loss.backward() Backpropagation                                          |
| 30 | optimizer.step() Gradient step                                           |
| 31 | if batch_idx % args.log_interval == 0:                                   |
| 32 | print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(          |
| 33 | epoch, batch_idx * len(data), len(train_loader.dataset),                 |
| 34 | <pre>100. * batch_idx / len(train_loader), loss.item()))</pre>           |

# Pytorch Training Loop



# Pytorch Model

• To use your model (once it has been trained):

label = model(input)

# Agenda

#### Neural networks

- PyTorch
- CNNs, RNNs, and transformers

### Images as 2D Arrays

- Grayscale image is a 2D array of pixel values
- Color images are 3D array
  - 3<sup>rd</sup> dimension is color (e.g., RGB)
  - Called "channels"



# Structure in Images

• Use layers that capture structure





# **Convolution layers** (Capture equivariance)

#### **Pooling layers** (Capture invariance)

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d https://peltarion.com/static/2d\_max\_pooling\_pa1.png







graphic credit: S. Lazebnik





 $\overline{\tau=0} \ \overline{\gamma=0}$ 





graphic credit: S. Lazebnik











graphic credit: S. Lazebnik







output[*i*, *j*] = 
$$\sum_{\tau=0}^{k-1} \sum_{\gamma=0}^{k-1} \text{filter}[\tau, \gamma] \cdot \text{image}[i + \tau, j + \gamma]$$

#### • Given:

- A 2D input *x*
- A 2D  $h \times w$  kernel k
- The 2D convolution is:

$$y[s,t] = \sum_{\tau=0}^{h-1} \sum_{\gamma=0}^{w-1} k[\tau,\gamma] \cdot x[s+\tau,t+\gamma]$$

| 30    | $3_1$ | $2_{2}$ | 1 | 0 |
|-------|-------|---------|---|---|
| $0_2$ | $0_2$ | $1_0$   | 3 | 1 |
| 3     | $1_1$ | $2_{2}$ | 2 | 3 |
| 2     | 0     | 0       | 2 | 2 |
| 2     | 0     | 0       | 0 | 1 |

| 12.0 | 12.0 | 17.0 |
|------|------|------|
| 10.0 | 17.0 | 19.0 |
| 9.0  | 6.0  | 14.0 |



-1

2

-1

2

-1

-1

-1

-1

2





45 degree lines

135 degree lines



#### Example Edge Detection Kernels

#### Result of Convolution with Horizontal Kernel

# **Convolution Layer Parameters**

- Stride: How many pixels to skip (if any)
  - Default: Stride of 1 (no skipping)



### **Convolution Layer Parameters**

- Padding: Add zeros to edges of image to capture ends
  - Default: No padding



Image

stride = 1, zero-padding = 1

stride = 2, zero-padding = 1

# **Convolution Layer Parameters**

- Summary: Hyperparameters
  - Kernel size
  - Stride
  - Amount of zero-padding
  - Output channels
- Together, these determine the relationship between the input tensor shape and the output tensor shape
- Typically, also use a single bias term for each convolution filter

### **Convolution Layers**



# Example

- Kernel size 3, stride 2, padding 1
- 3 input channels
  - Hence kernel size 3×3×3
- 2 output channels
  - Hence 2 kernels
- Total # of parameters:
  - $(3 \times 3 \times 3 + 1) \times 2 = 56$







 $output[0,0] = \max_{0 \le \tau < k} \max_{0 \le \gamma < k} \operatorname{image}[0 + \tau, 0 + \gamma]$ 



 $output[0,1] = \max_{0 \le \tau < k} \max_{0 \le \gamma < k} \operatorname{image}[0 + \tau, 1 + \gamma]$ 



output[0,2] =  $\max_{0 \le \tau < k} \max_{0 \le \gamma < k} \operatorname{image}[0 + \tau, 2 + \gamma]$ 

# **Pooling Layers**



output[*i*, *j*] =  $\max_{0 \le \tau < k} \max_{0 \le \gamma < k} \operatorname{image}[i + \tau, j + \gamma]$ 

# **Pooling Layers**

- Summary: Hyperparameters
  - Kernel size
  - Stride (usually >1)
  - Amount of zero-padding
  - Pooling function (almost always "max")
- Together, these determine the relationship between the input tensor shape and the output tensor shape
- Note: Unlike convolution, pooling operates on channels separately
  - Thus, *n* input channels  $\rightarrow n$  output channels

# Example Architecture: AlexNet

#### ImageNet dataset

- 1000 class image classification problem (e.g., grey fox, tabby cat, barber chair)
- >1M image-label pairs gathered from internet and crowdsourced labels

#### • AlexNet Architecture (Krizhevsky 2012)

- Historically important architecture
- Image classification network (~60M parameters)
- Trained using GPUs on ImageNet dataset
- Huge improvement in performance compared to prior state-of-the-art

# Example Architecture: AlexNet



slide credit: S. Lazebnik

#### Example Architecture: AlexNet



## **Evolution of Neural Networks**



Source: MSRA slides at ILSVRC15

# **Evolution of Neural Networks**

AlexNet, 8 layers (ILSVRC 2012) ~60M params

VGG, 19 layers (ILSVRC 2014) ~140M params

ResNet, 152 layers (ILSVRC 2015)

Less computation in forward pass than VGGNet! Back to 60M params

GoogleNet, 22 layers (ILSVRC 2014) ~5M params



# Agenda

#### Neural networks

- PyTorch
- CNNs, RNNs, and transformers

#### Distribution shift robustness

• Basic examples and definitions

- Handle inputs/outputs that are **sequences**
- Naïve strategy
  - Pad inputs to fixed length and use feedforward network
  - Ignores temporal structure
- Recurrent neural networks (RNNs): Process input sequentially

#### **Feedforward Neural Networks**







- Initialize  $z^{(0)} = \vec{0}$
- Iteratively compute (for  $t \in \{1, ..., T\}$ ):

$$z^{(t)} = g\big(Wx_t + Uz^{(t-1)}\big)$$

• Compute output:

$$y = \beta^{\mathsf{T}} z^{(T)}$$

#### **Sentiment Classification**



#### **Sentiment Classification**



- Initialize  $z^{(0)} = \vec{0}$
- Iteratively compute (for  $t \in \{1, ..., T\}$ ):

$$z^{(t)} = g\left(W \operatorname{Embed}(x_t) + Uz^{(t-1)}\right)$$

• Compute output:

$$y = \beta^{\mathsf{T}} z^{(T)}$$







many to many



Image captioning

Sentiment prediction

Machine translation

Video captioning



# **Training RNNs**

- Backpropagation works as before
  - For shared parameters, we can show that the overall gradient is sum of gradient at each usage
- LSTM ("long short-term memory") and GRU ("gated recurrent unit") do clever things to better maintain hidden state

#### **Training RNNs**

$$z_1 = g(Wx_1 + Uz_0)$$
  

$$z_2 = g(Wx_2 + Uz_1)$$
  

$$z_3 = g(Wx_3 + Uz_2)$$



# Stacked RNN



## **Bidirectional RNN**

## Stacked + Bidirectional RNN



# Long Short Term Memory

• **Goal:** Replace some multiplicative relationships in hidden state with additive relationships



# Agenda

#### Neural networks

- PyTorch
- CNNs, RNNs, and transformers

## Attention

- RNNs have trouble propagating information forwards
- Solution: Let RNN "pay attention" to small part of past sequence

## **Example:** Machine Translation



## **Example:** Machine Translation



#### Attention





## Attention







Use the attention distribution to take a **weighted sum** of the encoder hidden states.

The attention output mostly contains information the hidden states that received high attention.





Concatenate attention output — with decoder hidden state, then use to compute  $\hat{y}_1$  as before









Decoder RNN

#### Attention

- We have encoder hidden states  $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep *t*, we have decoder hidden state  $s_t \in \mathbb{R}^h$
- We get the attention scores  $e^t$  for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

• We take softmax to get the attention distribution  $\alpha^t$  for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

• We use  $\alpha^t$  to take a weighted sum of the encoder hidden states to get the attention output  $a_t$  N

$$oldsymbol{a}_t = \sum_{i=1}^{N} lpha_i^t oldsymbol{h}_i \in \mathbb{R}^h$$

• Finally we concatenate the attention output  $a_t$  with the decoder hidden state  $s_t$  and proceed as in the non-attention seq2seq model

$$[oldsymbol{a}_t;oldsymbol{s}_t]\in\mathbb{R}^{2h}$$

# Transformers

• Composition of **self-attention layers** 

#### Intuition

- Want sparse connection structure of CNNs, but with different structure
- Can we **learn** the connection structure?

• Self-attention layer:

$$y[t] = \sum_{s=1}^{T} \operatorname{attention}(x[s], x[t]) \cdot f(x[s])$$

- Input first processed by local layer *f*
- All inputs can affect y[t]
- But weighted by attention(x[s], x[t])
- Resembles convolution but connection is learned instead of hardcoded





Figure credit to <u>d2l.ai</u>

• Self-attention layer:

$$\mathbf{y}[t] = \sum_{s=1}^{T} \operatorname{softmax}([\operatorname{query}(x[t])^{\mathsf{T}}\operatorname{key}(x[s])]) \cdot \operatorname{value}(x[s])$$

• Here, we have (learnable parameters are  $W_Q$ ,  $W_K$ , and  $W_V$ ):

 $query(x[s]) = W_Q x[s]$  $key(x[s]) = W_K x[s]$  $value(x[s]) = W_V x[s]$ 











#### Multi-Head Self-Attention



#### Multi-Head Self-Attention





# Transformers

• Stack self-attention layers to form a neural network architecture

#### • Examples:

- BERT: Bidirectional transformer similar to ELMo, useful for prediction
- **GPT:** Unidirectional model suited to text generation
- Aside: Self-attention layers subsume convolutional layers
  - Use "positional encodings" as auxiliary input so each input knows its position
  - <u>https://d2I.ai/chapter\_attention-mechanisms/self-attention-and-positional-encoding.html#</u>
  - Then, the attention mechanism can learn convolutional connection structure