
Lecture 2: Introduction

CIS 7000: Trustworthy Machine Learning
Spring 2024

Agenda

• Neural networks
• PyTorch
• CNNs, RNNs, and transformers

Pytorch

• Open source packages have helped democratize deep learning

Pytorch

Common parent class: nn.Module
Constructor: Defining layers of the network

Forward propagation

What about backward propagation?

Pytorch

• Open source packages have helped democratize deep learning

• Backpropagation implemented for all neural network architectures
• Most modern libraries, including Tensorflow, Mxnet, Caffe, Pytorch, and Jax
• Only need gradients of new layers

• Basic Idea: Provide model family as sequence of functions 𝑓!, … , 𝑓"
• What about more general compositions?
• Solution: Composition of functions can be represented as graphs!

Computation Graphs

• The tensor datatype represents a computation graph
• Not just a numpy array!
• Instead, performing the computation produces a numpy array

• Example:
• Suppose 𝑥 is tensor that evaluates to 1 0

0 1
• Suppose 𝑦 is a tensor evaluates to 1 1

1 0
• Then, 𝑥 + 𝑦 is a tensor that evaluates to 2 1

1 1 𝑥 𝑦

+

Toy Implementation of Computation Graphs

class Constant(tensor):

def __init__(self, val):

self.val = val

def backpropagate(self):

...

class Add(tensor):

def __init__(self, t1, t2):

self.t1 = t1

self.t2 = t2

self.val = self.t1.val + self.t2.val

def backpropagate(self):

...

𝑥 𝑦

+

x = Constant(np.array([[1, 0], [0, 1]])
y = Constant(np.array([[1, 1], [1, 0]])
z = x + y # z has type Add

Toy Implementation of Computation Graphs

class Constant(tensor):

def __init__(self, val):

self.val = val

def backpropagate(self):

...

class Add(tensor):

def __init__(self, t1, t2):

self.t1 = t1

self.t2 = t2

self.val = self.t1.val + self.t2.val

def backpropagate(self):

...

𝑥 𝑦

+

x = Constant(np.array([[1, 0], [0, 1]])
y = Constant(np.array([[1, 1], [1, 0]])
z = x + x + y # Z has type Add

Computation Graphs

• Layers are implemented as tensors
• Examples: addition, multiplication, ReLU, sigmoid, softmax, matrix

multiplication/linear layers, MSE, logistic NLL, concatenation, etc.
• You can also implement your own by providing forward pass and derivatives

• Tensors can be composed together to form neural networks

Computation Graphs

• Forward propagation: Values are evaluated as they are constructed

• Backpropagation: Automatically compute derivative of scalar with
respect to all parameters based on derivatives of layers
• x.backwards()
• Does not perform any gradient updates!

Computation Graphs

x x1

W1 W2

x2 x3 log_prob× relu × log_sof
tmax

nn.functional operation

parameter(tensor)

tensor

fc1(nn.Linear) fc2(nn.Linear)

Pytorch Training Loop

Gradient step
Backpropagation

Loss computation
Runs forward pass model.forward(data)

Looping over mini-batches

Zero out all old gradients

Pytorch Training Loop

Load dataset

Define optimizer, base learning rate schedule etc.

Loop over epochs (full passes over data)
Minibatch SGD for one epoch

Update base learning rate

Pytorch Model

• To use your model (once it has been trained):

label = model(input)

Agenda

• Neural networks
• PyTorch
• CNNs, RNNs, and transformers

Images as 2D Arrays

• Grayscale image is a 2D array of
pixel values

• Color images are 3D array
• 3rd dimension is color (e.g., RGB)
• Called “channels”

Source: S. Narasimhan, S. Lazebnik

Structure in Images

• Use layers that capture structure

Convolution layers
(Capture equivariance)

Pooling layers
(Capture invariance)
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

Convolution Filters

graphic credit: S. Lazebnik

Convolution Filters

graphic credit: S. Lazebnik

output 0,0 = *
!"#

$%&

*
'"#

$%&

+ilter 𝜏, 𝛾 ⋅ image 0 + 𝜏, 0 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

output 0,1 = *
!"#

$%&

*
'"#

$%&

+ilter 𝜏, 𝛾 ⋅ image 0 + 𝜏, 1 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

output 0,2 = *
!"#

$%&

*
'"#

$%&

+ilter 𝜏, 𝛾 ⋅ image 0 + 𝜏, 2 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

output 𝑖, 𝑗 = *
!"#

$%&

*
'"#

$%&

+ilter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

output 𝑖, 𝑗 = *
!"#

$%&

*
'"#

$%&

+ilter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

output 𝑖, 𝑗 = *
!"#

$%&

*
'"#

$%&

+ilter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾

2D Convolution Filters

• Given:
• A 2D input 𝑥
• A 2D ℎ×𝑤 kernel 𝑘

• The 2D convolution is:

𝑦 𝑠, 𝑡 = (
;<=

>?!

(
@<=

A?!

𝑘 𝜏, 𝛾 ⋅ 𝑥 𝑠 + 𝜏, 𝑡 + 𝛾

2D Convolution Filters

2D Convolution Filters

https://aishack.in/tutorials/image-convolution-examples/

Example Edge Detection Kernels Result of Convolution with Horizontal Kernel

https://aishack.in/tutorials/image-convolution-examples/

Convolution Layer Parameters

• Stride: How many pixels to skip (if any)
• Default: Stride of 1 (no skipping)

Filter

OutDimension =
InputDimension
StrideDimension

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

Convolution Layer Parameters

• Padding: Add zeros to edges of image to capture ends
• Default: No padding

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

stride = 1, zero-padding = 1 stride = 2, zero-padding = 1

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

Convolution Layer Parameters

• Summary: Hyperparameters
• Kernel size
• Stride
• Amount of zero-padding
• Output channels

• Together, these determine the relationship between the input tensor
shape and the output tensor shape

• Typically, also use a single bias term for each convolution filter

Convolution Layers

Slide credit: Jia-Bin Huang

filters = #output (activation) maps # input channels

filter size,
stride

Image credit: A. Karpathy

Example

• Kernel size 3, stride 2,
padding 1

• 3 input channels
• Hence kernel size 3×3×3

• 2 output channels
• Hence 2 kernels

• Total # of parameters:
• (3×3×3 + 1)×2 = 56

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

Pooling Layers

Pooling Layers

output 0,0 = max
#(!)$

max
#(')$

image 0 + 𝜏, 0 + 𝛾

Pooling Layers

output 0,1 = max
#(!)$

max
#(')$

image 0 + 𝜏, 1 + 𝛾

Pooling Layers

output 0,2 = max
#(!)$

max
#(')$

image 0 + 𝜏, 2 + 𝛾

Pooling Layers

output 𝑖, 𝑗 = max
#(!)$

max
#(')$

image 𝑖 + 𝜏, 𝑗 + 𝛾

Pooling Layers

• Summary: Hyperparameters
• Kernel size
• Stride (usually >1)
• Amount of zero-padding
• Pooling function (almost always “max”)

• Together, these determine the relationship between the input tensor
shape and the output tensor shape

• Note: Unlike convolution, pooling operates on channels separately
• Thus, 𝑛 input channels à 𝑛 output channels

Example Architecture: AlexNet

• ImageNet dataset
• 1000 class image classification problem (e.g., grey fox, tabby cat, barber chair)
• >1M image-label pairs gathered from internet and crowdsourced labels

• AlexNet Architecture (Krizhevsky 2012)
• Historically important architecture
• Image classification network (~60M parameters)
• Trained using GPUs on ImageNet dataset
• Huge improvement in performance compared to prior state-of-the-art

Example Architecture: AlexNet

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000Fully connected
(i.e., linear) layers

output

input

Convolution (kernel size 11, stride 4,
96 output channels, no padding)

ReLU Activation

Pooling (kernel size 3, stride 2,
no padding)

Local Response Normalization

Input

slide credit: S. Lazebnik

Example Architecture: AlexNet

Evolution of Neural Networks

Source: MSRA slides at ILSVRC15

http://research.microsoft.com/en-us/um/people/kahe/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

Less computation
in forward pass
than VGGNet!

~60M params ~140M params

~5M params

Back to 60M params

Evolution of Neural Networks

Source: MSRA slides at ILSVRC15

http://research.microsoft.com/en-us/um/people/kahe/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

Agenda

• Neural networks
• PyTorch
• CNNs, RNNs, and transformers

• Distribution shift robustness
• Basic examples and definitions

Recurrent Neural Networks

• Handle inputs/outputs that are sequences

• Naïve strategy
• Pad inputs to fixed length and use feedforward network
• Ignores temporal structure

• Recurrent neural networks (RNNs): Process input sequentially

Feedforward Neural Networks

𝑥 𝑧(#)𝑓%! 𝑔 𝑧(&) 𝑓' 5𝑦𝑧(()𝑓%" 𝑔 𝑧())

Recurrent Neural Networks

𝑥#

𝑧(#)

𝑓%!

𝑧(&)𝑓%" 𝑓%# 𝑧(()

𝑥&

𝑓%$

𝑥(

𝑓%%

𝑓' 5𝑦𝑧())𝑓%& 𝑓%' 𝑧(*)

𝑥)

𝑓%(

𝑥*

𝑓%)

Recurrent Neural Networks

𝑥#

𝑧(#)

𝑓%

𝑧(&)𝑓+ 𝑓+ 𝑧(()

𝑥&

𝑓%

𝑥(

𝑓%

𝑓' 5𝑦𝑧())𝑓+ 𝑓+ 𝑧(*)

𝑥)

𝑓%

𝑥*

𝑓%

Recurrent Neural Networks

• Initialize 𝑧 = = 0

• Iteratively compute (for 𝑡 ∈ 1,… , T):

𝑧 C = 𝑔 𝑊𝑥C + 𝑈𝑧 C?!

• Compute output:

𝑦 = 𝛽D𝑧 E

Sentiment Classification

The

𝑧(#)

𝑓%

𝑧(&)𝑓+ 𝑓+ 𝑧(()

Matrix

𝑓%

will

𝑓%

𝑓' 1𝑧())𝑓+ 𝑓+ 𝑧(*)

always

𝑓%

delight

𝑓%

Sentiment Classification

Embed
(The)

𝑧(#)

𝑓%

𝑧(&)𝑓+ 𝑓+ 𝑧(()

Embed
(Matrix)

𝑓%

Embed
(will)

𝑓%

𝑓' 1𝑧())𝑓+ 𝑓+ 𝑧(*)

Embed
(always)

𝑓%

Embed
(delight)

𝑓%

Recurrent Neural Networks

• Initialize 𝑧 = = 0

• Iteratively compute (for 𝑡 ∈ 1,… , T):

𝑧 C = 𝑔 𝑊 Embed 𝑥C + 𝑈𝑧 C?!

• Compute output:

𝑦 = 𝛽D𝑧 E

Recurrent Neural Networks

Image
captioning

Sentiment
prediction

Machine
translation

Video
captioning

Fei-Fei Li, Justin Johnson, Serena Yeung

Example: Parts of Speech

OneHot
(The)

𝑧(#)

𝑓%

𝑧(&)𝑓+ 𝑓+ 𝑧(()

OneHot
(Matrix)

𝑓%

OneHot
(will)

𝑓%

𝑧())𝑓+ 𝑓+ 𝑧(*)

OneHot
(always)

𝑓%

OneHot
(delight)

𝑓%

OneHot
(adj)

𝑓,

OneHot
(noun)

𝑓,

OneHot
(verb)

𝑓,

OneHot
(adverb)

𝑓,

OneHot
(adj)

𝑓,

linear, softmax, or logistic

linear

Training RNNs

• Backpropagation works as before
• For shared parameters, we can show that the overall gradient is sum of

gradient at each usage

• LSTM (“long short-term memory”) and GRU (“gated recurrent unit”)
do clever things to better maintain hidden state

Training RNNs

𝜕𝐿
𝜕𝑈

=
𝜕𝐿
𝜕𝑧!

𝜕𝑧!
𝜕𝑈

+
𝜕𝐿
𝜕𝑧!

𝜕𝑧!
𝜕𝑧"

𝜕𝑧"
𝜕𝑈

+
𝜕𝐿
𝜕𝑧!

𝜕𝑧!
𝜕𝑧"

𝜕𝑧"
𝜕𝑧#

𝜕𝑧#
𝜕𝑈

𝑧# = 𝑔 𝑊𝑥# + 𝑈𝑧$
𝑧" = 𝑔 𝑊𝑥" + 𝑈𝑧#
𝑧! = 𝑔 𝑊𝑥! + 𝑈𝑧"

Local Contribution Historical Contribution

Stacked RNN

Bidirectional RNN

Stacked + Bidirectional RNN

Long Short Term Memory

• Goal: Replace some multiplicative relationships in hidden state with
additive relationships

LSTM
Cell

Input (x)

Previous State (h) Next State (h)

Output (y)

Previous Memory (c) Next Memory (c)

Agenda

• Neural networks
• PyTorch
• CNNs, RNNs, and transformers

Attention

• RNNs have trouble propagating information forwards

• Solution: Let RNN “pay attention” to small part of past sequence

Example: Machine Translation

Example: Machine Translation

Attention

Attention

66

Attention

Attention

Attention

Attention

Attention

Transformers

• Composition of self-attention layers

• Intuition
• Want sparse connection structure of CNNs, but with different structure
• Can we learn the connection structure?

Self-Attention Layer

• Self-attention layer:

𝑦 𝑡 =(
F<!

E

attention 𝑥 𝑠 , 𝑥 𝑡 ⋅ 𝑓 𝑥 𝑠

• Input first processed by local layer 𝑓
• All inputs can affect 𝑦 𝑡
• But weighted by attention 𝑥 𝑠 , 𝑥 𝑡

• Resembles convolution but connection is
learned instead of hardcoded

Figure credit to d2l.ai

vector, not a single
component!

http://d2l.ai/

Self-Attention Layer

• Self-attention layer:

𝑦 𝑡 =(
F<!

E

softmax query 𝑥 𝑡 Dkey 𝑥 𝑠 ⋅ value 𝑥 𝑠

• Here, we have (learnable parameters are 𝑊G, 𝑊H , and 𝑊I):

query 𝑥 𝑠 = 𝑊G𝑥 𝑠
key 𝑥 𝑠 = 𝑊H𝑥 𝑠
value 𝑥 𝑠 = 𝑊I𝑥 𝑠

Self-Attention Layer

𝑊!
query

vectors

𝑊" value
vectors

𝑊# key
vectors

𝑇×𝑇 matrix
matrix$% = query$&key%

row-wise
softmax

𝑇×𝑇 matrix
attention'(
= softmax matrix$%

×

𝑥 1

sequence of
input vectors

𝑥 𝑇

⋮

= 𝑦[1] 𝑦[𝑇]⋯

Self-Attention Layer

committee awards Strickland advanced opticswho

Layer p

Q
K
V

Nobel

Self-Attention Layer

Layer p

Q
K
V

committee awards Strickland advanced opticswhoNobel

Self-Attention Layer

Layer p

Q
K
V

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

Nobel

A

Self-Attention Layer

Layer p

Q
K
V

M

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

Nobel

A

Multi-Head Self-Attention

Layer p

Q
K
V

MM1

MH

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

Nobel

A

Multi-Head Self-Attention

Layer p

Q
K
V

MH

M1

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

Nobel

A

Layer p

Q
K
V

MH

M1

Feed
Forward

Feed
Forward

Feed
Forward

Feed
Forward

Feed
Forward

Feed
Forward

Feed
Forward

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

Nobel

A

Transformers

• Stack self-attention layers to form a neural network architecture

• Examples:
• BERT: Bidirectional transformer similar to ELMo, useful for prediction
• GPT: Unidirectional model suited to text generation

• Aside: Self-attention layers subsume convolutional layers
• Use “positional encodings” as auxiliary input so each input knows its position
• https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-

encoding.html#
• Then, the attention mechanism can learn convolutional connection structure

https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html
https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html

