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Saliency maps are popular for vision

Given model f: R" = R and input x in R"™:

e = AttributionMethod(f, x) in R"

Simple "interpretation®: if a. is big, then x. is important!

e Useful when the end-user may not be ML specialists

... but what does "important" mean exactly?



Feature attributions are "obvious" for simple models

Consider a linear model
f(x)=co+crx1 + -+ + cpay,
Clearly if the larger some c, the more x. will contribute to the score
e Anatural feature attribution: a. = c. (alternatively, a. = abs(ci))

... but what about for a quadratic model?

flx)=c+bz+az'Ar =c+ bx; + Ax;x
jLid;

i=1 1<i,j<n

It's less clear what score each feature x. should get



"Fundamental dilemma" of feature attributions

Pro: feature attributions are "nice"

e FEasytounderstand: number big = feature important
e There's alot of attribution methods

Cons:

e What does "important" mean?

e There's alot of attribution methods
o "This feature has Shapley value XXX" okay, so what?



|dea: maybe we can measure the "quality" of FAs

If a feature is "important”, then it should satisfy some properties.

e ...butwhat are these properties, and can we quantify them?

There is substantial work on developing metrics for feature attributions

e There's alot, we'll talk about a few



Subtractive metrics

"If some feature is important, then removing it should decrease the score"

"Dog" (97%) "Dog" (50%)

*I made up these numbers



Additive metrics

"If a feature is important, then inserting it should increase the score"

"Dog" (<1%) "Dog" (40%)



Example of other metrics

Perturbation:

e How sensitive is your metric to perturbations?

Compactness:

e |syour explanation too "big"? (e.g., for feature selection)

Connectedness:

e Aretwo candidate explanations "connected" in some sense?

More here: https://arxiv.org/abs/2201.08164



https://arxiv.org/abs/2201.08164

What mathematical properties should we expect?

Given a model, an input, an explanation method, and some metric...

... what formal (i.e., mathematical) properties should these things satisfy?

e e.g,"doesthe top-k% of features from this method guarantee a score
decrease of g% wrt some metric, model class, and input family?"

In general? Hard to prove such statements

e Neural networks are magic



What can we do from here?

Our work: under some conditions, one CAN guarantee formal properties

Special case: binary-valued feature attributions (i.e., feature selection)

Input xin R" Attrain{O,1}"



| have an attribution, but how do | "evaluate" it?

In vision: we can use the original model

Classifier f
277

(ideally: "Dog")




What do we NOT want to happen?

"Dog" llCat"

This is usually NOT desirable

Intuition: the original feature selection you gave me is not "convincing"

*I made up this example, but it can happen. Trust me, bro!



Stability as a "desirable" property

Selected by your
favorite attribution method

IA
IA

llDogll "Dog"

Stability: any superset of features induces the same prediction

f(x°a) = f(x°a') for all a < a', where a = BinaryAttribution(f,x)



How can we achieve/guarantee stability!

You probably can't! (For Real Models™)
e There's O(2") different a' = a binary vectors to check

But we can maybe go for local approximations (Incremental Stability)

Given explanation

+ a few additional
features




The plan

1. Incremental stability via Lipschitz smoothness

2. Achieve incremental stability with multiplicative smoothing (MUS)

MuS

"base classifier"h ———) Lipschitz-smooth
classifier f

3. We can check if f is incrementally stable at some x in O(1) time.



Step 1: incremental stability

for all small A

Sufficient condition: Lipschitz wrt masking of features
e L1normon binary vectors = number of differences

) - f(m) < )\||E-E |1 for all EE

Definition (Lipschitz wrt Feature Maskings). The function f: R" = [0,1] is
A-Lipschitz wrt the masking of features at x in R" if:

f(x°a) - f(x°a') < A|la-a'| |, foralla,a'in{0,1}"




Step 2: Multiplicative Smoothing (MuS)

"base classifier"h ——

MuS

f(x) = MuS(h, x) = avg(h(x'?), ..., h(x™))

A-Lipschitz-smooth f

N)

Sample st .. s
each s(')j ~ Bern(A)

x1 .. xN'where

each x1 = xosll



Step 2: The Math

Recall f(x) = MuS(h, x) and let

g(x, a) = MuS(h, x°a) = avg(h(x2a°s), ..., h(x2acs™))

Theorem (MuS). Let D be any distribution on {0,1}" where each coordinate
of s ~ D is marginally distributed as s, ~ Bern(A) and let

g(x,a)=E_ _ h(x°a°s), forany h: R" = [0,1],

s~D

then g(x, a) is A-Lipschitz in a wrt the L' norm for all x.

Note: Lipschitz smoothness is a property of functions
D need NOT be coordinate-wise independent

e Wejust requires that each sample's coordinate marginally ~ Bern(A)
e Allows for a deterministic evaluation with N <€ 2" samples
o Recall that Bern"(A) has 2" unique values




Step 3: provable incremental stability

Suppose h: R" = [0,1]™is a classifier
Let f(x) = MuS(h, x) with parameter A
Let a = BinaryAttribution(f, x), such that f(x) = f(x°a)

Theorem (MusS). Suppose that
Class1Prob(f(x©a)) - Class2Prob(f(x°a)) = 2Ar,

then for any a' 2z awith ||a' - al|, = r, we have f(x°a') = f(x°a).




Basic summary of Mu$S

Step 1: stability is hard, so we go for incremental stability

e Key idea: Lipschitz constants

Step 2: "randomized" smoothing

e f(x) =MuS(h, x) = avg(h(x°s'V), ..., h(xosN))
e f(x°a)=MuS(h, x°a) = avg(h(x2aos), ..., h(xoaosN))

Step 3: Lipschitz constants — stability guarantees



Experimental evaluations

E1: how good are the stability guarantees?

e How much incremental stability radius can we achieve?

o for xindataset with a = BinaryAttribution(f, x):
m r=[Class1Prob(f(x°a)) - Class2Prob(f(x°a))]/ 2\

E2: what is the cost of smoothing?

e Smoothing inherently requires us to inject noise
e Accuracy degradation of f(x) = MuS(h, x)



E1: radius of incremental stabilities

Base classifier: h = Vision Transformer
BinaryAttribution: SHAP (top-25%)
Dataset: N = 2000 samples from ImageNet

Consistent and Incrementally Stable

| 7 —— A=8/8 (0.840)
A A=4/8 (0.801)
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E2: accuracy penalty of smoothing

Vision Dataset: ImageNet1K (N = 2000 samples)

Language Dataset: TweetEval (N = 2000 samples)

Accuracy vs A

1 —— Vision Transformer

ResNet50
—— ROBERTa

1 172 V4 8 /16




Takeaways

1. We give away to provably check for incremental stability
2. MuS: randomly drops features to these guarantees

a. MuS(h, x) = avg(h(x°s'?), ..., h(xos™))

b. g(x, a) =f(x°a) = MuS(h, x°a)

c. g(x,a)isA-Lipschitzin awrt the L norm

3. Lipschitz smooth gives lower-bound on the incremental stability radius

arXiv: https://arxiv.org/abs/2307.05902



https://arxiv.org/abs/2307.05902




Efficient Smoothing

Main challenge: MusS is defined in terms of an expected value

e Bern"(A\) has N=2"unique values (too many for the expected value!)

e MuSonly requires that each coordinate is ~Bern(A)
o Do NOT need coordinate-wise independence
o Algorithm below: N = g unique values
o Mainidea: use v as a pseudo-RNG seed, with 1-dim "randomness”s, ___

Proposition 3.4. Fix integer ¢ > 1 and consider any vectorv € {0,1/q, ..., (¢q—1)/q}™ and scalar

A€e{l/q,..., q/q}. Define s ~ L, () to be a random vector in {0, 1}™ with coordinates given by

gi=Mtx< Al t; = U; + Spase mod 1, Sbase ~U({1/q,...,q/q}) — 1/(2q).

Then there are q distinct values of s and each coordinate is distributed as s; ~ B(\).

Proof. First, observe that each of the ¢ distinct values of sy, defines a unique value of s since
we have assumed v and A to be fixed. Next, observe that each ¢; has ¢ unique values uniformly
distributed as t; ~ U(1/q,...,q/q}) — 1/(2q). Because A\ € {1/q,...,q/q} we therefore have
Pr[t; < A] = A, which implies that s; ~ B(\). [






