CIS 7000 Lecture 20 Part 2

Anton Xue

Saliency maps are popular for vision

Given model f: $\mathbb{R}^n \rightarrow \mathbb{R}$ and input x in \mathbb{R}^n :

• α = AttributionMethod(f, x) in Rⁿ

Simple "interpretation": if α_i is big, then x_i is important!

• Useful when the end-user may not be ML specialists

... but what does "important" mean exactly?

Feature attributions are "obvious" for simple models

Consider a linear model

$$f(x) = c_0 + c_1 x_1 + \dots + c_n x_n$$

Clearly if the larger some c_i, the more x_i will contribute to the score

• A natural feature attribution: $\alpha_i = c_i$ (alternatively, $\alpha_i = abs(c_i)$)

... but what about for a quadratic model?

$$f(x) = c + b^{\top} x + x^{\top} A x = c + \sum_{i=1}^{n} b_i x_i + \sum_{1 \le i,j \le n} A_{ij} x_i x_j$$

It's less clear what score each feature x_i should get

"Fundamental dilemma" of feature attributions

Pro: feature attributions are "nice"

- Easy to understand: number big = feature important
- There's a lot of attribution methods

Cons:

- What does "important" mean?
- There's a lot of attribution methods
 - "This feature has Shapley value XXX", okay, so what?

Idea: maybe we can measure the "quality" of FAs

If a feature is "important", then it should satisfy some properties.

• ... but what are these properties, and can we quantify them?

There is substantial work on developing metrics for feature attributions

• There's a lot, we'll talk about a few

Subtractive metrics

"If some feature is important, then removing it should decrease the score"

"Dog" (97%)

"Dog" (50%)

*I made up these numbers

Additive metrics

"If a feature is important, then inserting it should increase the score"

Example of other metrics

Perturbation:

• How sensitive is your metric to perturbations?

Compactness:

• Is your explanation too "big"? (e.g., for feature selection)

Connectedness:

• Are two candidate explanations "connected" in some sense?

More here: https://arxiv.org/abs/2201.08164

What mathematical properties should we expect?

Given a model, an input, an explanation method, and some metric ...

... what formal (i.e., mathematical) properties should these things satisfy?

• e.g., "does the top-k% of features from this method guarantee a score decrease of q% wrt some metric, model class, and input family?"

In general? Hard to prove such statements

• Neural networks are magic

What can we do from here?

Our work: under some conditions, one CAN guarantee formal properties

Special case: binary-valued feature attributions (i.e., feature selection)

Input x in Rⁿ

Attr α in $\{0,1\}^n$

I have an attribution, but how do I "evaluate" it?

In vision: we can use the original model

What do we NOT want to happen?

"Dog"

"Dog"

"Cat"

This is usually **NOT** desirable

Intuition: the original feature selection you gave me is not "convincing"

*I made up this example, but it can happen. Trust me, bro!

Stability as a "desirable" property

Selected by your favorite attribution method

Stability: any superset of features induces the same prediction

 $f(x \circ \alpha) \cong f(x \circ \alpha')$ for all $\alpha \le \alpha'$, where $\alpha = BinaryAttribution(f,x)$

How can we achieve/guarantee stability!

You probably can't! (For Real ModelsTM)

• There's O(2ⁿ) different $\alpha' \ge \alpha$ binary vectors to check

But we can maybe go for local approximations (Incremental Stability)

The plan

1. Incremental stability via Lipschitz smoothness

2. Achieve incremental stability with multiplicative smoothing (MUS)

"base classifier" h

MuS Lipschitz-smooth classifier f

3. We can check if f is incrementally stable at some x in O(1) time.

Step 1: incremental stability

$$f(\square f) \cong f(\square f) = f(\square f)$$

Sufficient condition: Lipschitz wrt masking of features

• L1 norm on binary vectors = number of differences

$$f(- f(- f(- \lambda | - \lambda$$

Definition (Lipschitz wrt Feature Maskings). The function f: $\mathbb{R}^n \rightarrow [0,1]$ is λ -Lipschitz wrt the masking of features at x in \mathbb{R}^n if:

 $f(x^{\circ}\alpha) - f(x^{\circ}\alpha') \le \lambda ||\alpha - \alpha'||_{1}$ for all α, α' in $\{0,1\}^{n}$

Step 2: Multiplicative Smoothing (MuS)

$$f(x) = MuS(h, x) = avg(h(x^{(1)}), ..., h(x^{(N)}))$$

Step 2: The Math

Recall f(x) = MuS(h, x) and let

 $g(x, \alpha) = MuS(h, x^{\circ}\alpha) = avg(h(x^{\circ}\alpha^{\circ}s^{(1)}), ..., h(x^{\circ}\alpha^{\circ}s^{(N)}))$

Theorem (MuS). Let D be any distribution on $\{0,1\}^n$ where each coordinate of s ~ D is marginally distributed as $s_i \sim Bern(\lambda)$ and let

 $g(x, \alpha) = E_{s \sim D} h(x^{\circ} \alpha^{\circ} s),$ for any h: $\mathbb{R}^{n} \rightarrow [0, 1],$

then g(x, α) is λ -Lipschitz in α wrt the L¹ norm for all x.

Note: Lipschitz smoothness is a property of functions

D need NOT be coordinate-wise independent

- We just requires that each sample's coordinate marginally ~ Bern(λ)
- Allows for a deterministic evaluation with $N \ll 2^n$ samples
 - Recall that Bernⁿ(λ) has 2ⁿ unique values

Step 3: provable incremental stability

Suppose h: $\mathbb{R}^n \rightarrow [0,1]^m$ is a classifier

Let f(x) = MuS(h, x) with parameter λ

Let α = BinaryAttribution(f, x), such that f(x) \cong f(x $\circ \alpha$)

Theorem (MuS). Suppose that

Class1Prob(f($x^{\circ}\alpha$)) - Class2Prob(f($x^{\circ}\alpha$)) $\geq 2\lambda r$,

then for any $\alpha' \ge \alpha$ with $||\alpha' - \alpha||_1 \le r$, we have $f(x \circ \alpha') \cong f(x \circ \alpha)$.

Basic summary of MuS

Step 1: stability is hard, so we go for incremental stability

• Key idea: Lipschitz constants

Step 2: "randomized" smoothing

- $f(x) = MuS(h, x) = avg(h(x^{\circ}s^{(1)}), ..., h(x^{\circ}s^{(N)}))$
- $f(x \circ \alpha) = MuS(h, x \circ \alpha) = avg(h(x \circ \alpha \circ s^{(1)}), ..., h(x \circ \alpha \circ s^{(N)}))$

Step 3: Lipschitz constants \rightarrow stability guarantees

Experimental evaluations

E1: how good are the stability guarantees?

- How much incremental stability radius can we achieve?
 - for x in dataset with α = BinaryAttribution(f, x):
 - $r = [Class1Prob(f(x^{\circ}\alpha)) Class2Prob(f(x^{\circ}\alpha))] / 2\lambda$

E2: what is the cost of smoothing?

- Smoothing inherently requires us to inject noise
- Accuracy degradation of f(x) = MuS(h, x)

E1: radius of incremental stabilities

Base classifier: h = Vision Transformer

BinaryAttribution: SHAP (top-25%)

Dataset: N = 2000 samples from ImageNet

E2: accuracy penalty of smoothing

Vision Dataset: ImageNet1K (N = 2000 samples)

Language Dataset: TweetEval (N = 2000 samples)

Takeaways

- 1. We give a way to provably check for incremental stability
- 2. MuS: randomly drops features to these guarantees
 - a. $MuS(h, x) = avg(h(x^{\bigcirc}s^{(1)}), ..., h(x^{\bigcirc}s^{(N)}))$
 - b. $g(x, \alpha) = f(x \circ \alpha) = MuS(h, x \circ \alpha)$
 - c. $g(x, \alpha)$ is λ -Lipschitz in α wrt the L¹ norm
- 3. Lipschitz smooth gives lower-bound on the incremental stability radius

arXiv: https://arxiv.org/abs/2307.05902

Efficient Smoothing

Main challenge: MuS is defined in terms of an expected value

- Bernⁿ(λ) has N=2ⁿ unique values (too many for the expected value!)
- MuS only requires that each coordinate is \sim Bern(λ)
 - Do NOT need coordinate-wise independence
 - Algorithm below: N = q unique values
 - Main idea: use v as a pseudo-RNG seed, with 1-dim "randomness" s_{base}

Proposition 3.4. Fix integer q > 1 and consider any vector $v \in \{0, 1/q, \dots, (q-1)/q\}^n$ and scalar $\lambda \in \{1/q, \dots, q/q\}$. Define $s \sim \mathcal{L}_{qv}(\lambda)$ to be a random vector in $\{0, 1\}^n$ with coordinates given by

 $s_i = \mathbb{I}[t_i \le \lambda], \quad t_i = v_i + s_{\text{base}} \mod 1, \quad s_{\text{base}} \sim \mathcal{U}(\{1/q, \dots, q/q\}) - 1/(2q).$

Then there are q distinct values of s and each coordinate is distributed as $s_i \sim \mathcal{B}(\lambda)$.

Proof. First, observe that each of the q distinct values of s_{base} defines a unique value of s since we have assumed v and λ to be fixed. Next, observe that each t_i has q unique values uniformly distributed as $t_i \sim \mathcal{U}(1/q, \ldots, q/q\}) - 1/(2q)$. Because $\lambda \in \{1/q, \ldots, q/q\}$ we therefore have $\Pr[t_i \leq \lambda] = \lambda$, which implies that $s_i \sim \mathcal{B}(\lambda)$.