
CIS 7000 Lecture 20
Part 2

Anton Xue

Saliency maps are popular for vision

Given model f: Rn ➞ R and input x in Rn:

● α = AttributionMethod(f, x) in Rn

Simple "interpretation": if α
i
 is big, then x

i
 is important!

● Useful when the end-user may not be ML specialists

… but what does "important" mean exactly?

Feature attributions are "obvious" for simple models

Consider a linear model

Clearly if the larger some c
i
, the more x

i
 will contribute to the score

● A natural feature attribution: α
i
 = c

i
 (alternatively, α

i
 = abs(c

i
))

… but what about for a quadratic model?

It's less clear what score each feature x
i
 should get

"Fundamental dilemma" of feature attributions

Pro: feature attributions are "nice"

● Easy to understand: number big = feature important

● There's a lot of attribution methods

Cons:

● What does "important" mean?

● There's a lot of attribution methods
○ "This feature has Shapley value XXX", okay, so what?

Idea: maybe we can measure the "quality" of FAs

If a feature is "important", then it should satisfy some properties.

● … but what are these properties, and can we quantify them?

There is substantial work on developing metrics for feature attributions

● There's a lot, we'll talk about a few

Subtractive metrics

"If some feature is important, then removing it should decrease the score"

"Dog" (97%) "Dog" (50%)

*I made up these numbers

Additive metrics

"If a feature is important, then inserting it should increase the score"

"Dog" (<1%) "Dog" (40%)

Example of other metrics

Perturbation:

● How sensitive is your metric to perturbations?

Compactness:

● Is your explanation too "big"? (e.g., for feature selection)

Connectedness:

● Are two candidate explanations "connected" in some sense?

More here: https://arxiv.org/abs/2201.08164

https://arxiv.org/abs/2201.08164

What mathematical properties should we expect?

Given a model, an input, an explanation method, and some metric …

… what formal (i.e., mathematical) properties should these things satisfy?

● e.g., "does the top-k% of features from this method guarantee a score

decrease of q% wrt some metric, model class, and input family?"

In general? Hard to prove such statements

● Neural networks are magic

What can we do from here?

Our work: under some conditions, one CAN guarantee formal properties

Special case: binary-valued feature attributions (i.e., feature selection)

Input x in Rn Attr α in {0,1}n

I have an attribution, but how do I "evaluate" it?

In vision: we can use the original model

Explanation

Method

ApplyMask

Classifier f

Classifier f

"Dog" (96%)

???
(ideally: "Dog")

What do we NOT want to happen?

"Dog" "Dog" "Cat"

*I made up this example, but it can happen. Trust me, bro!

This is usually NOT desirable

Intuition: the original feature selection you gave me is not "convincing"

Stability as a "desirable" property

≤ ≤ ≤

"Dog" "Dog" "Dog" "Dog"

Selected by your
favorite attribution method

Stability: any superset of features induces the same prediction

f(x⚬α) ≌ f(x⚬α') for all α ≤ α', where α = BinaryAttribution(f,x)

How can we achieve/guarantee stability!

You probably can't! (For Real ModelsTM)

● There's O(2n) different α' ≥ α binary vectors to check

But we can maybe go for local approximations (Incremental Stability)

+ a few additional
features

Given explanation

"Dog" "Dog"

The plan

1. Incremental stability via Lipschitz smoothness

2. Achieve incremental stability with multiplicative smoothing (MUS)

3. We can check if f is incrementally stable at some x in O(1) time.

"base classifier" h
Lipschitz-smooth

classifier f

MuS

Step 1: incremental stability

f() ≌ f()+Δ for all small Δ

Sufficient condition: Lipschitz wrt masking of features
● L1 norm on binary vectors = number of differences

)f(f()- -≤ λ|| ||
1

Definition (Lipschitz wrt Feature Maskings). The function f: Rn ➞ [0,1] is
λ-Lipschitz wrt the masking of features at x in Rn if:

f(x⚬α) - f(x⚬α') ≤ λ||α - α'||
1

for all α, α' in {0,1}n

for all ,

Step 2: Multiplicative Smoothing (MuS)

"base classifier" h λ-Lipschitz-smooth f
MuS

f(x) = MuS(h, x) = avg(h(x(1)), …, h(x(N)))

Sample s(1) … s(N)

each s(i)
j
 ~ Bern(λ)

x(1) … x(N) where
each x(i) = x⚬s(i)

Mask x h

h(x(1)) … h(x(N))

Theorem (MuS). Let D be any distribution on {0,1}n where each coordinate

of s ~ D is marginally distributed as s
i
 ~ Bern(λ) and let

g(x, α) = E
s~D

 h(x⚬α⚬s), for any h: Rn ➞ [0,1],

then g(x, α) is λ-Lipschitz in α wrt the L1 norm for all x.

Step 2: The Math

Recall f(x) = MuS(h, x) and let

g(x, α) = MuS(h, x⚬α) = avg(h(x⚬α⚬s(1)), …, h(x⚬α⚬s(N)))

Note: Lipschitz smoothness is a property of functions

D need NOT be coordinate-wise independent

● We just requires that each sample's coordinate marginally ~ Bern(λ)

● Allows for a deterministic evaluation with N ≪ 2n samples

○ Recall that Bernn(λ) has 2n unique values

Step 3: provable incremental stability

Suppose h: Rn ➞ [0,1]m is a classifier

Let f(x) = MuS(h, x) with parameter λ

Let α = BinaryAttribution(f, x), such that f(x) ≌ f(x⚬α)

Theorem (MuS). Suppose that

Class1Prob(f(x⚬α)) - Class2Prob(f(x⚬α)) ≥ 2λr,

then for any α' ≥ α with ||α' - α||
1

 ≤ r, we have f(x⚬α') ≌ f(x⚬α).

x x⚬α x⚬α' α α'

Basic summary of MuS

Step 1: stability is hard, so we go for incremental stability

● Key idea: Lipschitz constants

Step 2: "randomized" smoothing

● f(x) = MuS(h, x) = avg(h(x⚬s(1)), …, h(x⚬s(N)))

● f(x⚬α) = MuS(h, x⚬α) = avg(h(x⚬α⚬s(1)), …, h(x⚬α⚬s(N)))

Step 3: Lipschitz constants → stability guarantees

Experimental evaluations

E1: how good are the stability guarantees?

● How much incremental stability radius can we achieve?
○ for x in dataset with α = BinaryAttribution(f, x):

■ r = [Class1Prob(f(x⚬α)) - Class2Prob(f(x⚬α))] / 2λ

E2: what is the cost of smoothing?

● Smoothing inherently requires us to inject noise

● Accuracy degradation of f(x) = MuS(h, x)

E1: radius of incremental stabilities

Base classifier: h = Vision Transformer

BinaryAttribution: SHAP (top-25%)

Dataset: N = 2000 samples from ImageNet

E2: accuracy penalty of smoothing

Vision Dataset: ImageNet1K (N = 2000 samples)

Language Dataset: TweetEval (N = 2000 samples)

Takeaways

1. We give a way to provably check for incremental stability

2. MuS: randomly drops features to these guarantees

a. MuS(h, x) = avg(h(x⚬s(1)), …, h(x⚬s(N)))

b. g(x, α) = f(x⚬α) = MuS(h, x⚬α)

c. g(x, α) is λ-Lipschitz in α wrt the L1 norm

3. Lipschitz smooth gives lower-bound on the incremental stability radius

arXiv: https://arxiv.org/abs/2307.05902

https://arxiv.org/abs/2307.05902

Efficient Smoothing

Main challenge: MuS is defined in terms of an expected value

● Bernn(λ) has N=2n unique values (too many for the expected value!)

● MuS only requires that each coordinate is ~Bern(λ)
○ Do NOT need coordinate-wise independence

○ Algorithm below: N = q unique values

○ Main idea: use v as a pseudo-RNG seed, with 1-dim "randomness" s
base

