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Explainability

▪ Recap: Feature Attribution Methods 

o  LIME (Local Interpretable Model-agnostic Explanations) algorithm

o  SHAP methods based on cooperative game theory

o  Saliency Maps (different versions)

o  Formal guarantees for feature attribution methods

▪ Today’s agenda:

o  Counterfactuals

o  Representation-based explanations

▪  Resource: Tutorial on “Interpreting ML models” by Hima Lakkaraju
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Counterfactual

▪ As ML models are increasingly deployed to make high-stakes decisions (e.g., loan applications), it 
becomes important to provide recourse to affected individuals.

▪ Key publications: 

o  Counterfactual visual explanations; Goyal et al.; ICML 2019

o  Counterfactual explanations without opening the black box; Wachter et al.; 2018
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Counterfactual Explanations

What features need to be changed and by 

how much to flip a model’s prediction ?

(i.e., to reverse an unfavorable outcome). 



Counterfactual Explanation
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Predictive 
   Model

Deny Loan 

Loan Application

Recourse: Increase your salary by 5K & pay your credit card bills on time for next 3 months

f(x)

Applicant

Counterfactual Generation 
Algorithm



Generating Counterfactual
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Proposed solutions differ on:

▪ How to choose among 
candidate counterfactuals?

▪ How much access is needed to 
the underlying predictive 
model?



Minimum Distance Counterfactuals
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Distance Metric

Predictive Model Desired Outcome

Original Instance

Counterfactual

Choice of distance metric dictates what kinds of counterfactuals are chosen. 

Wachter et al. (2018) use normalized Manhattan distance. 



Minimum Distance Counterfactual Computation
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Wachter et. al. solve a differentiable, unconstrained version of the objective
 using ADAM optimization algorithm with random restarts. 

This method requires access to gradients of the underlying predictive model. 



Feasibility Challenge
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Not feasible to act upon these features!



Feasible Least Cost Counterfactuals
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▪     is the set of feasible counterfactuals (input by end user) 
E.g., changes to race, gender are not feasible 

▪ Cost is modeled as total log-percentile shift
 Changes become harder when starting off from a higher percentile value



Feasible Least Cost Counterfactuals
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How to solve such an optimization problem ?

When model f is linear, use ILP (integer linear programming)



Feasible Least Cost Counterfactuals
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How to handle non-linear classifiers ?

Generate a local linear model approximation (e.g. using LIME) around input x



Visual Counterfactuals
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Reference: Counterfactual visual explanations; Goyal et al.; ICML 2019



Visual Counterfactual Generation Problem

▪ Input images: source image I and target image I’ (called “distractor” image)

o  Each image has dimension (h x w) x d [ height h, width w, d channels]

▪ Model f: deep convolutional neural network mapping images to log-probability outputs in Y

o  Class predicted for source image I = c

o  Class predicted for target image I’ = c’

▪  Goal: Find image I* obtained from source image I by replacing parts of it with those from 
distractor image I’ such that prediction of f on I* is target class c’
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Visual Counterfactual Generation problem
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Minimum-edit Counterfactual

▪ f(I’)  captures distractor image features

▪ Find [hw x hw] dimensional permutation matrix P to obtain rearranged distractor features P.f(I’)

▪ Select a subset of these features and substitute these in f(I)

o Corresponds to finding a gating vector a (binary vector of size hw)

o We want to minimize the number of 1’s (= number of edits to image I) in the gating vector a 
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Minimum-edit Counterfactual
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Greedy Search 

▪ Too many choices for permutation matrix P and gating vector a

▪ Greedy strategy: Do edits one at a time

▪ Single edit: Find one feature out of hw possibilities in f(I) to be replaced with one feature in f(I’)

▪ Choose the edit that maximizes the prediction of class c’ for the edited image
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Greedy Search 
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Evaluation of CNN on MNIST Dataset 
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Evaluation of VGG-16
 on Caltech-UCSD Birds Dataset 
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Local vs. Global Explanations
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Explain individual predictions Explain complete behavior of the model

Help unearth biases in the local 
neighborhood of a given instance

Help shed light on big picture biases 
affecting larger subgroups 

Help vet if individual predictions are 
being made for the right reasons 

Help vet if the model, at a high level, is 
suitable for deployment



Representation-based Explanations

▪ Analyzing intermediate representations of a DNN can lead to model understanding

▪ Concept learning: Identify concepts that are semantically meaningful to humans and the model’s 
reliance on such concepts

Interpretability beyond feature attribution: Quantitative testing with Concept Activation Vectors (TCAV)

Kim et al.  ICML 2018
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Concept-based Explanations

How important is the notion of “stripes” for this prediction ?
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Zebra

(0.97)



Step 1: Specifying Concepts

▪ User needs to articulate the concepts of interest

▪ “Stripes” can be specified by giving positive examples

▪ Negative examples can be chosen randomly

 or given by the user
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Internal Layers in DNN
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Zebra

(0.97)

Input representation at layer l



Step 2: Compute Concept Activation Vector (CAV)

▪ Consider representations at layer l of all 
the positive and negative concept 
examples

▪ Train a linear classifier to separate positive 
from negative

▪ CAV: Vector orthogonal to the decision 
boundary
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Examples of the concept “stripes”

Random examples



Step 3: Compute Conceptual Sensitivity Score

▪ Recall: in saliency maps, sensitivity of output to an input 
feature/pixel is determined by the gradient w.r.t. input x

▪ vC
l is the unit CAV vector for concept C in layer l

▪ Conceptual sensitivity of output class k to concept C 
equals directional derivative:
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Step 4: Testing with CAV (TCAV)

▪ Let Xk be the set of all training inputs with label k

▪ Goal: Understand how a model f’s prediction for class k is 
sensitive to a given concept C

▪ TCAV score: Fraction of k-class training inputs whose l-
layer activation vector was positively influenced by 
concept C
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TCAV Illustration
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TCAV Evaluation
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TCAV Evaluation
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Explainability

▪ Previously: Feature Attribution Methods 

o  LIME (Local Interpretable Model-agnostic Explanations) algorithm

o  SHAP methods based on cooperative game theory

o  Saliency Maps (different versions)

o  Formal guarantees for feature attribution methods

▪ Today’s recap:

o  Counterfactuals

o  Representation-based explanations

▪  Next lecture: Data Attribution Methods
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