Lecture 21: Explainability

Trustworthy Machine Learning
Spring 2024



Explainability

= Recap: Feature Attribution Methods
o LIME (Local Interpretable Model-agnostic Explanations) algorithm
o SHAP methods based on cooperative game theory
o Saliency Maps (different versions)
o Formal guarantees for feature attribution methods

= Today’s agenda:
o Counterfactuals
o Representation-based explanations

= Resource: Tutorial on “Interpreting ML models” by Hima Lakkaraju



Counterfactual

= As ML models are increasingly deployed to make high-stakes decisions (e.g., loan applications), it
becomes important to provide recourse to affected individuals.

4 Counterfactual Explanations D
What features need to be changed and by
how much to flip a model’s prediction ?

(i.e., to reverse an unfavorable outcome).
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= Key publications:
o Counterfactual visual explanations; Goyal et al.; ICML 2019

o Counterfactual explanations without opening the black box; Wachter et al.; 2018



Counterfactual Explanation
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Recourse: Increase your salary by 5K & pay your credit card bills on time for next 3 months



Generating Counterfactual

Decision boundary

Proposed solutions differ on:

* How to choose among
candidate counterfactuals?

= How much access is needed to
the underlying predictive
model?



Minimum Distance Counterfactuals

Distance Metric
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Choice of distance metric dictates what kinds of counterfactuals are chosen.

Wachter et al. (2018) use normalized Manhattan distance.



Minimum Distance Counterfactual Computation
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Wachter et. al. solve a differentiable,unconstrained version of the objective
using ADAM optimization algorithm with random restarts.

This method requires access to gradients of the underlying predictive model.



Feasibility Challenge

Person 1: If your LSAT was 34.0, you would have
an average predicted score (0).

Person 2: If your LSAT was 32.4, you would have
an average predicted score (0).

Person 3: If your LSAT was 33.5, and you were
“white, you would have an average predicted score

0). :
© Not feasible to act upon these features!

Person 4: If your LSAT was 35.8, and you were
‘white’, you would have an average predicted score

0).

Person 5: If your LSAT was 34.9, you would have
an average predicted score (0).




Feasible Least Cost Counterfactuals

arg min d(, :U!) > arg min|cost| x, :z:’)
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A is the set of feasible counterfactuals (input by end user)
E.g., changes to race, gender are not feasible

Cost is modeled as total log-percentile shift
Changes become harder when starting off from a higher percentile value



Feasible Least Cost Counterfactuals

arg min d(, :Ef) arg min cost(xz, z")
x’ > x'c A
s.it. f(a') =1 sit. f(z') =1

How to solve such an optimization problem ?

When model f is linear, use ILP (integer linear programming)
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Feasible Least Cost Counterfactuals

arg min d(, :Ef) arg min cost(xz, z")
x’ > x'c A
s.it. f(a') =1 sit. f(z') =1

How to handle non-linear classifiers ?

Generate a local linear model approximation (e.g. using LIME) around input x
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Visual Counterfactuals

C= Crested Auklet ¢’= Red Faced Cormorant

Reference: Counterfactual visual explanations; Goyal et al.; ICML 2019
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Visual Counterfactual Generation Problem

= |nput images: source image | and targetimage |’ (called “distractor” image)
o Each image has dimension (h x w) x d [ height h, width w, d channels]

= Model f: deep convolutional neural network mappingimages to log-probability outputsin'Y
o Class predicted for source imagel=c
o Class predicted for target imagel’ = ¢’

= Goal: Find image I* obtained from source image | by replacing parts of it with those from
distractor image I’ such that prediction of f on I* is target class c’
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Visual Counterfactual Generation problem
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Figure 3. We decompose a CNN as a spatial feature extractor f{I)
and a decision network g( f(I)) as shown above.



Minimum-edit Counterfactual

= f(I’) captures distractor image features
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Figure 3. We decompose a CNN as a spatial feature extractor f(I)
and a decision network g( f(I')) as shown above.

= Find [hw x hw] dimensional permutation matrix P to obtain rearranged distractor features P.f(l’)

= Select a subset of these features and substitute these in f(l)
o Corresponds to finding a gating vector a (binary vector of size hw)

f(I*)=(1—a)e f(I) +ac Pf(I')

o We want to minimize the number of 1’s (= number of edits toimage ) in the gating vector a
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Figure 3. We decompose a CNN as a spatial feature extractor f(I')
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Figure 2. To parameterize our counterfactual explanations, we define a transformation that replaces regions in the query image I with
those from a distractor I'. Distractor image features f(I") are first rearranged with a permutation matrix P and then selectively replace
entries in f(I) according to a binary gating vector a. This allows arbitrary spatial cells in f(I') to replace arbitrary cells in f(I).
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Greedy Search

minimize ||al|;

Pa
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Too many choices for permutation matrix P and gating vector a

Greedy strategy: Do edits one at a time

Single edit: Find one feature out of hw possibilities in f(l) to be replaced with one feature in f(I’)

Choose the edit that maximizes the prediction of class ¢’ for the edited image
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Greedy Search

Algorithm 1 Greedy Sequential Search

Drata: query image I with class ¢, distractor I” with class ¢
Result: list of edits & that change the model decision
S+ ] F*+« filI) F' +« f(I)

f+* Until decision is changed to ¢ #
while ¢ #£ argmazr g(F*) do

/+* Find single best edit excluding
previocusly edited cells in 5 #

i, j" + BestEdit{ F'*, F'. S)

{+ Apply the edit and record it * /
Ft':l,:t — F_‘r{"_.t ,

S.append({i, j'})

end
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Evaluation of CNN on MNIST Dataset

Query image Distractor image Composite image

a1l
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Query image Distractor image Composite image

.
Evaluation of VGG-16

on Caltech-UCSD Birds Dataset . -

Blue Grosbeak
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Local vs. Global Explanations

Explain individual predictions

Explain complete behavior of the model

Help unearth biases in the local
neighborhood of a given instance

Help shed light on big picture biases
affecting larger subgroups

Help vetif individual predictions are
being made for the right reasons

Help vet if the model, at a high level, is
suitable for deployment
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Representation-based Explanations

= Analyzing intermediate representations of a DNN can lead to model understanding

= Concept learning: Identify concepts that are semantically meaningful to humans and the model’s
reliance on such concepts

Interpretability beyond feature attribution: Quantitative testing with Concept Activation Vectors (TCAV)

Kim et al. ICML 2018
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Concept-based Explanations
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How important is the notion of “stripes” for this prediction ?
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Step 1: Specifying Concepts

= User needs to articulate the concepts of interest

= “Stripes” can be specified by giving positive examples

= Negative examples can be chosen randomly

or given by the user

Bl . =
Yoo 3H0
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Internal Layersin DNN
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Step 2: Compute Concept Activation Vector (CAV)

Examples of the concept “stripes”

*@@2@@

Random examples

= Consider representations at layer | of all
the positive and negative concept
examples

= Train a linear classifier to separate positive
from negative

= CAV: Vector orthogonal to the decision
boundary

s
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Step 3: Compute Conceptual Sensitivity Score

= Recall: in saliency maps, sensitivity of output to an input
feature/pixel is determined by the gradient w.r.t. input x

= v/'is the unit CAV vector for concept C in layer |

= Conceptual sensitivity of output class k to concept C

equals directional derivative:
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Step 4: Testing with CAV (TCAV)

" Let X, be the set of all training inputs with label k

= Goal: Understand how a model f’s prediction for class k is
sensitive to a given concept C

= TCAV score: Fraction of k-class training inputs whose [-
layer activation vector was positively influenced by
concept C
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TCAV lllustration

TCAV score
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Directional derivative with CAV
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TCAV Evaluation

1. Sanity check experiment

cab image cab image with caption

2. Biases in Inception V3 and GoogleNet

3. Domain expert confirmation from Diabetic Retinopathy

DR level 4 Retina TCAV for DR level 4

: l l I

PRP PRH/VH NV/FP

TCAV score

VB
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TCAV Evaluation
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Explainability

= Previously: Feature Attribution Methods

o LIME (Local Interpretable Model-agnostic Explanations) algorithm
o SHAP methods based on cooperative game theory

o Saliency Maps (different versions)

o Formal guarantees for feature attribution methods

= Today’s recap:

o Counterfactuals
o Representation-based explanations

Next lecture: Data Attribution Methods
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