Lecture 21: Explainability

Trustworthy Machine Learning Spring 2024

Explainability

- Recap: Feature Attribution Methods
 - o LIME (Local Interpretable Model-agnostic Explanations) algorithm
 - $\circ~$ SHAP methods based on cooperative game theory
 - Saliency Maps (different versions)
 - $\circ~$ Formal guarantees for feature attribution methods
- Today's agenda:
 - \circ Counterfactuals
 - \circ Representation-based explanations
- Resource: Tutorial on "Interpreting ML models" by Hima Lakkaraju

Counterfactual

 As ML models are increasingly deployed to make high-stakes decisions (e.g., loan applications), it becomes important to provide recourse to affected individuals.

> **Counterfactual Explanations** What features need to be changed and by how much to flip a model's prediction ? (i.e., to reverse an unfavorable outcome).

- Key publications:
 - Counterfactual visual explanations; Goyal et al.; ICML 2019
 - $\,\circ\,$ Counterfactual explanations without opening the black box; Wachter et al.; 2018

Counterfactual Explanation

Recourse: Increase your salary by 5K & pay your credit card bills on time for next 3 months

Generating Counterfactual

Proposed solutions differ on:

- How to choose among candidate counterfactuals?
- How much access is needed to the underlying predictive model?

Minimum Distance Counterfactuals

Choice of distance metric dictates what kinds of counterfactuals are chosen.

Wachter et al. (2018) use normalized Manhattan distance.

Minimum Distance Counterfactual Computation

Wachter et. al. solve a differentiable, unconstrained version of the objective using ADAM optimization algorithm with random restarts.

This method *requires access to gradients* of the underlying predictive model.

Feasibility Challenge

Person 1: If your LSAT was 34.0, you would have an average predicted score (0).

Person 2: If your LSAT was 32.4, you would have an average predicted score (0).

Person 3: If your LSAT was 33.5, and you were 'white', you would have an average predicted score (0).

Person 4: If your LSAT was 35.8, and you were 'white', you would have an average predicted score (0).

Person 5: If your LSAT was 34.9, you would have an average predicted score (0).

Not feasible to act upon these features!

Feasible Least Cost Counterfactuals

- A is the set of feasible counterfactuals (input by end user)
 E.g., changes to race, gender are not feasible
- Cost is modeled as total log-percentile shift
 Changes become harder when starting off from a higher percentile value

Feasible Least Cost Counterfactuals

How to solve such an optimization problem ?

When model f is linear, use ILP (integer linear programming)

Feasible Least Cost Counterfactuals

How to handle non-linear classifiers ?

Generate a local linear model approximation (e.g. using LIME) around input x

Visual Counterfactuals

Reference: Counterfactual visual explanations; Goyal et al.; ICML 2019

Visual Counterfactual Generation Problem

Input images: source image I and target image I' (called "distractor" image)
 Each image has dimension (h x w) x d [height h, width w, d channels]

- Model f: deep convolutional neural network mapping images to log-probability outputs in Y
 - \circ Class predicted for source image I = c
 - \circ Class predicted for target image I' = c'
- Goal: Find image I* obtained from source image I by replacing parts of it with those from distractor image I' such that prediction of f on I* is target class c'

Visual Counterfactual Generation problem

Figure 3. We decompose a CNN as a spatial feature extractor f(I) and a decision network g(f(I)) as shown above.

Minimum-edit Counterfactual

Figure 3. We decompose a CNN as a spatial feature extractor f(I) and a decision network g(f(I)) as shown above.

- f(l') captures distractor image features
- Find [hw x hw] dimensional permutation matrix P to obtain rearranged distractor features P.f(I')
- Select a subset of these features and substitute these in f(I)
 Corresponds to finding a gating vector a (binary vector of size hw)

 $f(I^*) = (\mathbb{1} - \mathbf{a}) \circ f(I) + \mathbf{a} \circ Pf(I')$

• We want to minimize the number of 1's (= number of edits to image I) in the gating vector a

Minimum-edit Counterfactual

 $\begin{array}{ll} \underset{P,\mathbf{a}}{\text{minimize}} & ||a||_1\\ \text{s.t.} & c' = \operatorname{argmax} g((\mathbb{1} - \mathbf{a}) \circ f(I) + \mathbf{a} \circ Pf(I')) \end{array}$

Figure 3. We decompose a CNN as a spatial feature extractor f(I) and a decision network g(f(I)) as shown above.

Figure 2. To parameterize our counterfactual explanations, we define a transformation that replaces regions in the query image I with those from a distractor I'. Distractor image features f(I') are first rearranged with a permutation matrix P and then selectively replace entries in f(I) according to a binary gating vector a. This allows arbitrary spatial cells in f(I') to replace arbitrary cells in f(I).

Greedy Search

 $\begin{array}{ll} \underset{P,\mathbf{a}}{\text{minimize}} & ||a||_1\\ \text{s.t.} & c' = \operatorname{argmax} \ g((\mathbb{1} - \mathbf{a}) \circ f(I) + \mathbf{a} \circ Pf(I'))\\ & a_i \in \{0, 1\} \ \forall i \ \text{and} \ P \in \mathcal{P} \end{array}$

- Too many choices for permutation matrix P and gating vector a
- Greedy strategy: Do edits one at a time
- Single edit: Find one feature out of hw possibilities in f(I) to be replaced with one feature in f(I')
- Choose the edit that maximizes the prediction of class c' for the edited image

Greedy Search

Algorithm 1 Greedy Sequential Search

Data: query image I with class c, distractor I' with class c' Result: list of edits S that change the model decision $S \leftarrow [] F^* \leftarrow f(I) F' \leftarrow f(I')$ /* Until decision is changed to c' */

```
while c' \neq argmax \ g(F^*) do
```

```
/* Find single best edit excluding
    previously edited cells in S */
i,j' ← BestEdit(F*,F',S)
/* Apply the edit and record it */
F<sup>*</sup><sub>i,*</sub> = F'<sub>j',*</sub>
S.append({i,j'})
end
```

Evaluation of CNN on MNIST Dataset

Composite image

Query image

Distractor image

Composite image

Horned Grebe

Eared Grebe

on Caltech-UCSD Birds Dataset

Evaluation of VGG-16

Northern Fulmar

Anna Hummingbird

Ruby throated

Local vs. Global Explanations

Explain individual predictions

Help unearth biases in the *local neighborhood* of a given instance

Help vet if individual predictions are being made for the right reasons Explain complete behavior of the model

Help shed light on *big picture biases* affecting larger subgroups

Help vet if the model, at a high level, is suitable for deployment

Representation-based Explanations

- Analyzing intermediate representations of a DNN can lead to model understanding
- Concept learning: Identify concepts that are semantically meaningful to humans and the model's reliance on such concepts

Interpretability beyond feature attribution: Quantitative testing with Concept Activation Vectors (TCAV)

Kim et al. ICML 2018

Concept-based Explanations

How important is the notion of "stripes" for this prediction ?

Step 1: Specifying Concepts

- User needs to articulate the concepts of interest
- "Stripes" can be specified by giving positive examples

 Negative examples can be chosen randomly or given by the user

Internal Layers in DNN

Input representation at layer l

Step 2: Compute Concept Activation Vector (CAV)

- Consider representations at layer I of all the positive and negative concept examples
- Train a linear classifier to separate positive from negative
- CAV: Vector orthogonal to the decision boundary

Step 3: Compute Conceptual Sensitivity Score

- Recall: in saliency maps, sensitivity of output to an input feature/pixel is determined by the gradient w.r.t. input x
- v_c^I is the unit CAV vector for concept C in layer I
- Conceptual sensitivity of output class k to concept C equals directional derivative:

$$S_{C,k,l}(x) = \lim_{\epsilon \to 0} \frac{h_{l,k}(f_l(x) + \epsilon v_C^l) - h_{l,k}(f_l(x))}{\epsilon}$$
$$= \nabla h_{l,k}(f_l(x)) \cdot v_C^l, \qquad (1)$$

Step 4: Testing with CAV (TCAV)

- Let X_k be the set of all training inputs with label k
- Goal: Understand how a model f's prediction for class k is sensitive to a given concept C
- TCAV score: Fraction of k-class training inputs whose llayer activation vector was positively influenced by concept C

$$\text{TCAV}_{\mathbf{Q}_{C,k,l}} = \frac{|\{x \in X_k : S_{C,k,l}(x) > 0\}|}{|X_k|}$$

$$S_{C,k,l}(x) = \lim_{\epsilon \to 0} \frac{h_{l,k}(f_l(x) + \epsilon v_C^l) - h_{l,k}(f_l(x))}{\epsilon}$$
$$= \nabla h_{l,k}(f_l(x)) \cdot v_C^l, \qquad (1)$$

TCAV Illustration

Directional derivative with CAV

TCAV Evaluation

- 1. Sanity check experiment
- 2. Biases in Inception V3 and GoogleNet
- 3. Domain expert confirmation from Diabetic Retinopathy

cab image

cab

cab image with caption

TCAV Evaluation

Explainability

- Previously: Feature Attribution Methods
 - o LIME (Local Interpretable Model-agnostic Explanations) algorithm
 - $\circ~$ SHAP methods based on cooperative game theory
 - Saliency Maps (different versions)
 - $\circ~$ Formal guarantees for feature attribution methods
- Today's recap:
 - \circ Counterfactuals
 - \circ Representation-based explanations
- Next lecture: Data Attribution Methods