Lecture 22: Explainability

Trustworthy Machine Learning
Spring 2024
Explainability

- Recap: Feature Attribution Methods
 - LIME (Local Interpretable Model-agnostic Explanations) algorithm
 - SHAP methods based on cooperative game theory
 - Saliency Maps (different versions)
 - Formal guarantees for feature attribution methods
 - Counterfactuals
 - Representation-based explanations

- Today’s agenda: Data attribution methods
Dat Attribution

Understand how the choice of training data influences the model's prediction
Agenda

- Today:
 - Influence Functions
 - Datamodels

- Resources:
 - Understanding black-box predictions via influence functions; Koh et al.; ICML 2017
 - Datamodels: Predicting predictions from training data; Ilyas et al.; ICML 2022
 - TRAK: Attributing model behavior at scale; Park et al.; ICML 2023

 - Credit: Talk slides for above papers by the authors
“Dog”
Training data

Fish

Dog

Dog

Training

“Dog”
Why did the model make this prediction?
Why did the model make this prediction?

Which training points were most responsible for this prediction?
The influence of individual training points

Koh & Liang, Understanding Black-box Predictions via Influence Functions, ICML 2017
Training data z_1, z_2, \ldots, z_n
Fish

Dog

Training data z_1, z_2, \ldots, z_n

“Dog”

θ
Pick \(\hat{\theta} \) to minimize \(\frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) \)

Training data \(z_1, z_2, \ldots, z_n \)
Pick $\hat{\theta}$ to minimize $\frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta)$

Training data z_1, z_2, \ldots, z_n
Pick $\hat{\theta}$ to minimize $\frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta)$
Pick $\hat{\theta}$ to minimize $\frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta)$

Pick $\hat{\theta}_{z_{\text{train}}}$ to minimize

$$\frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) - \frac{1}{n} L(z_{\text{train}}, \theta)$$

Training data z_1, z_2, \ldots, z_n
"Dog" (82% confidence) vs. "Dog" (79% confidence)

Test input z_{test}
What is $L(z_{test}, \hat{\theta}_{z_{train}}) - L(z_{test}, \hat{\theta})$?
Why did the model make this prediction?

Which training points were most responsible for this prediction?

How would the prediction change if we removed a training point?
Problem

Repeatedly removing a training point and retraining the model is too slow
Problem: Repeatedly removing a training point and retraining the model is too slow.

Solution: Approximation via influence functions (a classical technique from the 1970s).
Influence functions

• Goal: Compute $L(z_{test}, \hat{\theta}_{-z_{train}}) - L(z_{test}, \hat{\theta})$

\[
\hat{\theta}_{-z_{train}} \overset{\text{def}}{=} \text{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) - \frac{1}{n} L(z_{train}, \theta)
\]
Influence functions

• Goal: Compute $L(z_{\text{test}}, \hat{\theta}_{-z_{\text{train}}}) - L(z_{\text{test}}, \hat{\theta})$

$$
\hat{\theta}_{-z_{\text{train}}} \overset{\text{def}}{=} \text{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) - \frac{1}{n} L(z_{\text{train}}, \theta)
$$

• Equivalent to removing $\frac{1}{n}$ weight from z_{train} in the empirical distribution, then renormalizing
Influence functions

• Goal: Compute $L(z_{test}, \hat{\theta}_{-z_{train}}) - L(z_{test}, \hat{\theta})$

$$
\hat{\theta}_{-z_{train}} \overset{\text{def}}{=} \arg\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) - \frac{1}{n} L(z_{train}, \theta)
$$

• Idea:
 • Assume $\frac{1}{n}$ is small
 • Use calculus to compute effect of removing ϵ weight from z_{train}
 • Linearly extrapolate to removing $\frac{1}{n}$ weight
Influence functions

• Goal: Compute $L(z_{test}, \hat{\theta}_{-z_{train}}) - L(z_{test}, \hat{\theta})$

$$
\hat{\theta}_{-z_{train}} \overset{\text{def}}{=} \arg\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) - \frac{1}{n} L(z_{train}, \theta)
$$

• Specifically, compute gradient of

$$
\hat{\theta}_{\epsilon,z_{train}} \overset{\text{def}}{=} \arg\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) + \epsilon L(z_{train}, \theta)
$$

w.r.t. ϵ.
Influence functions

- \(\hat{\theta}_{\epsilon,z_{\text{train}}} \overset{\text{def}}{=} \arg\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) + \epsilon L(z_{\text{train}}, \theta) \)

- Under smoothness assumptions,

\[
I_{\text{up,loss}}(z_{\text{train}}, z_{\text{test}}) \overset{\text{def}}{=} \frac{dL(z_{\text{test}}, \hat{\theta}_{\epsilon,z_{\text{train}}})}{d\epsilon} \bigg|_{\epsilon=0}
\]
Influence functions

- \(\hat{\theta}_{\epsilon, z_{\text{train}}} \) \(\overset{\text{def}}{=} \) \(\arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) + \epsilon L(z_{\text{train}}, \theta) \)

- Under smoothness assumptions,

\[
I_{\text{up,loss}}(z_{\text{train}}, z_{\text{test}}) \overset{\text{def}}{=} \left. \frac{dL(z_{\text{test}}, \hat{\theta}_{\epsilon, z_{\text{train}}})}{d\epsilon} \right|_{\epsilon=0}
\]

\[
= -\nabla_{\theta} L(z_{\text{test}}, \hat{\theta})^T H_{\hat{\theta}}^{-1} \nabla_{\theta} L(z_{\text{train}}, \hat{\theta})^T
\]

where \(H_{\hat{\theta}} \) \(\overset{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta}^2 L(z_i, \hat{\theta}). \)
Influence functions

1. \(\hat{\theta}_{\epsilon,z_{\text{train}}} \) \(\overset{\text{def}}{=} \arg\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) + \epsilon L(z_{\text{train}}, \theta) \)

2. Under smoothness assumptions,

\[
I_{\text{up,loss}}(z_{\text{train}}, z_{\text{test}}) \overset{\text{def}}{=} \frac{dL(z_{\text{test}}, \hat{\theta}_{\epsilon,z_{\text{train}}})}{d\epsilon} \bigg|_{\epsilon=0}
\]

\[
= -\nabla_{\theta} L(z_{\text{test}}, \hat{\theta})^T H_{\hat{\theta}}^{-1} \nabla_{\theta} L(z_{\text{train}}, \hat{\theta})^T
\]

where \(H_{\hat{\theta}} \overset{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} \nabla_{\hat{\theta}}^2 L(z_i, \hat{\theta}) \).

3. \(L(z_{\text{test}}, \hat{\theta}_{z_{\text{train}}}) - L(z_{\text{test}}, \hat{\theta}) = -\frac{1}{n} I_{\text{up,loss}}(z_{\text{train}}, z_{\text{test}}) \)
Debugging Models with Influence Functions

- Task: Image Classification
- Model 1: Support Vector Machine (SVM) with Radical Basis Function (RBF) kernel
- Model 2: Inception v3 network from CNN family
- Training dataset: ImageNet
Debugging Models with Influence Functions

- Task: Image Classification
- Model 1: Support Vector Machine (SVM) with Radical Basis Function (RBF) kernel
- Model 2: Inception v3 network from CNN family
- Training dataset: ImageNet
- Sample correct prediction by both models: Fish

- Question: Which training images were most influential in the model’s prediction?
Debugging Models with Influence Functions
Debugging Models with Influence Functions
Applications of Influence Functions

- Understanding model predictions
- Adversarial training examples
- Debugging domain mismatch (i.e. distribution shift in test-data vs. training-data)
- Fixing mislabeled examples
The influence of groups of training points

Koh*, Ang*, Teo*, & Liang, On the Accuracy of Influence Functions for Measuring Group Effects [under review]
Datamodes

- Datamodes: Predicting predictions from training data; Ilyas et al.; ICML 2022
- TRAK: Attributing model behavior at scale; Park et al.; ICML 2023
Anatomy of an ML Prediction

Training set \(S \) + Learning algorithm + Test input \(x \) → "dog" (85%) Model output

Question: How do training data and learning algorithms combine to yield model outputs?
Datamodels: Data-to-Output Modeling

What we are trying to compute (model output function):

Output of interest on x
(think: margin of correct class)
after training on S'

$$f(x, S') \approx \hat{f}(x, S')$$

Datamodeling framework: Find a surrogate function \hat{f} that approximates f, while also being simple/easy to analyze

Specific input x

Subset S' of the training set S
Model Choice: Linear

\[\hat{f}(x, S') = \theta_x^\top 1_{S'} \]

Learned parameter: vector of weights (one weight per training example in \(S \))

Indicator vector of \(S' \)

Remaining question: how do we fit the parameters \(\theta_x \)?

\[[1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0] \]
How to fit a datamodel

Use supervised learning:

\((S_1, f(x, S_1))\)

Fix a specific target example \(x\)
How to fit a datamodel

Use supervised learning:

$(S_1, f(x, S_1)), (S_2, f(x, S_2))$

Fix a specific target example x
How to fit a datamodel

Use supervised learning:

\{(S_1, f(x, S_1)), (S_2, f(x, S_2)), \ldots, (S_m, f(x, S_m))\}

Then: Fit the linear model to this data
Fitting a datamodel
(for a specific target example x)

$$\{ (S_1, f(x, S_1)), (S_2, f(x, S_2)), \ldots, (S_m, f(x, S_m)) \}$$

Minimize over all possible weights

$$\theta_x = \min_{w \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^{m} \left(w^T 1_{S_i} - f(x, S_i) \right)^2 + \lambda \| w \|_1$$

Datamodel prediction for margin on target example x after training on S_i, i.e., $g(S_i)$

ℓ_1 regularization (for sparsity + generalization)

Average over all sampled subsets S_i

True (observed) margin from training on S_i and evaluating on x
Putting it all together

Constructing datamodels for DNNs trained on CIFAR-10:

→ Repeat 500,000 times:
 → Choose a random α-fraction of the CIFAR-10 trainset
 → Train a model (ResNet-9) on this subset
 → Measure correct-class margin on every test image
 → For each test image, record the pair: (characteristic vector of the subset, vector of margins)

→ For each test image (10,000 total images):
 → Fit linear model from indicator vectors \rightarrow margins

Result: 10,000 datamodels, each parameterized by $\theta_x \in \mathbb{R}^{50,000}$
Evaluating datamodels

Idea: Sample new subsets S_i, compare predictions to reality

Specifically: Aggregate over target examples x (each with their own separate datamodel $g_{θ_x}$) and random subsets S_i of the training set:

$$\mathbb{E}[f(x, S_i)]$$

Datamodels **successfully** predict end-to-end training

(Why? [Saunshi Gupta Braverman Arora 2022])

Predicted margin $θ_x \cdot 1_{S_i}$ (passing the characteristic vector of S_i through the datamodel for x)
Applying datamodels

\[f(x, S') \approx \theta_x^\top 1_{S'} \]

Datamodels provide a versatile framework for analyzing model predictions and data.

We can use datamodels:

→ To analyze **model brittleness**
→ To predict **data counterfactuals**
→ To find **train-test leakage**
→ As a rich **embedding** that encodes latent structure
→ To **compare** learning algorithms [Shah Park & Madry 2022]
DataModels: Analyzing model brittleness

Removing nine images

“boat” (71% confidence)

“airplane”

~25% of examples misclassified by removing < 0.2% of training examples
Datamodels: Comparing learning algs

Given Algorithms 1 and 2, use datamodels to compare model classes M_1 and M_2 in terms of how they rely on training data.

- **Example x:**
 - **Datamodel for algorithm 1:**

 \[
 \theta^{(1)}_x = \begin{array}{c}
 \text{Datamodel for} \\
 \text{algorithm 1}
 \end{array}
 \]

 - **Datamodel for algorithm 2:**

 \[
 \theta^{(2)}_x = \begin{array}{c}
 \text{Datamodel for} \\
 \text{algorithm 2}
 \end{array}
 \]

- **All N training examples:**

 - j^{th} coordinate = dependence on j^{th} training example

Datamodels $\theta^{(1)}_x$ and $\theta^{(2)}_x$ live in the same train set space → can make "apples-to-apples" comparison for example x.
Takeaways so far

Datamodels:
A framework for understanding both data and predictions

→ Learn data-to-output mapping using supervised learning
→ Simple *linear* instantiation works really well
→ A versatile tool for model-data understanding

But: Very expensive to compute!

Can we do things faster?
Stepping back: Data attribution

A data attribution method is a function $\tau : \mathcal{X} \rightarrow \mathbb{R}^{|S|}$

Intuitively: $\tau(x)_i = \text{importance of the } i\text{-th training example}$

$\tau(\) = \begin{bmatrix} 0.1 & -0.02 & 0.03 & -0.04 & 0.2 & 0.03 & -0.1 \end{bmatrix}$

Ex: Influence functions, Shapley values, TracIn

[Ghorbani Zou '19, Jia et al. '19, Pruthi et al. '19, Feldman Zhang '20]

Question: How to compare different methods?

Main idea: Connect back to datamodels!
Formalizing attribution with datamodels

A **data attribution method** is a function \(\tau : \mathcal{X} \rightarrow \mathbb{R}^{|S|} \)

Indicator vector of \(S' \subset S \)

\[
[1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0]
\]

\(\tau(x)_i \) = “effect” of training example \(x_i \) on model output at \(x \)

\[
\hat{f}(x, S') = 1_{S'} \cdot \tau(x)
\]

Data attribution method

Want \(\tau(\cdot) \) to assign high score to **counterfactually meaningful** training examples

So: Construct “predicted” output from attribution scores
Formalizing attribution with datamodels

Evaluate predictiveness: Sample new subsets S_i, compare actual model outputs and outputs predicted by τ

![Diagram showing actual output $\mathbb{E}[f(x, S_i)]$ vs. predicted output $\mathbf{1}_{S_i} \cdot \tau(x)$]

Metric (Linear Datamodeling Score):
Correlation between **actual** and **predicted** outputs
Efficacy vs Efficiency

Data attribution should be both **effective** and **efficient**

Linear Datamodeling Score (LDS)
Correlation between **true** model output $f(x, S')$ and **predicted** model output $1_{S_i} \cdot \tau(x)$
Evaluating attribution methods

![Graphs showing correlation (LDS) vs. computation time (mins) on 1xA100 for ResNet-9 on CIFAR-10 and BERT-base on QNLI. The graphs compare different attribution methods: Datamodel [IPE+22], Emp. Influence [FZ20], Representation Sim., GAS [HL22], IF-Arnoldi [SZV+22], IF [KL17], and TracIn [PLS+20].]
Evaluating attribution methods

Can we design a method that is both scalable and predictive in large-scale settings?
Our approach: TRAK
Goal: Scalable and effective attribution for large-scale NNs

Q: Is there a simpler class of models that we can attribute well?

Yes! **Generalized linear models (GLM)**

[Prechelt ’81] [Wojnowicz et al. ’16] [Koh Ang Teo Liang ’19]

Key idea: Reduce complex models → GLM, then apply known methods
Approximation approach: TRAK

Tracing with the Randomly-projected After Kernel

For the experts: TRAK linearizes the model using the empirical neural tangent kernel (eNTK), also known as the after kernel

Our approach: Taylor approximation

\[f(x, \theta) \approx f(x; \theta^*) + \nabla_\theta f(x; \theta^*) \cdot (\theta - \theta^*) \]

Final parameters (constant wrt \(\theta \))

This is a linear function in the parameter \(\theta \)
TRAK: Summary

1. Linearization
2. Random Projection
3. Data attribution with classical methods
4. Ensembling

Original neural network → High-dimensional linear model → Low-dimensional linear model → TRAK scores

\(\tau(x) \)

Influence estimates for single model
Evaluating TRAK
Evaluating TRAK

In particular: TRAK speeds up datamodels by 100x-1000x
Applications

In our paper, we apply TRAK to:

- CLIP
- Language models
- ImageNet classifiers
Applications

In our paper, we apply **TRAK** to:

- CLIP
- Language models
- ImageNet classifiers
Applying TRAK to LLMs

“Lionel Messi won the Ballon d’Or seven times.”

Possible questions to ask about this output:

→ Why did the language model output this answer?

→ Can we identify the training data that led to this output?

One lens for studying this question: Fact tracing
Applying TRAK to fact tracing

“Players with the most Ballon d’Or wins include Lionel Messi (7) and Cristiano Ronaldo (5).”

“At Qatar, Lionel Messi helped Argentina to its first world cup title in 36 years.”

“Lionel Messi won the Ballon d’Or seven times.”

FTrace-TREx [Akyurek et al. ’22]
from torchvision import models

from trak import TRAKer

model = models.resnet18()
checkpoint = model.state_dict()
train_loader, val_loader = ...

traker = TRAKer(model=model, task='image_classification', train_set_size=...)

traker.load_checkpoint(checkpoint)
for batch in train_loader:
 traker.featureize(batch=batch, num_samples=batch_size)
traker.finalize_features()

traker.start_scoring_checkpoint(checkpoint, num_targets=...)
for batch in val_loader:
 traker.score(batch=batch, num_samples=batch_size)
scores = traker.finalize_scores()

Try it! github.com/MadryLab/trak
Explainability Recap

- Feature Attribution Methods
 - LIME (Local Interpretable Model-agnostic Explanations) algorithm
 - SHAP methods based on cooperative game theory
 - Saliency Maps (different versions)
 - Formal guarantees for feature attribution methods
 - Counterfactuals
 - Representation-based explanations

- Data attribution methods
 - Influence Functions
 - Datamodels

- Next lecture: Neurosymbolic Learning (guest lecture by PhD student Ziyang Li)