Lecture 22: Explainability

Trustworthy Machine Learning
Spring 2024

Explainability

= Recap: Feature Attribution Methods

o LIME (Local Interpretable Model-agnostic Explanations) algorithm
SHAP methods based on cooperative game theory
Saliency Maps (different versions)
Formal guarantees for feature attribution methods
Counterfactuals

O O O O O

Representation-based explanations

= Today’s agenda: Data attribution methods

Dat Attribution

——— Mdlignant

Understand how the choice of training data influences the model's prediction

Agenda

= Today:

o Influence Functions
o Datamodels

= Resources:

o Understanding black-box predictions via influence functions; Koh et al.; ICML 2017
o Datamodels: Predicting predictions from training data; llyas et al.; ICML 2022
o TRAK: Attributing model behavior at scale; Park et al.; ICML 2023

o Credit: Talk slides for above papers by the authors

Fish

Training

Training data

Why did the model make this
prediction?

Why did the model make this
prediction?

Which training points were most
responsible for this prediction!?

The influence of
individual training points

Koh & Liang, Understanding Black-box Predictions via Influence Functions, ICML 2017

Training data z4, z,, ..., Zp,

Training data z4, z,, ..., Zp,

“Dog

D)

)

Pick 8 to minimize %21{;1 L(z;,0)

)

“Dog

D)

Training data z4, z,, ..., Zp,

Pick 8 to minimize %21{;1 L(z;,0)

)

“Dog

Ztrain

D)

Training data z4, z,, ..., Zp,

Pick 8 to minimize %Z?ﬂ L(z;,0)

)

“Dog

Ztrain

D)

Training data z4, z,, ..., Zp,

Pick H_Zt _to minimize

ZL(zue) —L(Zerains 0)

“Dog”

Ztrain

>

—Ztrain

Training data z4, z,, ..., Zp,

“Dog” (82% confidence) “Dog” (79% confidence)

VS.

Test input Z; .

“Dog” (82% confidence) “Dog” (79% confidence)

@ vs.
6 —Ztrain

; ;; What is L(Ztest, é_ztrain) — L(Ztest, é)?
&

Why did the model make this
prediction?

Which training points were most
responsible for this prediction!?

l

How would the prediction change if
we removed a training point?

Repeatedly removing a training point

Problem g .
and retraining the model is too slow

Repeatedly removing a training point

Problem g .
and retraining the model is too slow

Approximation via influence functions

Solution (a classical technique from the 1970s)

Influence functions
* Goal: Compute L(Ztest, é_ztmm) — L(Ztest, é)

é_ztram £ argmingcg — z L(z;,0) — L(Ztram, 6)

Influence functions
* Goal: Compute L(Ztest, é_ztmin) — L(Ztest, é)

é_ztrain Ll argmingeg — z L(z;,0) — L(Ztmm, 6)

: .1 : ,
* Equivalent to removing ~ weight from Z;,.,i,, in the

empirical distribution, then renormalizing

Influence functions

* Goal: Compute L(Ztest, é_ztmin) — L(Ztest, é)

>

H—Ztmin = argmingeg = z L(Zu H) L(Zt'ram: 8)

* |dea;

1

e Assume - is small

* Use calculus to compute effect of removing € weight

: .1
* Linearly extrapolate to removing - weight

Influence functions
* Goal: Compute L(Ztest, é_ztmm) — L(Ztest, é)

é_ztmm Ll argmingeg — z L(z;,0) — L(Ztmm, 6)

* Specifically, compute gradient of

A

He,ztmm = arngHBEG) z L(Zi: 9) + €L (Ztrain» 9)

w.r.t. €.

Influence functions

P

def 1 1
= dIrgimniNgecq EZ?=1 L(Zi; 9) + €L (Ztrain' 9)

€ 2train

* Under smoothness assumptions,

def dL (ZtBSt’ He»ztrain)
Iup,loss (Ztrain Zeest) & de

€=0

Influence functions

P

def 1 1
= dIrgimniNgecq EZ?=1 L(Zi; 9) + €L (Ztrain' 0)

€ 2train

* Under smoothness assumptions,

def dL (ZteSt’ HE;Ztrain)
Iup,loss (Ztrain Zeest) & de

€=0
~NT 1 N
= —VQL(Ztest' 8) H@ VQL(ZtTam’ 6)

where Hy = %Z?:l VoL(z;,0).

Influence functions

P

He,ztmin = argmingeg — Zl 1L(2;,0) + €L(Ztrain, 0)

* Under smoothness assumptions,

I (_) def dL(ZtQSt’ EZtram)
up,loss\Ztrain, Ztest de

€=0
~NT 1 N
= —VQL(Ztest' 8) H@ VQL(ZtTam’ 6)

where Hy = %Z?:l VoL(z;,0).

L (Ztestr —Ztram) L (ZtBSt' 6) up loss (Zt‘ramr Ztest)

Debugging Models with Influence Functions

Task: Image Classification

Model 1: Support Vector Machine (SVM) with Radical Basis Function (RBF) kernel

Model 2: Inception v3 network from CNN family

Training dataset: ImageNet

Debugging Models with Influence Functions

Task: Image Classification
Model 1: Support Vector Machine (SVM) with Radical Basis Function (RBF) kernel
Model 2: Inception v3 network from CNN family

Training dataset: ImageNet

Sample correct prediction by both models: Fish

Question: Which training images were most

influential in the model’s prediction?

Debugging Models with Influence Functions

RBF SVM

Debugging Models with Influence Functions

RBF SVM Inception

Applications of Influence Functions

= Understanding model predictions
= Adversarial training examples
= Debugging domain mismatch (i.e. distribution shift in test-data vs. training-data)

= Fixing mislabeled examples

10

The influence of
groups of training points

Koh*, Ang*, Teo*, & Liang, On the Accuracy of Influence Functions for Measuring Group Effects
[under review]

Datamodels

= Datamodels: Predicting predictions from training data; llyas et al.; ICML 2022

= TRAK: Attributing model behavior at scale; Park et al.; ICML 2023

Anatomy of an ML Prediction

Training set S Learning algorithm Test input x

e 1 '7.‘., P
i

. M‘ — "dog" (85%)

Model output

Question: How do training data and learning
algorithms combine to yield model outputs?

Datamodels: Data-to-Output Modeling

What we are trying to compute (model output function):

Output of interest on x
(think: margin of correct class) Datamodel for x

after training on §' ~
“fx5) = f(x,S)

Datamodeling framework: Find a surrogate function f that

approximates f, while also being simple/easy to analyze
Specific input x Subset S’ of the training set S

Model Choice: Linear

f(x,8) =01,

\

Learned parameter: vector _
Indicator vector of §’

of weights (one weight per

training example in S)

[0 £ [

[£ [

Remaining question: how

<
X

do we fit the parameters 6.7

\ 4

[1010010000001010]

How to fit a datamodel

Use supervised learning:

s s s =
s s s =
Ol < | X s
s =04 501 =
B
= s s =
X X | X g

_ _ _ —_
= = = =
X = = X

(Spf(x, 51)

(x,
(x,

(x,y)

(x, y)

Fix a specific target example x

How to fit a datamodel

Use supervised learning:

s =04 51 =
s s =1 =
OOl < EReeRg X<
s =1 =51 =
SRR =< =

=8 BEl e
-y B3

(

y)

= = = =
= & = X
= = = =
= X X X
= = = =
= = = =

(51, f0x, 51), (52, f(%,55))

Fix a specific target example x

How to fit a datamodel

Use supervised learning:

1 £ 1 £ 0 0

oY)y |y B GGY)
T [2% 0 D
X, X, X,

)|y By Ry

A
JHE
-

!

1051, 102, 81)), (82, /(x, 53)), -, (5,0, J(X, 5,)) }

Then: Fit the linear model to this data

Fitting a datamodel

(for a specific target example x)

1051, 1%, 81)), (82, /%, 55)), -, (5,0, J(X, 5,)) }

Datamodel prediction for

Minimize over all margin on target example x ¢, regularization
possible weights after training on S, i.e., g(S;) (for sparsity +

/ generalization)
| & /

2
6. = min — (WTISi — flx, S,-)) + Allwlf;

weR4 m 4
l=1 \

T True (observed) margin

Average over all from training on S; and

sampled subsets S; evaluating on x

Putting it all together

Constructing datamodels for DNNs trained on CIFAR-10:

Requires training 1000s of models!
— Repea 500’000 times: Made possible by FFCV (ffcv.io)

— Choose a random a-fraction of the CIFAR-10 trainset
— Train a model (ResNet-9) on this subset

— Measure correct-class margin on every test image
— For each test image, record the pair:

(characteristic vector of the subset, vector of margins)

— For each test image (10,000 total images):
— Fit linear model from indicator vectors — margins

Result: 10,000 datamodels, each parameterized by 6. € R0

Evaluating datamodels
Idea: Sample new subsets S;, compare predictions to reality

Specifically: Aggregate over target examples x (each with their own
separate datamodel gy) and random subsets §; of the training set:

204

Individual target examples
Actual margin 10

E[f(x, 5)] ‘

()

(i.e., only varying §))

(P

Datamodels successfully predict end-to-end training

é (Why’? [Saunshl Gupta Braverman Arora 2022])
(Passing tne characteristic

Pl'edICted margin Qx ISZ. vector of §; through the

datamodel for x)

Applying datamodels
f(x,8) ~ 01,

Datamodels provide a versatile framework
for analyzing model predictions and data

We can use datamodels:

— To analyze model brittleness

— To compare |learning algorithms (shah Park | Madry 2022]

Datamodels: Analyzing model brittleness

s A

Removing
E nine images l E
“boat” “airplane”

(71% confidence)

~25% of examples misclassified by removing
< 0.2% of training examples

Datamodels: Comparing learning algs

Given Algorithms 1 and 2, use datamodels to compare model
classes M; and M, in terms of how they rely on training data

D del f ; - e
oy BRI EE EFE
¥ 0= HE H

j™ coordinate = dependence on j™ training example

_. x HE NN
Example x Datamodel for | — |
P algorithm 2 All N training examples

Datamodels 8" and 8 live in the same train set space —

can make "apples-to-apples” comparison for example x

Takeaways so far

Datamodels:

A framework for understanding both data and predictions

— Learn data-to-output mapping using supervised learning

— Simple linear instantiation works really well

— A versatile tool for model-data understanding
But: Very expensive to compute!

Can we do things faster?

Stepping back: Data attribution

A data attribution method is a function 7 : & — R/

Intuitively: 7(x), = importance of the i-th training example

[0.1 -0.02 0.03 -0.04 0.2 0.03 -0.1]

Ex: Influence functions, Shapley values, Tracln
[Ghorbani Zou 19, Jia et al. '19, Pruthi et al. ‘19, Feldman Zhang ‘'20]

Question: How to compare different methods?

Main idea: Connect back to datamodels!

Formalizing attribution with datamodels

A data attribution method is a function 7 : & — R/

Indicator vector of ' C S 7(x); = "effect” of training example x;
[1000001001010010] on model output at x

]['(x, S/) — IS/ . Datama::;“i:;tion

Want 7(-) to assign high score to counterfactually
meaningful training examples

So: Construct “predicted” output from attribution scores

Formalizing attribution with datamodels

Evaluate predictiveness: Sample new subsets §,,

compare actual model outputs and outputs predicted by =

A

Actual output

E[f(x,5)]

Ideally, y=x

>

Predicted output 1 s - T(x)

Metric (Linear Datamodeling Score):
Correlation between actual and predicted outputs

Efficacy vs Efficiency

Data attribution should be both effective and efficient

ResNet-9 on CIFAR-10

BERT-base on QNLI

0.6 4 t

0.6

0.4 - "

0.2 0.2 -
0 ‘ -+ 0

10 100 102 102 10* 10° 10!

Linear Datamodeling Score (LDS)

Correlation

between true model output f(x,S") and

predicted model output 1g - 7(x)

| | [| >
102 10° 10% 10°

Evaluating attribution methods

Datamodel [[PE+22] ¢ Emp. Influence [FZ20] © IF-Arnoldi [SZV+22] o IF [KL17]
o Representation Sim. GAS [HL22] Tracln [PLS+-20]

ResNet-9 on CIFAR-10 BERT-base on QNLI

&=
>
>
>

0.6 -

=)
e~
|

0.4 -

<

[\
|

<

0.2 f%§

% o B ¢ &
| | | | | » 0 . |
10° 10t 10 10° 10 10° 10 10° 10° 10* 10°
Computation time (mins) on 1xA100 Computation time (mins) on 1xA100
(< more efficient) (< more efficient)

Correlation (LDS)
(more accurate —)
>

-

Evaluating attribution methods

o Datamodel [IPE+22] ¢ Emp. Influence [FZ20] © IF-Arnoldi [SZV+22] o IF [KL17]

o Representation Sim. > GAS [HL22] Tracln [PLS+20]
ResNet-9 on CIFAR-10 BERT-base on QNLI
A
—~)
8 T Good data attribution © 0.6
= 4% 4 |'methods should be here o
+~ QO -
=
S o ° ¢ 0.2 - ; % ¢
3 g ¥ 5 0 '
- Pe . AW e
0 | — » | | = » 0+ $ $ | | —>
10° 10t 102 10> 10* 10° 10 10° 10° 10 10°
Computation time (mins) on 1xA100 Computation time (mins) on 1xA100
(+— more efficient) (<= more efficient)

Can we design a method that is both

scalable and predictive in large-scale settings?

Our approach: TRAK

Goal: Scalable and effective attribution
for large-scale NNs

% o

Arbitrary (differentiable)
model

Generalized linear models

Q: Is there a simpler class of models that we can attribute well?

Yes! Generalized linear models (GLM)
[Pregibon ‘81] [Wojnowicz et al. “16] [Koh Ang Teo Liang ‘19]

Key idea: Reduce complex models = GLM,
then apply known methods

Approximation approach: TRAK

Tracing with the Randomly-projected After Kernel

Q.
- - * 9
| ' : : Inputs:
gp: For the experts: TRAK linearizes pv o 0%)
u . . . ’
b the model using the empirical Outgut:
o neural tangent kernel (eNTK), also V, f(x;0%)70
Original neural known as the after kernel
network OF:] A

) linear model
complicated

Our approach: Taylor approximation

J(x, 0) = f(x; ?*) + Vo f(x;0%) - (0-0%)

Final parameters (constant wrt 6)

This is a linear function in the parameter 0

TRAK: Summary

Step 1:
Linearization

—

Step 2:

\Random Projection

Original neural High-dimensional
network linear model

Step 4:
Ensembling Low-dimensional
/ linear model

Step 3:

Data attribution with
classical methods

7(x) — .

TRAK scores Influence estimates
for single model

Correlation
(more accurate —)

Evaluating TRAK

Datamodel [IPE+22] IF-Arnoldi [SZV+22] IF [KL17] Representation Sim.
GAS [HL22] TracIn [PLS+20]

ResNet-9 on CIFAR-10 BERT-base on QNLI
0.6 -
0.6
0.4 -
0.4 -
0.2 - 02
0] | | | | | O - | | | |
10 108 102 10® 10* 10° 10t 102 103 10% 10°
Computation time (mins) on 1xA100 Computation time (mins) on 1xA100

(< more efficient) (< more efficient)

Evaluating TRAK

TRAK Datamodel [[PE~+22] IF-Arnoldi [SZV+22] IF [KL17]
Representation Sim. GAS [HL22] Tracln [PLS+20]
ResNet-9 on CIFAR-10 BERT-base on QNLI
0.6~
T | 0,6 -
= 100 models 20,000 models
S % 04- ®
= 2 0.4 -
S S
8 v 0.2 - 0.2 -
3
B
O o | \ \ \ | 0 1 \ \ \ \
10° 10" 10* 10° 10 10> 10" 10° 10° 10* 10°
Computation time (mins) on 1xA100 Computation time (mins) on 1xA100
(«+— more efficient) («<— more efficient)

In particular: TRAK speeds up datamodels by 100x-1000x

Applications

In our paper, we apply TRAK to:
» CLIP

» Language models 2 BERT mT5
» ImageNet classifiers

Applications

In our paper, we apply TRAK to:

» Language models ¥) BERT, mT5

Applying TRAK to LLMs

“Lionel Messi won the
Ballon d'Or seven times.”

Possible questions to ask about this output:

— Why did the language model output this answer?

— Can we identify the training data that led to this output?

One lens for studying this question: Fact tracing

Applying TRAK to fact tracing

“Players with the most Ballon d'Or
wins include Lionel Messi (7) and
Cristiano Ronaldo (5).”

“At Qatar, Lionel Messi helped
Argentina to its first world cup title x “Lionel Messi won the
in 36 years.” .
y Ballon d'Or seven times.”

FTrace-TREXx
[Akyurek et al. '22]

PyTorch API

from torchvision import models
from trak import TRAKer

model = models.resnetl18()
checkpoint = model.state_dict()
train_loader, val_loader =

traker = TRAKer(model=model, task='image_classification', train_set_size=...)

traker.load_checkpoint(checkpoint)
for batch in train_loader:
traker.featurize(batch=batch, num_samples=batch_size)

traker.finalize_features()

traker.start_scoring_checkpoint(checkpoint, num_targets=...)
for batch in val_loader:

traker.score(batch=batch, num_samples=batch_size)
scores = traker.finalize_scores()

Try it! github.com/Madrylab/trak

Explainability Recap

= Feature Attribution Methods

o LIME (Local Interpretable Model-agnostic Explanations) algorithm
SHAP methods based on cooperative game theory
Saliency Maps (different versions)
Formal guarantees for feature attribution methods
Counterfactuals

O O O O O

Representation-based explanations

= Data attribution methods
o Influence Functions
o Datamodels

= Next lecture: Neurosymbolic Learning (guest lecture by PhD student Ziyang Li)

	l22
	Lecture 22: Explainability
	Explainability
	Slide Number 3
	Agenda
	Debugging Models with Influence Functions
	Debugging Models with Influence Functions
	Debugging Models with Influence Functions
	Debugging Models with Influence Functions
	Debugging Models with Influence Functions
	Applications of Influence Functions
	Datamodels
	Explainability Recap

	Lecture22
	Lecture22short
	Lecture 22: Explainability
	Explainability
	Debugging Models with Influence Functions
	Debugging Models with Influence Functions
	Datamodels
	Explainability Recap

	InfluenceFunctionsShort
	Datamodels-short

