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Robustness to Distribution Shift

* Neural networks generalize well on distribution

* Ideal scenario
* Test set and training set are i.i.d. from the same distribution

* Equivalently: Test set is obtained by shuffling entire dataset and then splitting

* Often fails in practice! “Distribution shift”



Robustness to Distribution Shift

* Images/computer vision
* Added noise, color shifts, lighting changes, different resolution, etc.

* Audio/speech-to-text
* Noisy background, changes in recording device, etc.

* Natural language processing
e Substitute synonyms, add unrelated text, etc.



Example: Synthetic Perturbations

Hendrycks & Dietterich, Benchmarking Neural Network Robustness to Common Corruptions and Perturbations



Example: Synthetic Perturbations

* Question: Why should the model be robust?

e Answer: Humans are robust!



Example: Synthetic Perturbations

* Significantly reduces performance
e 20% error rate =2 80% error rate

e Data augmentation can help (but not 100% solution)



Data Augmentation

CutOut MixUp CutMix

Figure 1: A visual comparison of data augmentation techniques. AUGMIX produces images with
variety while preserving much of the image semantics and local statistics.

Hendrycks et al., AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty, 2020



Data Augmentation
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Hendrycks et al., AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty, 2020



Example: Natural Language Processing

Article: Super Bowl 50

Paragraph: “Peyton Manning became the first quarter-
back ever to lead two different teams to multiple Super
Bowls. He is also the oldest quarterback ever to play
in a Super Bowl at age 39. The past record was held
by John Elway, who led the Broncos to victory in Super
Bowl XXXIII at age 38 and is currently Denver’s Execu-
tive Vice President of Football Operations and General
Manager. Quarterback Jeff Dean had jersey number 37
in Champ Bowl XXXIV.”

Question: “What is the name of the quarterback who
was 38 in Super Bowl XXXIII?”

Original Prediction: John Elway

Prediction under adversary: Jeff Dean

Jia & Liang, Adversarial Examples for Evaluating Reading Comprehension Systems, 2021



Example: Real Perturbations
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Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts, 2020




Example: Real Perturbations
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Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts, 2020



Example: Real Perturbations
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Traditional Supervised Learning

* Problem setup
* Consider a parametric model family { fo: X - Y | 6 € 0}
 Consider a loss function £(6; x, y)
* Consider a data distribution P over X XY

* Supervised learning problem
* Given training dataset Z € X'XU consisting of i.i.d. samples (x,y) ~ P
* Expected/empirical loss Ep[£(8; x,y)] = |Z| ™1 2xyezt(0;x,y)
e Goal is to compute = mﬁ}anl_1 2xy)ezt(0;x,y)



Distribution Shift

 Distribution shift: Training and test distributions differ
* Training set consists of samples (x4, y1), -, (X5, V) ~ P
* Test set consists of samples (x1, 1), .., (X5, Vi) ~ Q

e Supervised learning under distribution shift
* Given training dataset Z € X'XU consisting of i.i.d. samples (x,y) ~ P
* Goal is to minimize loss Eo[£(6; x, y)] % |Z|™" X yez £(6; X, y)
« Computing 8 = m@inIZI_1 Y (xy)ez £(6; x,¥) may not work



Aside: Adversarial Robustness

* In adversarial robustness, the goal is to be robust to all perturbations
of the form x’ = x + €, where € is small but arbitrary

e Question: Can we treat x + € as a distribution shift?

* Answer: Yes! But with a major caveat...

* The shifted distribution Q can depend on the model f
* If f is fixed, this works fine!



Distribution Shift

* Intuitively, when can we hope to perform well on Q?
* Impossible in general (what if we swap the labels?)

e Can we leverage additional information about the shift?
* Make additional assumptions about shift

* Leverage additional data
* Both



Distribution Shift

* Intuitively, when can we hope to perform well on Q?
* Impossible in general (what if we swap the labels?)
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Distributionally Robust Optimization

* ldea: Robust to an arbitrary small shift

* Example: Small in KL divergence:

{Q | Dx,(P 11 Q) <€}

 Very similar to adversarial robustness (covered later)

* We can do much better with a little extra information



Distribution Shift
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Distribution Shift

* Intuitively, when can we hope to perform well on Q?
* Impossible in general (what if we swap the labels?)

e Can we leverage additional information about the shift?
* Make additional assumptions about shift

* Leverage additional data
* Both



Unsupervised Domain Adaptation

* ldea: Use some information about the distribution shift

* Consider unsupervised domain adaptation setting

y'=2 y'=0 y'=4 y*=5

labeled training examples unlabeled test examples
(possibly shifted)



Unsupervised Domain Adaptation

* Data is easy to collect but labeling costs money
* Example: Data from a different hospital

* Collect data during run time
* Example: Self-driving car



Covariate Shift Assumption

* Let p and q be the density functions for P and Q, respectively

* Covariate Shift Assumption: p(y | x) =q(y | x)
* But may have p(x) # q(x)
* Intuition: The label computation does not change, but the inputs can change

* Examples
c y=B"x+¢€ but P(x) = N(u, %) while Q(x) = N(,u’,a’z)
* Daytime vs. nighttime, driving in new city, changes in color/lighting



Covariate Shift Assumption

e Covariate distributions

* P(x) = N(u,0%) — Training
* Q) =N, 0") -=--  Test

e Label distribution

*P(y12)=Q(y1x) =N(BTx,0")
* le.,y= ﬁTx + €, where e ~ N(0,0"'%)

Image; Glauner et al., 2018



Covariate Shift Assumption
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Hendrycks & Dietterich, Benchmarking Neural Network Robustness to Common Corruptions and Perturbations



Covariate Shift Assumption
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Covariate Shift Assumption

* Computer vision
* Daytime vs. nighttime
* Color shifts, lighting shifts, etc.
* Driving in a new city

* Natural language processing
* Change in vocabulary frequency over time
* Regional vocabulary
* News writing vs. conversational writing

e Covariate shift is pervasive



Label Shift Assumption

* Let p and q be the density functions for P and Q, respectively

* Label Shift Assumption: p(x | y) =qg(x | y)

* But may have p(y) # q(y)
* Intuition: The rates of labels changes, but the kinds of



Label Shift Assumption

 Example: Increase in flu cases due to an outbreak
* x are the symptoms, y is indicator for flu
 P(x | y) is rate of symptoms conditioned on having disease (stays the same)
* P(y) is rate of flu (can change if there is an outbreak)

Flu (y)

Cough (x;) Fever (x;)




Label Shift Assumption

* Example: Changes in label
distribution

* x is an image, y is the label

 P(x | y)isthe distribution
of images of a given label

* P(y) is rate of that label

* Often, the training labels are

balanced, which is a source
of label shift
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Importance Weighting

 Given distributions P and Q, the importance weight (function) is

* Key property (by definition):



Importance Weighting

 Note that



Importance Weighting

 Note that

Eo[€(6;%,9)] = [y, £0;%,) - q(x,y) - dx - dy

T , axy) . .
= Jywy PO, y) - 5 plxy) - dx - dy

=[xy £0:%,9) - w(x,y) - p(x,y) - dx - dy
= Ep[£(6; x,y) - w(x,y)]

e

(&

* We have assumed the support of Q is contained in the support of P!



Importance Weighting

 Given distributions P and Q, the importance weight (function) is

* Key property (by definition):

* Key question: How to compute importance weights?



Importance Weights for Label Shift

* In the label shift setting, we have

w(x,y)



Importance Weights for Label Shift

* In the label shift setting, we have

q(x,y)
_q(xly)q(y)

— pxI)p®)
_a®)
p(y)

= w(y)




Importance Weights for Label Shift

* If we know w(y), then we have

Eol£(6;x,y)]



Importance Weights for Label Shift

* If we know w(y), then we have

Eol€(8;x,y)] = Ep[£(6;x,y) - w(x,y)]



Importance Weights for Label Shift

* If we know w(y), then we have

Eql€(8;x,¥)] = Epl£(6; x,¥) - wlx,y)] = Ep[£(6; x,y) - w(y)]



Label Shift Assumption

* Training: p(y) = %

* Test: g(automobile) =

M NP

and g(y) = % otherwis
* Then, the loss might be
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Importance Weights for Label Shift

* If we know w(y), then we have
Eol2(6;x,¥)] = Ep[£(6;x,y) - w(x, y)] = Ep[€(6; x,y) - w(y)]

* How do we compute w(y)?



Importance Weights for Label Shift

* Given a classifier f: X = U,
where Y = {1, ..., K}, consider
the confusion matrix C € RE*K
defined by

Cij =Pplf(x) =i,y =]
* Also, define p, g € RX by

* p; = Pplf(x) =]
* q; = Polf(x) =]

Confusion Matrix of CIFAR Classifier
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Sooksatra, Evaluation of adversarial attacks sensitivity of classifiers with occluded input data



Importance Weights for Label Shift

Cij =Pplf(x) =i,y=jl pi=Pplf(x) =il q;=Pulf(x)=1]

* Since f(x) only depends on x, we have

Pplf(x) =ily=j]



Importance Weights for Label Shift

Cij =Pplf(x) =i,y=jl pi=Pplf(x) =il q;=Pulf(x)=1]

* Since f(x) only depends on x, we have

Polf(x) =ily=jl=[,1(f(x) =D -px|ly=))- dx
— [ 1(fG) = D) - q(x 1y =) - dx
:PQ[f(x):ily:j]

C



Importance Weights for Label Shift

Cij =Pplf(x) =i,y=jl pi=Pplf(x) =il q;=Pulf(x)=1]
Pplf(x) =ily=jl=Polf(x)=ily=]]
* Now, we have

qi



Importance Weights for Label Shift

Cij =Pplf(x) =i,y=jl pi=Pplf(x) =il q;=Pulf(x)=1]
Pprlf(x) =ily=jl=Polf(x)=ily=j]

* Now, we have
=Y Polf =ily=jl Poly=j
Z] Pelf(x)=ily=/j 'PQ:y:j:

k PP f()=iy=j]
_Z Pply=j] [y |

= Tl Pelf () = iy = j1- 252

\




Importance Weights for Label Shift

Cij =Pplf(x) =i,y=jl pi=Pplf(x) =il q;=Pulf(x)=1]
Pprlf(x) =ily=jl=Polf(x)=ily=j]

* Now, we have

qi = ?=1PP[f(x) =i,y=j]:



Importance Weights for Label Shift
Cii =Pplf()=0Ly=jl pi=Pplfx) =il q;=Polf(x) =1l
Pplf(x) =ily=jl=Polf(x) =ily=]J]

* Now, we have

Z] Pelf) =i,y=j]-

Pply=j]



Importance Weights for Label Shift

Cij =Pplf(x) =i,y=jl pi=Pplf(x) =il q;=Pulf(x)=1]
Pprlf(x) =ily=jl=Polf(x)=ily=j]

* Now, we have
di = 2521 Pplf(x) =iy =j]-w()

@] (PO =1y =11 o BlfG) =1y = KIj[w(1)

gl Pl =Ky =11 — PolF(o = K,y = Kl Lw(k)

q=Cw



Importance Weights for Label Shift

Cij =Pplf(x) =i,y=jl pi=Pplf(x) =il q;=Pulf(x)=1]
Pprlf(x) =ily=jl=Polf(x)=ily=j]

* Now, we have
di = 2521 Pplf(x) =iy =j]-w()

@] (PO =1y =11 o BlfG) =1y = KIj[w(1)

gl Pl =Ky =11 — PolF(o = K,y = Kl Lw(k)

g=Cw>w=C"1g



Importance Weights for Label Shift

Cij =Pplf(x) =i,y=jl pi=Pplf(x) =il q;=Pulf(x)=1]
Pplf(x) =ily=jl=Polf(x)=ily=]]
* Now, we have

w=C"1q



Supervised Learning with Label Shift

* Input: Training dataset Z, unlabeled test dataset X
* Step 1: Train f on Z

* Step 2: Estimate using the dataset:
* Cij=Pplf(x) =i,y =jl = 1Z| 7' X x ez 1F () = iAy =)
* ¢ =Polf(x) =il = [XI™  Zpex 1(f (x) = 0)

* Step 3: Computew = C™1q

« Step 4: Compute 6 = arg min 2xyezt0;x,y) - w(y)
0



