Lecture 4: Distribution Shift

CIS 7000: Trustworthy Machine Learning Spring 2024

Agenda

Robustness to distribution shift

- Basic examples
- Definitions
- Unsupervised domain adaptation setting

• Algorithms for distributional robustness

- Importance weighting
- Application to label shift
- Application to covariate shift

• In the covariate shift setting, we have

w(x,y)

• In the covariate shift setting, we have

$$w(x, y) = \frac{q(x, y)}{p(x, y)}$$
$$= \frac{q(y|x)q(x)}{p(y|x)p(x)}$$
$$= \frac{q(x)}{p(x)}$$
$$\coloneqq w(x)$$

• If we know w(x), then we have

 $\mathbb{E}_Q[\ell(\theta; x, y)]$

• If we know w(x), then we have

$$\mathbb{E}_{Q}[\ell(\theta; x, y)] = \mathbb{E}_{P}[\ell(\theta; x, y) \cdot w(x, y)]$$

• If we know w(x), then we have

 $\mathbb{E}_{Q}[\ell(\theta; x, y)] = \mathbb{E}_{P}[\ell(\theta; x, y) \cdot w(x, y)] = \mathbb{E}_{P}[\ell(\theta; x, y) \cdot w(x)]$

- Define a new distribution R over $\{0,1\} \times \mathcal{X}$:
 - Sample $b \sim \text{Bernoulli}\left(\frac{1}{2}\right)$
 - If b = 0, then sample $(x, \cdot) \sim P$
 - If b = 1, then sample $(x, \cdot) \sim Q$
- Suppose we know $r(b \mid x)$

- Define a new distribution R over $\{0,1\} \times \mathcal{X}$:
 - Sample $b \sim \text{Bernoulli}\left(\frac{1}{2}\right)$
 - If b = 0, then sample $(x, \cdot) \sim P$
 - If b = 1, then sample $(x, \cdot) \sim Q$

$$r(b=0 \mid x)$$

- Define a new distribution R over $\{0,1\} \times \mathcal{X}$:
 - Sample $b \sim \text{Bernoulli}\left(\frac{1}{2}\right)$
 - If b = 0, then sample $(x, \cdot) \sim P$
 - If b = 1, then sample $(x, \cdot) \sim Q$

$$r(b = 0 | x) = \frac{r(x | b = 0)r(b = 0)}{r(x | b = 0)r(b = 0) + r(x | b = 1)r(b = 1)}$$

- Define a new distribution R over $\{0,1\} \times \mathcal{X}$:
 - Sample $b \sim \text{Bernoulli}\left(\frac{1}{2}\right)$
 - If b = 0, then sample $(x, \cdot) \sim P$
 - If b = 1, then sample $(x, \cdot) \sim Q$

$$r(b = 0 | x) = \frac{r(x | b = 0)r(b = 0)}{r(x | b = 0)r(b = 0) + r(x | b = 1)r(b = 1)}$$

- Define a new distribution R over $\{0,1\} \times \mathcal{X}$:
 - Sample $b \sim \text{Bernoulli}\left(\frac{1}{2}\right)$
 - If b = 0, then sample $(x, \cdot) \sim P$
 - If b = 1, then sample $(x, \cdot) \sim Q$

$$r(b = 0 | x) = \frac{r(x | b = 0) \cdot \frac{1}{2}}{r(x | b = 0) \cdot \frac{1}{2} + r(x | b = 1) \cdot \frac{1}{2}}$$

- Define a new distribution R over $\{0,1\} \times \mathcal{X}$:
 - Sample $b \sim \text{Bernoulli}\left(\frac{1}{2}\right)$
 - If b = 0, then sample $(x, \cdot) \sim P$
 - If b = 1, then sample $(x, \cdot) \sim Q$

$$r(b = 0 | x) = \frac{r(x | b = 0)}{r(x | b = 0) + r(x | b = 1)}$$

- Define a new distribution R over $\{0,1\} \times \mathcal{X}$:
 - Sample $b \sim \text{Bernoulli}\left(\frac{1}{2}\right)$
 - If b = 0, then sample $(x, \cdot) \sim P$
 - If b = 1, then sample $(x, \cdot) \sim Q$

$$r(b = 0 | x) = \frac{p(x)}{p(x) + q(x)}$$

- Define a new distribution R over $\{0,1\} \times \mathcal{X}$:
 - Sample $b \sim \text{Bernoulli}\left(\frac{1}{2}\right)$
 - If b = 0, then sample $(x, \cdot) \sim P$
 - If b = 1, then sample $(x, \cdot) \sim Q$

$$r(b = 0 | x) = \frac{1}{1 + \frac{q(x)}{p(x)}}$$

- Define a new distribution R over $\{0,1\} \times \mathcal{X}$:
 - Sample $b \sim \text{Bernoulli}\left(\frac{1}{2}\right)$
 - If b = 0, then sample $(x, \cdot) \sim P$
 - If b = 1, then sample $(x, \cdot) \sim Q$

$$r(b = 0 \mid x) = \frac{1}{w(x) + 1}$$

- Define a new distribution R over $\{0,1\} \times \mathcal{X}$:
 - Sample $b \sim \text{Bernoulli}\left(\frac{1}{2}\right)$
 - If b = 0, then sample $(x, \cdot) \sim P$
 - If b = 1, then sample $(x, \cdot) \sim Q$

$$w(x) + 1 = \frac{1}{r(b = 0 | x)}$$

- Define a new distribution R over $\{0,1\} \times \mathcal{X}$:
 - Sample $b \sim \text{Bernoulli}\left(\frac{1}{2}\right)$
 - If b = 0, then sample $(x, \cdot) \sim P$
 - If b = 1, then sample $(x, \cdot) \sim Q$

$$w(x) = \frac{1}{r(b = 0 \mid x)} - 1$$

Estimating Source-Target Probability

- We can construct a dataset of i.i.d. samples $(x, b) \sim R$
 - For simplicity, assume that |X| = |Z|
 - Then, consider

$$X' = \{ (x,0) \mid (x,y) \in Z \} \cup \{ (x,1) \mid x \in X \}$$

- This dataset consists of i.i.d. samples $(x, b) \sim R$
- Given i.i.d. samples (x, b) ~ R, then r(b = 1 | x) is the same as the probability of "label" b given "input" x
 - Idea: Train a model (called a discriminator) on X' to predict b given x

Discriminators

- Train **discriminator** \hat{g} on X' to distinguish **training** and **test** examples
- \hat{g} has high accuracy \Rightarrow large shift

Train **discriminator** â an

Discriminators

- Train **discriminator** \hat{g} on X' to distinguish **training** and **test** examples
- \hat{g} has high accuracy \Rightarrow large shift
- \hat{g} has **low accuracy** \Rightarrow **small shift** (assuming sufficient capacity)

 $\hat{g}(x)$ accuracy ≈ 0.5

Supervised Learning with Covariate Shift

- Input: Training dataset Z, unlabeled test dataset X
- Step 1: Construct $X' = \{ (x, 0) \mid (x, y) \in Z \} \cup \{ (x, 1) \mid x \in X \}$ and train \hat{g} on X' to predict b given x

• Step 2: Compute
$$w(x) = \frac{1}{\hat{g}(b=1|x)} - 1$$

• Step 3: Compute
$$\hat{\theta} = \arg \min_{\theta} \sum_{(x,y) \in Z} \ell(\theta; x, y) \cdot w(x)$$

Importance Weights

• Pros:

- Principled technique for addressing distribution shift
- "Granular" quantification of shift (obtain an estimate of the shift for each example, not just just the overall shift)

• Cons:

- Does not work when support of Q is not contained in support of P
- Even if the above is satisfied, importance weights are large if P(x, y) is small

Agenda

Robustness to distribution shift

- Basic examples
- Definitions
- Unsupervised domain adaptation setting

• Algorithms for distributional robustness

- Importance weighting
- Application to label shift
- Application to covariate shift

- Assumption: Support of Q is not contained in support of P
- However, this is **necessary** since we do not know anything about data outside of the support of *P*
- Need additional assumptions to do better
 - Focus on covariate shift

Image; Glauner et al., 2018

- Closer look at what goes wrong
 - Suppose we train a linear model
 - If the true model is nonlinear, then it may diverge from our model
- What if the true model is linear?

Image; Glauner et al., 2018

- Closer look at what goes wrong
 - Suppose we train a linear model
 - If the true model is nonlinear, then it may diverge from our model
- What if the true model is linear?
 - Everything is OK!
 - "Well-specified"
 - Rarely holds in practice

Image; Glauner et al., 2018

- Closer look at what goes wrong
 - Suppose we train a linear model
 - If the true model is nonlinear, then it may diverge from our model
- What is the true model is approximately linear?
 - OK if a "little" off
 - Can we use this fact?

Image; Glauner et al., 2018

Learning vs. Evaluation

- For this part, we will focus on model evaluation
 - Learning: Optimize $\mathbb{E}_Q[\ell(\theta; x, y)]$
 - Evaluation: Estimate $\mathbb{E}_{Q}[\ell(\theta; x, y)]$
- We will see why learning is harder later

Integral Probability Metrics

• The total variation distance is

$$TV(P,Q) = \int_{\mathcal{X}\times\mathcal{Y}} |q(x,y) - p(x,y)| \cdot dx \cdot dy$$

• The Wasserstein distance is

$$W(P,Q) = \sup_{f:K_f \le 1} \int_{\mathcal{X} \times \mathcal{Y}} f(x,y) \cdot (q(x,y) - p(x,y)) \cdot dx \cdot dy$$

Note that

 $\mathbb{E}_Q[\ell(\theta; x, y)]$

Note that

$$\begin{split} \mathbb{E}_{Q}[\ell(\theta; x, y)] &= \int_{\mathcal{X} \times \mathcal{Y}} \ell(\theta; x, y) \cdot q(x, y) \cdot dx \cdot dy \\ &= \int_{\mathcal{X} \times \mathcal{Y}} \ell(\theta; x, y) \cdot \left(p(x, y) + q(x, y) - p(x, y)\right) \cdot dx \cdot dy \\ &= \int_{\mathcal{X} \times \mathcal{Y}} \ell(\theta; x, y) \cdot p(x, y) \cdot dx \cdot dy \\ &+ \int_{\mathcal{X} \times \mathcal{Y}} \ell(\theta; x, y) \cdot \left(q(x, y) - p(x, y)\right) \cdot dx \cdot dy \\ &= \mathbb{E}_{P}[\ell(\theta; x, y)] + \int_{\mathcal{X} \times \mathcal{Y}} \ell(\theta; x, y) \cdot \left(q(x, y) - p(x, y)\right) \cdot dx \cdot dy \\ &\leq \mathbb{E}_{P}[\ell(\theta; x, y)] + \ell_{\max} \cdot \int_{\mathcal{X} \times \mathcal{Y}} |q(x, y) - p(x, y)| \cdot dx \cdot dy \\ &= \mathbb{E}_{P}[\ell(\theta; x, y)] + \ell_{\max} \cdot TV(P, Q) \end{split}$$

Note that

$$\begin{split} \mathbb{E}_{Q}[\ell(\theta; x, y)] &= \int_{\mathcal{X} \times \mathcal{Y}} \ell(\theta; x, y) \cdot q(x, y) \cdot dx \cdot dy \\ &= \int_{\mathcal{X} \times \mathcal{Y}} \ell(\theta; x, y) \cdot \left(p(x, y) + q(x, y) - p(x, y) \right) \cdot dx \cdot dy \\ &= \int_{\mathcal{X} \times \mathcal{Y}} \ell(\theta; x, y) \cdot p(x, y) \cdot dx \cdot dy \\ &+ \int_{\mathcal{X} \times \mathcal{Y}} \ell(\theta; x, y) \cdot \left(q(x, y) - p(x, y) \right) \cdot dx \cdot dy \\ &= \mathbb{E}_{P}[\ell(\theta; x, y)] + \int_{\mathcal{X} \times \mathcal{Y}} \ell(\theta; x, y) \cdot \left(q(x, y) - p(x, y) \right) \cdot dx \cdot dy \\ &\leq \mathbb{E}_{P}[\ell(\theta; x, y)] + K_{\ell} \cdot W(P, Q) \end{split}$$

Evaluation Bounds for Covariate Shift

Note that

 $\int_{\chi \times \mathcal{U}} \ell(\theta; x, y) \cdot \left(q(x, y) - p(x, y) \right) \cdot dx \cdot dy$ $= \int_{\chi \times \mathcal{U}} \ell(\theta; x, y) \cdot \left(q(y \mid x) q(x) - p(y \mid x) p(x) \right) \cdot dx \cdot dy$ $= \int_{X \times \mathcal{U}} \ell(\theta; x, y) \cdot \left(p(y \mid x) q(x) - p(y \mid x) p(x) \right) \cdot dx \cdot dy$ $= \int_{X \times \mathcal{U}} \ell(\theta; x, y) \cdot p(y \mid x) \cdot (q(x) - p(x)) \cdot dx \cdot dy$ $= \int_{\mathcal{X}} \left(\int_{\mathcal{U}} \ell(\theta; x, y) \cdot p(y \mid x) \cdot dy \right) \cdot \left(q(x) - p(x) \right) \cdot dx$ $= \int_{\gamma} \tilde{\ell}(\theta; x) \cdot \left(q(x) - p(x) \right) \cdot dx$ $\leq K_{\tilde{\ell}} \cdot W(P(x), Q(x))$

Evaluation Bounds for Covariate Shift

• Thus, we have

$$\mathbb{E}_{Q}[\ell(\theta; x, y)] \leq \mathbb{E}_{P}[\ell(\theta; x, y)] + K_{\tilde{\ell}} \cdot W(P(x), Q(x))$$

Aside: What About Learning?

• Suppose we optimize the upper bound:

 $\mathbb{E}_{Q}[\ell(\theta; x, y)] \leq \mathbb{E}_{P}[\ell(\theta; x, y)] + K_{\tilde{\ell}} \cdot W(P(x), Q(x))$

- It is equivalent to optimizing $\mathbb{E}_{P}[\ell(\theta; x, y)]$, since the penalty is independent of θ
- Need new approaches to use such bounds for learning

- Need to evaluate the metric TV(P, Q) or W(P, Q)
 - TV(P, Q) is harder to estimate
 - W(P,Q) can be estimated heuristically
- We focus on covariate shift

- Basic idea: Train a discriminator with bounded Lipschitz constant
 - Construct $X' = \{ (x, 0) \mid (x, y) \in Z \} \cup \{ (x, 1) \mid x \in X \}$
 - Train \hat{g} on X' but bound its Lipschitz constant $K_{\hat{g}} \leq 1$
- Use the Wasserstein distance as the training loss:

$$\hat{g} = \sup_{\substack{f:K_f \leq 1}} \int_{\mathcal{X}} f(x) \cdot \left(q(x) - p(x)\right) \cdot dx \cdot dy$$
$$= \sup_{\substack{f:K_f \leq 1}} \left\{ \mathbb{E}_Q[f(x)] - \mathbb{E}_P[f(x)] \right\}$$
$$\approx \sup_{\substack{f:K_f \leq 1}} \left\{ n^{-1} \sum_{(x,1) \in X'} f(x) - n^{-1} \sum_{(x,0) \in X'} f(x) \right\}$$

Training Lipschitz Neural Networks

- Simple strategy: Bound weight matrices individually
 - For example, $g = g_m \circ g_{m-1} \circ \cdots \circ g_1$, then $K_g \leq K_{g_m} \cdot K_{g_{m-1}} \cdot \cdots \cdot K_{g_1}$
- For a single layer
 - If $g_j(x) = W_j x$ is linear, we have $K_{g_j} = \|W_j\|_1$
 - Here, $||W||_1$ is the operator norm $||W||_1 = \max_x \frac{||Wx||_1}{||x||_1}$
 - If $g_j(x) = \operatorname{ReLU}(x)$, we have $K_{g_j} = 1$

Training Lipschitz Neural Networks

- Use projected gradient descent
- For $t \in \{1, ..., T\}$ (or until convergence):
 - For $j \in \{1, ..., m\}$:

$$W_{j} \leftarrow W_{j} - \alpha \cdot \nabla_{W_{j}} L(W_{j}; Z)$$
$$W_{j} \leftarrow \frac{W_{j}}{\|W_{j}\|_{1}}$$

Integral Probability Metric Penalties

• Pros:

• Can handle shifts without distribution overlap

• Cons:

- Requires additional assumptions about the true function (e.g., Lipschitz)
- Cannot be used for learning, only evaluation

• Alternative strategy: Can we test for covariate shift?

Problem setting

- Given: i.i.d. samples $x_1, \ldots, x_n \sim P$ and $x'_1, \ldots, x'_n \sim Q$ (denoted X_P and X_Q)
- **Goal:** Determine whether P = Q
- This is a **two-sample test**
 - Lots of work on two-sample tests in the statistics literature
 - Idea: Can we leverage our source-target discriminator?
 - Yes! This is called a **classifier test**

Discriminators

- Train **discriminator** \hat{g} on X' to distinguish **training** and **test** examples
- \hat{g} has high accuracy \Rightarrow large shift

Discriminators

- Train **discriminator** \hat{g} on X' to distinguish **training** and **test** examples
- \hat{g} has high accuracy \Rightarrow large shift
- \hat{g} has **low accuracy** \Rightarrow **small shift** (assuming sufficient capacity)

 $\hat{g}(x)$ accuracy ≈ 0.5

• Proposed approach

- Train discriminator \hat{g} on $X' = \{(x, 0) \mid x \in X_P\} \cup \{(x, 1) \mid x \in X_Q\}$
- Determine there is covariate shift if Accuracy $(\hat{g}; X'') \ge \frac{1}{2} + \epsilon$
- X'' is a held-out test set constructed the same way as X'
- **Question:** How do we choose ϵ ?
- Typical goal: Choose ε so the probability of a false positive is bounded by a user provided error level α:

$$\mathbb{P}_{X^{\prime\prime}}[\operatorname{Detector}(X^{\prime\prime};\hat{g},\epsilon)=1 \mid P=Q] \leq \alpha$$

- Note that $Accuracy(\hat{g}; X) = n^{-1} \sum_{i=1}^{n} \mathbb{1}(\hat{g}(x_i) = b_i)$
- Assuming P = Q, then $z_i \coloneqq 1(\hat{g}(x_i) = b_i)$ is a Bernoulli random variable with mean $\mathbb{E}[1(\hat{g}(x_i) = b_i)] = \mathbb{P}[\hat{g}(x_i) = b_i] = \frac{1}{2}$
- Thus, $Accuracy(\hat{g}; X) \sim Binomial(n, \frac{1}{2})$, so

$$\mathbb{P}_{X''}[\operatorname{Detector}(X'';\hat{g},\epsilon) = 1 \mid P = Q] = \sum_{i=\lceil n \epsilon \rceil}^{n} \operatorname{Binomial}\left(i;n,\frac{1}{2}\right)$$

- **Step 1:** Train \hat{g} on $X' = \{ (x, 0) \mid x \in X_P \} \cup \{ (x, 1) \mid x \in X_Q \}$
- **Step 2:** Compute ϵ so that $\sum_{i=\lfloor n \epsilon \rfloor}^{n}$ Binomial $(i; n, \frac{1}{2}) \leq \alpha$
- Step 3: Return "true" if Accuracy $(\hat{g}; X'') \ge \frac{1}{2} + \epsilon$ else "false"
 - X'' is a held-out test set constructed the same way as X'

Key Takeaway

- We can get provable bounds on the true accuracy of a model $\mathbb{E}[1(\hat{g}(x_i) = b_i)]$ from the test set accuracy $n^{-1} \sum_{i=1}^n 1(\hat{g}(x_i) = b_i)$
- Later in the class, we will see how this idea can be used to obtain rigorous uncertainty quantification for machine learning models