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Agenda

* Robustness to distribution shift
* Basic examples
* Definitions
* Unsupervised domain adaptation setting

 Algorithms for distributional robustness
* Importance weighting
* Application to label shift
* Application to covariate shift
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 Define a new distribution R over {0,1}xX:

e Sample b ~ Bernoulli G)

* If b =0, then sample (x,-) ~ P
* If b =1, then sample (x,-) ~ Q

* Suppose we know r( b | x ), then by Bayes’ rule, we have

1

r(b=0|x)_1
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Estimating Source-Target Probability

* We can construct a dataset of i.i.d. samples (x,b) ~ R
* For simplicity, assume that | X| = |Z]|
* Then, consider

X'=1x0)[(xy)eZjui(x 1) xeX]

* This dataset consists of i.i.d. samples (x,b) ~ R

* Given i.i.d. samples (x,b) ~ R, thenr(b = 1| x) is the same as the
probability of “label” b given “input” x
* Idea: Train a model (called a discriminator) on X' to predict b given x



Discriminators

* Train discriminator § on X' to
distinguish training and test examples ,

* g has high accuracy = large shift \

g \

accuracy » 0.5 \
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* Train discriminator g on X' to
distinguish training and test examples /

* g has high accuracy = large shift / A( )
g\X

* g has low accuracy = small shift
I accuracy = 0.5

(assuming sufficient capacity)




Supervised Learning with Covariate Shift

* Input: Training dataset Z, unlabeled test dataset X

 Step 1: Construct X' = {(x,0) | (x,y) € Z}uU{(x,1) | x € X } and
train § on X' to predict b given x

1
g(b=1|x)

* Step 2: Compute w(x) =

« Step 3: Compute § = arg min 2xyezt(0;x,y) - w(x)
0



Importance Weights

* Pros:
* Principled technique for addressing distribution shift

e “Granular” quantification of shift (obtain an estimate of the shift for each
example, not just just the overall shift)

* Cons:
* Does not work when support of Q is not contained in support of P
* Even if the above is satisfied, importance weights are large if P(x, y) is small
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Support of Shifted Data

e Assumption: Support of Q is not
contained in support of P

* However, this is necessary since
we do not know anything about
data outside of the support of P

* Need additional assumptions to
do better

* Focus on covariate shift

— Training
Test

Image; Glauner et al., 2018




Support of Shifted Data

* Closer look at what goes wrong
e Suppose we train a linear model — Training

* |f the true model is nonlinear, then --== Test
it may diverge from our model
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Trained model
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Support of Shifted Data

* Closer look at what goes wrong
e Suppose we train a linear model

* |If the true model is nonlinear, then
it may diverge from our model

/
— Training Y

Test

e What if the true model is linear?
e Everything is OK!

* “Well-specified”

“True” model
7
* Rarely holds in practice

Trained model

L
R
Image; Glauner et al., 2018



Support of Shifted Data

* Closer look at what goes wrong

e Suppose we train a linear model

* |If the true model is nonlinear, then
it may diverge from our model

— Training
- Test

* What is the true model is
approximately linear?
* OKif a “little” off

“True” model
* Can we use this fact?

Trained model

Image; Glauner et al., 2018



Learning vs. Evaluation

* For this part, we will focus on model evaluation
* Learning: Optimize E,[£(0; x,y)]
* Evaluation: Estimate E,[£(8; x,y)]

* We will see why learning is harder later



Integral Probability Metrics

* The total variation distance is

TV(P,Q) = j lq(x,y) —p(x,y)| - dx - dy
X XY

e The Wasserstein distance is

W(P,Q) = sup feo,y) (gt y) —plx,y)) - dx - dy
[ Kres1Jxxy
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 Note that

Eq[£(0;x,3)] = [5,y (6; %, y) - q(x,¥) - dx - dy
=[xy 2@, ¥) - (00, y) + q(x,y) —p(x,»)) - dx - dy
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Evaluation Bounds for Covariate Shift

 Note that

fXxy £(0;x,y) - (q(x,y) —p(x,y)) - dx - dy

=[xy 2@, - (a(y 1 x)qC) = p(y | x)p(x)) - dx - dy
=[xy 2%, 9) - (p(y | x)qCx) = p(y | x)p(x)) - dx - dy
= [y 2@ ,3) p(y 1 %) (q() —p(x)) - dx - dy

= [ (Jy £@:x,9)  p(y 1 2) - dy) - (q(x) = p(x)) - dx

= [, 2(6;%) - (q(x) —p(x)) - dx

<K; W(P(x),Q(x))



Evaluation Bounds for Covariate Shift

* Thus, we have

Eq[£(6;x,y)] < Ep[€(6;x,)] + K7 - W(P(x), Q(x))



Aside: What About Learning?

e Suppose we optimize the upper bound:
Eo[€(6;x,y)] < Ep[€(60;x,y)] + K7 - W(P(x),Q(x))

* It is equivalent to optimizing Ep[£(6; x, y)], since the penalty is
independent of 6

* Need new approaches to use such bounds for learning



Evaluation Bounds

* Need to evaluate the metric TV(P, Q) or W (P, Q)
 TV(P, Q) is harder to estimate
« W(P, Q) can be estimated heuristically

 We focus on covariate shift



Evaluation Bounds

* Basic idea: Train a discriminator with bounded Lipschitz constant
e Construct X' ={(x,0) | (x,y) €eZ}u{(x,1) | x€ X}
* Train g on X' but bound its Lipschitz constant K; < 1

* Use the Wasserstein distance as the training loss:

g= sup [ f(x)-(q(x)—p))-dx-dy

f:Kf31

= sup {IEQ [f(.X)] — IIE‘:P [f(x)]}

fiKfs1

fSKupl{n_l Z(x,l)EX’ flx) —n~t Z(x,o)ex’ f(x)}
: fS

2



Training Lipschitz Neural Networks

e Simple strategy: Bound weight matrices individually
* Forexample, g = g o gm-1°--° g1, thenK; < K, -K

* For a single layer
* If gj(x) = Wjx is linear, we have Ky, = “W}”1

. w
* Here, ||W||; is the operator norm ||W||; = max Wil

x Al
* If gj(x) = ReLU(x), we have Ky, =1

Gy

g1



Training Lipschitz Neural Networks

* Use projected gradient descent

* Fort € {1, ..., T} (or until convergence):
* Forj €{1,..,m}




Integral Probability Metric Penalties

* Pros:
e Can handle shifts without distribution overlap

* Cons:
* Requires additional assumptions about the true function (e.g., Lipschitz)
* Cannot be used for learning, only evaluation



Covariate Shift Detection

 Alternative strategy: Can we test for covariate shift?

* Problem setting
* Given: i.i.d. samples x4, ...,x, ~ P and x1, ..., x5, ~ Q (denoted Xp and X))
e Goal: Determine whether P = (Q

* This is a two-sample test
* Lots of work on two-sample tests in the statistics literature
* Idea: Can we leverage our source-target discriminator?
* Yes! This is called a classifier test



Discriminators

* Train discriminator g on X' to
distinguish training and test examples ,

* g has high accuracy = large shift \

g \

accuracy > 0.5\

=1 2
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Covariate Shift Detection

* Proposed approach
» Train discriminator Gon X' = {(x,0) | x e Xp}U{(x,1) | x € X0 )

. . . . A 1
 Determine there is covariate shift if Accuracy(g; X"') > - t€

* X""is a held-out test set constructed the same way as X'
* Question: How do we choose €7?

 Typical goal: Choose € so the probability of a false positive is
bounded by a user provided error level «:

P, [ Detector(X";§,e) =1|P=0Q] < «a



Covariate Shift Detection

* Note that Accuracy(g; X) =n~t Y, 1(G(x;) = b))

e Assuming P = Q, then z; := 1(g(x;) = b;) is a Bernoulli random

variable with mean E[1(g(x;) = b;)] = P[g§(x;) = b;] Z%

* Thus, Accuracy(g; X) ~ Binomial (n, %), SO

n
1
[PXH[DetectOI'(X";g; E) =1 | P = Q] = z Binomial (l, n, E)

i1=[ne|



Covariate Shift Detection
*Stepl: Traingon X' ={(x,0) | x EXP}U{(x,l) | x EXQ}
* Step 2: Compute € so that };_ ;] Binomial (i; n, %) <«

. s 1 o ”
* Step 3: Return “true” if Accuracy(g; X'') = -te else “false

« X""is a held-out test set constructed the same way as X'



Key Takeaway

* We can get provable bounds on the true accuracy of a model
E[1(g(x;) = b;)] from the test set accuracy n™* ¥.1* , 1(§(x;) = b;)

e Later in the class, we will see how this idea can be used to obtain
rigorous uncertainty quantification for machine learning models



