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Agenda

• Robustness to distribution shift
• Basic examples
• Definitions
• Unsupervised domain adaptation setting

• Algorithms for distributional robustness
• Importance weighting
• Application to label shift
• Application to covariate shift



Importance Weights for Covariate Shift
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"
• If 𝑏 = 0, then sample 𝑥,⋅ ∼ 𝑃
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Importance Weights for Covariate Shift

• Define a new distribution 𝑅 over 0,1 ×𝒳:
• Sample 𝑏 ∼ Bernoulli !

"
• If 𝑏 = 0, then sample 𝑥,⋅ ∼ 𝑃
• If 𝑏 = 1, then sample 𝑥,⋅ ∼ 𝑄

• Suppose we know 𝑟 𝑏 𝑥 , then by Bayes’ rule, we have

𝑤 𝑥 =
1

𝑟 𝑏 = 0 𝑥
− 1



Estimating Source-Target Probability

• We can construct a dataset of i.i.d. samples 𝑥, 𝑏 ∼ 𝑅
• For simplicity, assume that 𝑋 = 𝑍
• Then, consider

𝑋) = 𝑥, 0 𝑥, 𝑦 ∈ 𝑍 ∪ 𝑥, 1 𝑥 ∈ 𝑋

• This dataset consists of i.i.d. samples 𝑥, 𝑏 ∼ 𝑅

• Given i.i.d. samples 𝑥, 𝑏 ∼ 𝑅, then 𝑟 𝑏 = 1 𝑥 is the same as the 
probability of “label” 𝑏 given “input” 𝑥
• Idea: Train a model (called a discriminator) on 𝑋# to predict 𝑏 given 𝑥



Discriminators

• Train discriminator =𝑔 on 𝑋) to 
dis:nguish training and test examples 
• =𝑔 has high accuracy ⇒ large shi6

!𝑔(𝑥)
accuracy ≫ 0.5



Discriminators

• Train discriminator =𝑔 on 𝑋) to 
distinguish training and test examples 
• =𝑔 has high accuracy ⇒ large shift
• =𝑔 has low accuracy ⇒ small shift 

(assuming sufficient capacity)
!𝑔(𝑥)
accuracy ≈ 0.5



Supervised Learning with Covariate Shift

• Input: Training dataset 𝑍, unlabeled test dataset 𝑋

• Step 1: Construct 𝑋) = 𝑥, 0 𝑥, 𝑦 ∈ 𝑍 ∪ 𝑥, 1 𝑥 ∈ 𝑋 and 
train =𝑔 on 𝑋) to predict 𝑏 given 𝑥

• Step 2: Compute 𝑤 𝑥 = *
+, -.*∣"

− 1

• Step 3: Compute @𝜃 = arg min
/

∑ ",$ ∈1 ℓ 𝜃; 𝑥, 𝑦 ⋅ 𝑤 𝑥



Importance Weights

• Pros:
• Principled technique for addressing distribution shift
• “Granular” quantification of shift (obtain an estimate of the shift for each 

example, not just just the overall shift)

• Cons:
• Does not work when support of 𝑄 is not contained in support of 𝑃
• Even if the above is satisfied, importance weights are large if 𝑃 𝑥, 𝑦 is small



Agenda

• Robustness to distribution shift
• Basic examples
• Definitions
• Unsupervised domain adaptation setting

• Algorithms for distributional robustness
• Importance weighting
• Application to label shift
• Application to covariate shift



Support of Shifted Data

• Assumption: Support of 𝑄 is not 
contained in support of 𝑃

• However, this is necessary since 
we do not know anything about 
data outside of the support of 𝑃

• Need additional assumptions to 
do better
• Focus on covariate shift Image; Glauner et al., 2018



Support of ShiBed Data

• Closer look at what goes wrong
• Suppose we train a linear model
• If the true model is nonlinear, then 

it may diverge from our model

• What if the true model is linear?

Image; Glauner et al., 2018

“True” model

Trained model



Support of Shifted Data

• Closer look at what goes wrong
• Suppose we train a linear model
• If the true model is nonlinear, then 

it may diverge from our model

• What if the true model is linear?
• Everything is OK!
• “Well-specified”
• Rarely holds in practice

Image; Glauner et al., 2018
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Trained model



Support of Shifted Data

• Closer look at what goes wrong
• Suppose we train a linear model
• If the true model is nonlinear, then 

it may diverge from our model

• What is the true model is 
approximately linear?
• OK if a “little” off
• Can we use this fact?

Image; Glauner et al., 2018

“True” model

Trained model



Learning vs. EvaluaDon

• For this part, we will focus on model evaluation
• Learning: Optimize 𝔼$ ℓ 𝜃; 𝑥, 𝑦
• Evaluation: Estimate 𝔼$ ℓ 𝜃; 𝑥, 𝑦

• We will see why learning is harder later



Integral Probability Metrics

• The total variation distance is

TV 𝑃, 𝑄 = L
𝒳×𝒴

𝑞 𝑥, 𝑦 − 𝑝 𝑥, 𝑦 ⋅ 𝑑𝑥 ⋅ 𝑑𝑦

• The Wasserstein distance is

𝑊 𝑃,𝑄 = sup
5:7!8*

L
𝒳×𝒴

𝑓 𝑥, 𝑦 ⋅ 𝑞 𝑥, 𝑦 − 𝑝 𝑥, 𝑦 ⋅ 𝑑𝑥 ⋅ 𝑑𝑦



Evaluation Bounds

• Note that

𝔼$ ℓ 𝜃; 𝑥, 𝑦 = ∫𝒳×𝒴 ℓ 𝜃; 𝑥, 𝑦 ⋅ 𝑞 𝑥, 𝑦 ⋅ 𝑑𝑥 ⋅ 𝑑𝑦

𝔼$ ℓ 𝜃; 𝑥, 𝑦 = ∫𝒳×𝒴 ℓ 𝜃; 𝑥, 𝑦 ⋅ 𝑝 𝑥, 𝑦 + 𝑞 𝑥, 𝑦 − 𝑝 𝑥, 𝑦 ⋅ 𝑑𝑥 ⋅ 𝑑𝑦

𝔼$ ℓ 𝜃; 𝑥, 𝑦 = ∫𝒳×𝒴 ℓ 𝜃; 𝑥, 𝑦 ⋅ 𝑝 𝑥, 𝑦 ⋅ 𝑑𝑥 ⋅ 𝑑𝑦

+∫𝒳×𝒴 ℓ 𝜃; 𝑥, 𝑦 ⋅ 𝑞 𝑥, 𝑦 − 𝑝 𝑥, 𝑦 ⋅ 𝑑𝑥 ⋅ 𝑑𝑦

𝔼$ ℓ 𝜃; 𝑥, 𝑦 = 𝔼( ℓ 𝜃; 𝑥, 𝑦 + ∫𝒳×𝒴 ℓ 𝜃; 𝑥, 𝑦 ⋅ 𝑞 𝑥, 𝑦 − 𝑝 𝑥, 𝑦 ⋅ 𝑑𝑥 ⋅ 𝑑𝑦

𝔼$ ℓ 𝜃; 𝑥, 𝑦 ≤ 𝔼( ℓ 𝜃; 𝑥, 𝑦 + ℓ)*+ ⋅ ∫𝒳×𝒴 𝑞 𝑥, 𝑦 − 𝑝 𝑥, 𝑦 ⋅ 𝑑𝑥 ⋅ 𝑑𝑦

𝔼$ ℓ 𝜃; 𝑥, 𝑦 = 𝔼( ℓ 𝜃; 𝑥, 𝑦 + ℓ)*+ ⋅ TV 𝑃, 𝑄
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Evaluation Bounds

• Note that
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+∫𝒳×𝒴 ℓ 𝜃; 𝑥, 𝑦 ⋅ 𝑞 𝑥, 𝑦 − 𝑝 𝑥, 𝑦 ⋅ 𝑑𝑥 ⋅ 𝑑𝑦

𝔼$ ℓ 𝜃; 𝑥, 𝑦 = 𝔼( ℓ 𝜃; 𝑥, 𝑦 + ∫𝒳×𝒴 ℓ 𝜃; 𝑥, 𝑦 ⋅ 𝑞 𝑥, 𝑦 − 𝑝 𝑥, 𝑦 ⋅ 𝑑𝑥 ⋅ 𝑑𝑦

𝔼$ ℓ 𝜃; 𝑥, 𝑦 ≤ 𝔼( ℓ 𝜃; 𝑥, 𝑦 + 𝐾ℓ ⋅ 𝑊 𝑃, 𝑄



Evaluation Bounds for Covariate Shift

• Note that

𝔼$ ℓ 𝜃; 𝑥, 𝑦 ∫𝒳×𝒴 ℓ 𝜃; 𝑥, 𝑦 ⋅ 𝑞 𝑥, 𝑦 − 𝑝 𝑥, 𝑦 ⋅ 𝑑𝑥 ⋅ 𝑑𝑦

𝔼$ ℓ 𝜃; 𝑥, 𝑦 = ∫𝒳×𝒴 ℓ 𝜃; 𝑥, 𝑦 ⋅ 𝑞 𝑦 𝑥 𝑞 𝑥 − 𝑝 𝑦 𝑥 𝑝 𝑥 ⋅ 𝑑𝑥 ⋅ 𝑑𝑦

𝔼$ ℓ 𝜃; 𝑥, 𝑦 = ∫𝒳×𝒴 ℓ 𝜃; 𝑥, 𝑦 ⋅ 𝑝 𝑦 𝑥 𝑞 𝑥 − 𝑝 𝑦 𝑥 𝑝 𝑥 ⋅ 𝑑𝑥 ⋅ 𝑑𝑦

𝔼$ ℓ 𝜃; 𝑥, 𝑦 = ∫𝒳×𝒴 ℓ 𝜃; 𝑥, 𝑦 ⋅ 𝑝 𝑦 𝑥 ⋅ 𝑞 𝑥 − 𝑝 𝑥 ⋅ 𝑑𝑥 ⋅ 𝑑𝑦

𝔼$ ℓ 𝜃; 𝑥, 𝑦 = ∫𝒳 ∫𝒴 ℓ 𝜃; 𝑥, 𝑦 ⋅ 𝑝 𝑦 𝑥 ⋅ 𝑑𝑦 ⋅ 𝑞 𝑥 − 𝑝 𝑥 ⋅ 𝑑𝑥

𝔼$ ℓ 𝜃; 𝑥, 𝑦 = ∫𝒳 Fℓ 𝜃; 𝑥 ⋅ 𝑞 𝑥 − 𝑝 𝑥 ⋅ 𝑑𝑥

𝔼$ ℓ 𝜃; 𝑥, 𝑦 ≤ 𝐾-ℓ ⋅ 𝑊 𝑃 𝑥 , 𝑄 𝑥



Evaluation Bounds for Covariate Shift

• Thus, we have

𝔼' ℓ 𝜃; 𝑥, 𝑦 ≤ 𝔼( ℓ 𝜃; 𝑥, 𝑦 + 𝐾9ℓ ⋅ 𝑊 𝑃 𝑥 , 𝑄 𝑥



Aside: What About Learning?

• Suppose we op:mize the upper bound:

𝔼' ℓ 𝜃; 𝑥, 𝑦 ≤ 𝔼( ℓ 𝜃; 𝑥, 𝑦 + 𝐾;ℓ ⋅ 𝑊 𝑃 𝑥 , 𝑄 𝑥

• It is equivalent to op:mizing 𝔼( ℓ 𝜃; 𝑥, 𝑦 , since the penalty is 
independent of 𝜃

• Need new approaches to use such bounds for learning



Evaluation Bounds

• Need to evaluate the metric TV 𝑃, 𝑄 or 𝑊 𝑃,𝑄
• TV 𝑃, 𝑄 is harder to estimate
• 𝑊 𝑃,𝑄 can be estimated heuristically

• We focus on covariate shift



Evaluation Bounds

• Basic idea: Train a discriminator with bounded Lipschitz constant
• Construct 𝑋# = 𝑥, 0 𝑥, 𝑦 ∈ 𝑍 ∪ 𝑥, 1 𝑥 ∈ 𝑋
• Train I𝑔 on 𝑋# but bound its Lipschitz constant 𝐾./ ≤ 1

• Use the Wasserstein distance as the training loss:

=𝑔 = sup
5:7!8*

∫𝒳 𝑓 𝑥 ⋅ 𝑞 𝑥 − 𝑝 𝑥 ⋅ 𝑑𝑥 ⋅ 𝑑𝑦

=𝑔 = sup
5:7!8*

𝔼' 𝑓 𝑥 − 𝔼( 𝑓 𝑥

=𝑔 ≈ sup
5:7!8*

𝑛<* ∑ ",* ∈=" 𝑓 𝑥 − 𝑛<* ∑ ",> ∈=" 𝑓 𝑥



Training Lipschitz Neural Networks

• Simple strategy: Bound weight matrices individually
• For example, 𝑔 = 𝑔0 ∘ 𝑔01! ∘ ⋯ ∘ 𝑔!, then 𝐾/ ≤ 𝐾/! ⋅ 𝐾/!"# ⋅ ⋯ ⋅ 𝐾/#

• For a single layer
• If 𝑔2 𝑥 = 𝑊2𝑥 is linear, we have 𝐾/$ = 𝑊2 !

• Here, 𝑊 ! is the operator norm 𝑊 ! = max
3

43 #
3 #

• If 𝑔2 𝑥 = ReLU 𝑥 , we have 𝐾/$ = 1



Training Lipschitz Neural Networks

• Use projected gradient descent

• For 𝑡 ∈ 1,… , 𝑇 (or un:l convergence):
• For 𝑗 ∈ 1,… ,𝑚 :

𝑊? ← 𝑊? − 𝛼 ⋅ ∇@#𝐿 𝑊?; 𝑍

𝑊? ←
@#
@# $



Integral Probability Metric Penalties

• Pros:
• Can handle shifts without distribution overlap

• Cons:
• Requires additional assumptions about the true function (e.g., Lipschitz)
• Cannot be used for learning, only evaluation



Covariate Shift Detection

• Alternative strategy: Can we test for covariate shift?

• Problem setting
• Given: i.i.d. samples 𝑥!, … , 𝑥5 ∼ 𝑃 and 𝑥!# , … , 𝑥5# ∼ 𝑄 (denoted 𝑋( and 𝑋$)
• Goal: Determine whether 𝑃 = 𝑄

• This is a two-sample test
• Lots of work on two-sample tests in the statistics literature
• Idea: Can we leverage our source-target discriminator?
• Yes! This is called a classifier test



Discriminators

• Train discriminator =𝑔 on 𝑋) to 
distinguish training and test examples 
• =𝑔 has high accuracy ⇒ large shift

!𝑔(𝑥)
accuracy ≫ 0.5



Discriminators

• Train discriminator =𝑔 on 𝑋) to 
distinguish training and test examples 
• =𝑔 has high accuracy ⇒ large shift
• =𝑔 has low accuracy ⇒ small shift 

(assuming sufficient capacity)
!𝑔(𝑥)
accuracy ≈ 0.5



Covariate Shift Detection

• Proposed approach
• Train discriminator I𝑔 on 𝑋# = 𝑥, 0 𝑥 ∈ 𝑋( ∪ 𝑥, 1 𝑥 ∈ 𝑋$
• Determine there is covariate shift if Accuracy I𝑔; 𝑋## ≥ !

"+ 𝜖
• 𝑋## is a held-out test set constructed the same way as 𝑋#

• Question: How do we choose 𝜖?

• Typical goal: Choose 𝜖 so the probability of a false positive is 
bounded by a user provided error level 𝛼:

ℙ="" Detector 𝑋)); =𝑔, 𝜖 = 1 𝑃 = 𝑄 ≤ 𝛼



Covariate Shift Detection

• Note that Accuracy =𝑔; 𝑋 = 𝑛<* ∑A.*B 1 =𝑔 𝑥A = 𝑏A

• Assuming 𝑃 = 𝑄, then 𝑧A ≔ 1 =𝑔 𝑥A = 𝑏A is a Bernoulli random 
variable with mean 𝔼 1 =𝑔 𝑥A = 𝑏A = ℙ =𝑔 𝑥A = 𝑏A = *

C

• Thus, Accuracy =𝑔; 𝑋 ∼ Binomial 𝑛, *
C

, so

ℙ="" Detector 𝑋)); =𝑔, 𝜖 = 1 𝑃 = 𝑄 = k
A.⌈BE⌉

B

Binomial 𝑖; 𝑛,
1
2



Covariate Shift Detection

• Step 1: Train =𝑔 on 𝑋) = 𝑥, 0 𝑥 ∈ 𝑋( ∪ 𝑥, 1 𝑥 ∈ 𝑋'

• Step 2: Compute 𝜖 so that ∑A.⌈BE⌉B Binomial 𝑖; 𝑛, *
C
≤ 𝛼

• Step 3: Return “true” if Accuracy =𝑔; 𝑋)) ≥ *
C
+ 𝜖 else “false”

• 𝑋## is a held-out test set constructed the same way as 𝑋#



Key Takeaway

• We can get provable bounds on the true accuracy of a model 
𝔼 1 =𝑔 𝑥A = 𝑏A from the test set accuracy 𝑛<* ∑A.*B 1 =𝑔 𝑥A = 𝑏A

• Later in the class, we will see how this idea can be used to obtain 
rigorous uncertainty quantification for machine learning models


